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Radar Reflection from Clouds:
Gigahertz Backscatter Cross Sections and

Doppler Spectra
David A. de Wolf, Herman W. J. Russchenberg, and Leo P. Ligthart

Abstract—This work deals with reflections of gigahertz-fre-
quency radar signals from typical clouds over The Netherlands.
Four principal mechanisms of reflection are identified. While the
backscatter cross sections for these are mostly well known, there
is a need to identify which, if any, are dominant in each frequency
range. Numerical studies of superpositions of the main backscatter
mechanisms are presented for a range of parameter values thought
to occur commonly. These studies confirm previous results, but
are generalized to incorporate gamma-function particle drop-size
distributions. The results are relatively insensitive to the power
of the diameter in the distribution function. The Doppler spectra
of the reflected signals sometimes exhibit a bimodal form. One
possible mechanism investigated here is the observation of reflec-
tions that occur simultaneously from turbulently moving globules
of particles and from incoherent reflections from particles with
diameter-dependent spreads in velocities.

Index Terms—Clouds, doppler radar, radar cross section.

I. INTRODUCTION

T HE purpose of this study is to quantify and compare the di-
verse contributions to the radar backscatter cross section

from clouds. Cloud altitudes and locations are such that contri-
butions from ice particles are not expected to play a significant
role. The major contributions come from distributions of liquid
particles and possibly also from clear-air turbulence.

As there is a large and well-documented body of literature
on the interaction of electromagnetic waves with various media,
we give only a few key references to texts [1]–[3] for interac-
tions with distributions of discrete particles [4], [5], with con-
tinuously varying random refractive-index media and [6], [7]
specifically on applications to rain and clouds.The equations to
be discussed and their backgrounds are to be found in the above
references.

Fig. 1 depicts a typical radar backscatter experiment: a cloud
particle at is at distance from the radar. The effective
halfwidth of the radar beam is defined by angleand we assume
quasi-monochromatic pulses centered around wavenumber.
The radar pulse defines a range cell of volume
around . Here, is the effective length of a range cell defined,
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Fig. 1. Sketch of radar-cloud geometry.

for example, by the 10-dB power level of an individual pulse.
Typical values for the 3.3-GHz DARR radar [8] are
m and . If absorption of electromagnetic energy to
and from a range cell is ignored, then the instantaneous radar
backscatter cross section is defined as with

(1)

if is the backscatter amplitude of a single particle at
with effective diameter . It is reasonable to assume the

Rayleigh backscatter cross section (which requires diameter
wavelength ) for cloud particles at 1–10 GHz, i.e.,

(2)

Here, is the relative dielectric permittivity of the particle. In
a continuum description, and (1) is replaced by a
spatially averaged quantity

(3)

where represents the average number of particles
per unit volume with diameters betweenand . Expe-
rience with convection fogs [9] has shown that modified gamma
functions are useful in modeling

(4)

where is a gamma function, is the usual particle
density in m and where and also can be functions of
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location and time, but will be assumed constant for convenience.
Forms such as (4) are advantageous because (3) can then be
written as

with

(5)

which separates the statistics due to temporal variations in den-
sity from the individual particle-scattering amplitudes and the
drop-size distribution in . For narrow radar beams we replace

by with constant wavevectorin (5) when convenient.
The coordinate origin is assumed at the radar location.

II. RAYLEIGH SCATTERERS

For Rayleigh-regime scatterers, it follows from (2) and (5)
that

(6)

We now briefly review the backscatter cross sections for inco-
herent, coherent, quasi-coherent reflection, and for reflection
from turbulence. There is a vast literature on most of these that
we presume the reader to be familiar with.

A. Incoherent Reflection

Each particle is assumed to scatter independently of each
other particle. Powers rather than amplitudes are added

(7)

given that is the total number of particles and is the mean
particle density in the range cell with volume .

B. Coherent Reflection

All phase relationships between particles are assumed con-
stant in time. The range cell volume can be written as ,
where is an effective length of the range cell along the line
of sight. It is assumed here that . For a sufficiently
short-range cell we obtain

(8)

where is an envelope function describing the radar
range cell [e.g., a rectangular pulse of widthor a Gaussian

] and is its Fourier transform at
wavenumber . We obtain

(9)

Because for the DARR or similar radars, it follows that
. The coherent cross section is usually negligibly

small.

