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Propagation Modeling Over Terrain Using the
Parabolic Wave Equation

Denis J. DonohugViember, IEEEand J. R. Kuttler

Abstract—We address the numerical solution of the parabolic ~ To accommodate a finitely conducting dielectric (but planar
wave equation over terrain using the Fourier/split-step approach. or spherical) boundary in the split-step solution, Kuttler and
The method, referred to as a shift map, generalizes that of pgeery [2] developed the mixed Fourier transform (MFT). In

Beilis and Tappert, who introduced a coordinate transformation dditi | h h | idered th bl
technique to flatten the boundary. This technique is extended to a adartion, several researchers have also consiaere € problem

wide-angle form, allowing larger propagation angles with respect Of large-scale (compared to the wavelength) surface undula-
to the horizon. A new impedance boundary condition is derived tions. Tappertand Ngiem-Phu [11] developed a method in which
for electromagnetic waves incident on a finitely conducting sur- the computational domain is doubled and an “image ocean” or
face that enables solution of the parabolic wave (PWE) using the “image atmosphere” is introduced. Rouseff and Ewart [12] sub-

previously developed mixed Fourier transform. It is also shown . .
by example that in many cases of interest, the boundary may sequently used this method to examine the effect of sea sur-

be approximated by discrete piecewise linear segments without face and bottom roughness on shallow water acoustic propaga-
affecting the field solution. A more accurate shift map solution of tion. Because it is an image method, this approach is limited to
the PWE for a piecewise linear boundary is, therefore, developed perfectly conducting or pressure release boundaries. A simple
for modeling propagation over digitally sampled terrain data. The approximation that has also been used [7], [18] is the terrain

shift-map solution is applied to various surface types, including . . . . .
ramps, wedges, curved obstacles, and actual terrain. Where masking approach. This method, which advances the field as if

possible, comparisons are made between the numerical solutionin free-space and then at each step zeros the field below the alti-
and an exact analytical form. The examples demonstrate that tude of the boundary, is equivalent to representing the boundary

the shift map performs well for surface slopes as large as 10-15 py a series of knife-edge diffractors. As a result, all surface re-

and discontinuous slope changes on the order of 15-20To flections are approximated by tip diffraction
accommodate a larger range of slopes, it is suggested that the most )

viable solution for general terrain modeling is a hybrid of the shift In another approach, Dozier [8] used a local or piecewise con-
map with the well-known terrain masking (knife-edge diffraction)  formal mapping to locally flatten the surface while retaining the
approximation. elliptic form of the wave equation. The parabolic approxima-
Index Terms—Clutter, electromagnetics, parabolic wave equa- tion was then applied to the transformed wave equation. Kut-
tion, propagation, rough boundaries, terrain. tler and Huffaker [6] used a global conformal map to calculate

scattering from a sinusoidal boundary. Their results showed ex-
cellent agreement with classical Bragg scattering theory based
on the Rayleigh plane wave expansion. Beilis and Tappert [9]
OR many years the parabolic wave equation (PWE) hggveloped a general coordinate transformation for the narrow
been widely used to model the propagation of electrgngle version of the parabolic wave equation that flattens the
magnetic and acoustic waves through inhomogeneous megiddulating surface and retains the PWE. McArthur and Beb-
Most applications of the PWE consider low-grazing anglgington [22], [23] subsequently investigated tilting or steering
or near-horizontal propagation of radar or acoustic wavage field to counteract the flattening of the surface, which, in
In many cases, the horizontal boundary, be it terrain, ocegart, resembles Beilis and Tappert's approach, but without an
surface, or ocean bottom, plays a significant role. Numericgkplicit coordinate transformation. Barrios [13] tested the actual
solutions of the PWE are largely split into two categories: fBeilis/Tappert approach on a variety of sample terrain problems.
nite-difference methods and the Fourier/split-step approach [].another approach to rough surfaces, Rino [14] recently intro-
In the finite-difference methods, implementing the appropriatgiced a hybrid PWE/integral equation method that circumvents
boundary condition is usually straightforward. A disadvantaghe numerical difficulties introduced by the rough boundary in
of finite difference methods, however, is a requirement fahe PWE/split-step method. Rino’s method also accounts for
fine sampling on the horizontal or range grid, which makefhe-scale surface roughness, but requires range sampling on the
the calculations Computationally intensive. FOUfier/Sp"t-StQﬂder of the incident Wave|ength, whichis Considerab|y more re-
methods, the subject of this paper, allow for a relatively larggrictive than usual for split-step calculations. All of the above-
range step; however, the boundary condition must be enforgagntioned rough surface studies are limited to perfectly con-
in transform space. ducting (or acoustically rigid) boundaries and, in most cases,
modest surface slopes.
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tion Il demonstrates that, with sufficiently fine sampling, repre- v
senting terrain by a piecewise linear surface gives essentially the
same propagation results as a continuous representation. There-
fore, the wide-angle shift map for piecewise linear terrain can
be further improved (Section 1V) to handle terrain with larger
slopes. The improved shift map is applied in Section V to a
model terrain problem and the results are also compared with
the geometrical theory of diffraction (GTD) for a perfectly con-
ducting wedge. The slope dependence of the method is exam-
ined, and a comparison is made with the terrain masking ap- u
proach that indicates some important differences.