C. Quasi-Coherent Transport Reflection

The effect of density fluctuations due to transport of droplets
by turbulent air (“passive additive”) is considered. It follows
from (5) that:

(10)

so that a quasi-coherent contribution due to fluctuations in den-
sity is

with (11)

where indicates a mean value. The theory leading to a
mean cross section is well understood [4]–[6], [13], [16], [17].
The wavenumber power spectrum of density fluctuations in the
inertial subrange of turbulence is analogous to that for clear-air
turbulence [4]

(12)

in which expression is the macroscale of turbulence.
The factor 0.063 follows from the relationship between
the refractive-index variance and the structure constant [5]:

. The passive-additive character of tur-
bulence-carried droplets yields a similar relationship between

and . One then obtains from (11) and (12):

(13a)

The factor . Under the assumption of
uniform density in a range cell, this simplifies to

(13b)

D. Quasi-Coherent Reflection Due to Clear-Air and Humidity
Turbulence

The calculation for reflection from clear-air turbulence in
the range cell follows the classical calculation of Booker and
Gordon [13] based on the first Born approximation for the scat-
tered field. It yields [13], [14],

(14)

where is the power spectrum of refractive-index fluc-
tuations due to temperature and humidity variations andis
the structure constant. Gossard and Strauch [16] have previously
concluded that this mechanism could be of importance, com-
pared to incoherent scattering from clouds. Moreover, various
authors [17], [18] point out that can be influenced signifi-
cantly by fluctuations in the water-vapor density, so that numer-
ical calculations of this parameter should take into account the
fact that humidity fluctuations can be a major contributor (com-
pared to clear-air density fluctuations).
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Fig. 2. Backscatter cross section as function of frequency [see (16)]:�
for n = 100, 400, and800 particles per m, - - - � for h�n i = 100,
400, and800 particles per m, � � � � forC = 10 ; 10 , and10
in m .

III. SOME NUMERICAL COMPARISONS

Consider some numerical values to see orders of magnitude of
the various cross sections. It is common practice to choose
in (6). With that choice, it follows from (6) that
(if is the mean drop diameter) and

(15)

This factor has a weak dependence (compared to) on fre-
quency through . It is useful to separate it out in the expres-
sions for the cross sections. The dependence uponin (15) is
also very weak for the usual range . We shall choose

. As a result

(16)

The range-cell volume is common to all three of these, hence,
we will show cross sections per unit range-cell volume. Of the
radar, only its frequency is needed. To obtain some numerical
estimates, further parameter values are needed. We choose
in cm , , and , respectively; ; and

in m , and , respectively. The
macroscale is estimated at m and the average particle
diameter at m. These values cover a common range for
the relevant parameters. can be influenced significantly by
fluctuations in water-vapor density [17]–[19] so that the higher
values may account partially for that possibility. Fig. 2 shows
plots of the cross sections in (16) as a function of frequency.
Each cross section is shown for three different values of the
relevant variable parameter [(16) indicates the dependence upon
each of these]. Fig. 3 shows plots of as a function
of frequency and plots of as a function

Fig. 3. Backscatter cross section as function of frequency [see (16)]: - - -
� + � ; � � � � + � + � for n = h�n i = 100 particles
per m andC = 10 in m , n = h�n i = 400 particles per m
andC = 10 in m , n = h�n i = 800 particles per m and
C = 10 in m .

of frequency. In general, results obtained are similar to those
of Gossard [17], but are now done for gamma function models
of the particle density with only a weak dependence upon the
gamma-function power of .

IV. DOPPLERANALYSIS

We now extend the above analysis to Doppler processing
of the backscattered pulses, i.e., information on the observed
velocity components along the line-of-sight will be used via
the concomitant Doppler frequency shifts to produce records
of the backscatter amplitudes or powers as a function of the
shifted frequency. Several recent studies [19]–[25] have dealt
with Doppler processing of radar returns from clouds.

A narrow-band (pulsed) signal yields,
instead of (1), for the backscattered pulse from all the particles
in a range cell

(17)

where is the backscatter amplitude from a spherical par-
ticle with given dielectric permittivity and diameter and

is the range parameter of particle. A modified gamma
function has been assumed for the par-
ticle-size distribution function and is the cus-
tomary mathematical gamma function. The parameterhas
a simple dependence upon wavenumber and upon

in the Rayleigh regime where . Some obvious
narrow-band signal approximations are included in the above.

The amplitude autocorrelation is ,
where the angled brackets indicate averaging over a number of
consecutive pulses (with constant). Under the assumption of
short averaging times such that the motion of

is expected to be linear with time and also [see transition
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from (20) to (21)] such that the motion can be neglected in the
pulse-envelope amplitude, we find

(18)

with Doppler-shift frequency . A transi-
tion to continuous notation is effected with

. Here,
is the particle size distribution at , with di-

mension (length) , and is a spectral distribution,
with dimension (time) of Doppler shifts , which are assumed
to depend on particle diameter but not on location . This
latter assumption corresponds to homogeneous turbulence in
the range cell. We also assume that ,
with implied by (4), so that the zero to integral of

over is unity. Hence, in continuous notation we write

(19)

The Doppler spectrum is obtained by taking the Fourier trans-
form of (19) to obtain

with

(20)

It is assumed here that the Fourier transform of the pulse am-
plitude is narrow compared to the width of the spectral density

so that setting inside the second pulse-ampli-
tude factor in would not affect the result significantly.
Consequently (20) simplifies to

(21)

The Wiener–Khintchine theorem [26] connecting the Fourier
transforms and , implies that

, which implies in (4) that

(22)

or, if is not a function of , that . Equation
(22) also follows as a consequence of comparing (18) and (19)

to each other for . gives the correct result for a sum
of incoherent and quasi-coherent scatterers if

(23)

Therefore, a similar assumption—with one difference—is intro-
duced into (21), namely

(24)

The two spectral distributions of velocities (Doppler shifts)
and are allowed to be different as a

consequence of which

(25)

Consider, finally, that is the center of a range cell. If
that range cell is sufficiently short so that it is statistically uni-
form, then the integrals are only over squared-pulse amplitudes
and thus deliver only the power in one pulse as a factor in each
of the spectral functions above. Consequently

with

(26)

with identical constants of proportionality. The cross sections
and are defined in (16), but also are

easily inferred from (26) above.

V. HYPOTHETICAL VELOCITY SPECTRUM

In this section, we attempt to discern the type of spectra that
can ensue for (16). Consider first the incoherent Doppler spec-
trum under the very general assumption that each
particle has a velocity such that is an
average particle-dependent velocity, and is a fluctua-
tion around the average, possible due to turbulence. In all likeli-
hood, the average velocity is due to gravity with, possibly, some
(vertical) wind component in addition. A simple assumption for
the incoherent Doppler spectrum restricted in form largely for
mathematical tractability is

(27)

implying a Gaussian velocity spread around an average velocity
that depends only on particle diameter(and not on position),
and determined also by -dependent parameters. The is
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a normalization parameter. We make some additional assump-
tions for mathematical tractability. Let

with constant frequency and normalized diameter
. This amounts to an assumption that the average single-

particle velocity is proportional to the particle diameter. While
this is approximately true only for a limited range of diameters
[6], [27], it allows us to proceed because then we also can as-
sume (for simplicity) that is small enough so that the
Gaussian can be approximated by a delta function with

(28)

This latter simplification is not essential and calculations can be
made directly with the Gaussian form. But if this simplification
is made, then

(29a)
which is properly normalized so that we can choose in
(27). Equation (29a) is easily expressed in a new dimensionless
frequency variable as

(29b)

Typical cloud distributions with particle sizes up to perhaps 50
m can be modeled by gamma distributions with

and so that, e.g., for

(30)

Next, consider the quasi-coherent Doppler spectrum
under the assumption that each “turbule” has a velocity

such that is a (negligible) average ve-
locity and is a fluctuation around the average, which we
shall assume to be particle-diameter independent as the particles
are convected by the underlying turbulent fluctuations in wind
velocity. One simple assumption for the quasi-coherent Doppler
spectrum is

(31)

which is properly normalized and introduces a new frequency
parameter . This then yields

(32)

with expressing the ratio between the two fre-
quency parameters. The final result is

(33)

Fig. 4. Doppler spectral density�(!) versus normalized frequency

 = !=! [see (34)]—�(
) = solid line � (!) = dashed line
��� (!) = dotted line. (a)� = 200, � = 1. (b) � = 100; � = 1. (c)
� = 300; � = 0:5. (d)� = 200; � = 0:5. (e)� = 500; � = 0:25.

In order to obtain some idea of the spectrum, let us write (33)
as follows:

(34)

so that represents .
Fig. 4(a)–(e) depict graphs of normalized spectral den-

sity versus normalized frequency for
various values of and . To put these values in per-
spective: so that implies that

. As stated above, . These graphs
show a double-humped spectrum with a peak at due to
turbulence, and a peak at some due to the individual
incoherent velocity spectrum. The chosen model places that
peak at , but that is only an artifact of this particular
model. Sizable deviations of or from the given values can
result in sum spectra that are not bimodal. Larger values of
give deeper dips between peaks, and larger values ofincrease
the first peak with respect to the second.

It is shown in this section that the occurrence of radar reflec-
tions from turbulently convected cloud droplets can give rise to
a Doppler spectrum with peaks at zero and at a distinct nonzero
frequency. The magnitude of each portion of the spectrum, as
well as the location of the maxima, are functions of the number
density, the velocity parameters, the strength of turbulence, as
well as the operating frequency. In this study, it has been as-
sumed that the root mean square (rms) density is the same
as the average, but the results are changed for lower values of

only in that the values of are changed proportionately
in obtaining similar graphs. However, other mechanisms not ac-
counted for here also may contribute to the observed types of
Doppler spectra. For example, a few ice or snow particles, with
very different velocity distributions, may contribute strongly to
the reflections because the reflected power from a small particle
is proportional to the sixth power of diameter and such parti-
cles are generally much larger than the micron water droplets in
clouds. Resolution awaits further experimental evidence.
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