We also extend the Leontovich impedance boundary con@g: 1- llustration of the mappedr, =) and unmappedu, v) coordinate
L . . . Systems with a terrain profile.
tion in such a way that finitely conducting terrain can be solveé’
by the MFT procgdure. As discussed above, previous Fou”ﬁe terrain flattening transformation originally introduced in [9]
methods for terrain have generally been restricted to perfecléythen simply
conducting surfaces. Section VI contains the mathematical
derivation of the extended impedance boundary condition, r=u, 2z =v — T(u). ()
while Section VII compares propagation predictions based on
the piecewise linear shift map with impedance boundary to the new coordinates, with(z, z) = ®(u, v), the Helmholtz
the exact solution for a simple terrain problem. Section VIgquation (1) becomes
describes an application of the new method to an actual terrain 5 5\2 52
sample. Further comparisons are made between horizontal/ver- <_ S ) b+ o + k*n2¢p =0 (4)
tical polarization, and perfect/finite conductivity for a range dx 9z 9z*
of frequencies. Section IX summarizes the performance of thg,ere7’ = dT/dz.

improved shift-map technique, its applicability to the general 14 gliminate first derivatives in as required for Fourier trans-

terrain prgblem, arjd possible future improyements. The iM5rm methods, the function is replaced withjc?®, where the
proved shift map will give accurate propagation at angles up ipase factof(z, =) is yet to be determined. The same substitu-

nearly 30, which means that terrain with slopes up to nearly,n was also introduced in [9]. Substituting into (4), we have
15° can be handled. For steeper angles, it is apparently the

commutator error in the factorization producing the PWE that { o . 9 ,< ] 4 89) }21/
1 2

limits accuracy. oz o T\ 5 T e

v=T(u)

o .09)°
Py k.2 2 _ 0 5
Il. WIDE-ANGLE SHIFT MAP: THEORY + {az T az} Y+ kT (5)

In this section, we develop a terrain flattening transformatiomhere a common factar’? has been dropped from all terms.
subsequently referred to as the shift map, which improves Bguation (5) is now factored as
the mapping developed by Beilis and Tappert [9]. The improved
mapping avoids the paraxial approximation, resulting in a self- { a .06 ,< a 86)}

consistent wide-angle form of the transformed PWE. 9z ¢ Iz
The derivation starts with the two-dimensional (2-D)

Helmholtz equation o 9 N 90\ 2 © e
' dz ' az "
9*d  9%0 5 o
502 T gz TRe=0 @) Lo 00 0,0
— t+t— - {2
ar g dz dz
where
O(u, v) is the scalar field; 2
i 3 8+,89 +kn2 | ¢ =0 (6)
_ . — 1 1 ; p =0,
k (= 2w /)) is the wavenumber; ¢ 9. T ta, n
n is the relative index of refraction of the propa-
gating medium; This factorization of (5) introduces an error when the square
U, U are the fixed (unmapped) coordinates as shownot operator and the expression in brackets do not commute
in Fig. 1. [15]. This will be the case if the index of refraction depends on
In these coordinates, the terrain height is assumed to be gif@f range coordinate [S]. However, it can be shown that this
by an equation of the form commutator errotis small if n is reasonably uniform in range

in the original(w, v) coordinates.
As discussed in [15], the first and second factors of (6) cor-
v="T(u). (2) respond to backward and forward propagating waves, respec-
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tively. To obtain the parabolic wave equation, we consider fowhich gives us
ward scattering only by retaining the factor PR 5
o _ 1 a¢+fzk<”——zT">¢ (15)

{a+.ae T,<a+.ae>} O 2k 02 2
—tt—— 2
ox ox 0z Oz where?” = d?T(x)/dz?.
Equation (15) is essentially the same PWE derived and used
) g 96\ by both Beilis and Tappert [9, eq. (14)] and Barrios [13, eq.
—1 +1 + k?n2 | ¢ =0. @) . - ; ;
9z 9z (7)]. By retaining only first-order terms in the expansion of
the radical of (9), we have recovered the standard form for the

In the limit of a flat surfacéZ” = 0, 6 = 0), it can be seen that narrow-anglesplit-step solution of the PWE. This derivation is

(7) reduces to more physically intuitive than the one given in [9], where the
paraxial approximation is used to derive the PWE before ap-

8 /2 plying the shift-map transformation. We next show that with a
a9z “Voaz + R Y =0 (8) higher order (more accurate) expansion of (9), a self-consistent

wide angleformulation can be obtained.
which is the well-known starting point for deriving the wide- We return to (7) and incorporate the choice made in (11) to
angle form of the PWE. obtain

To continue with the derivation of the shift-map algorithm, o 50 9
(o 5e) -7 (G o))

the square root operator in (7) must be put in a form suitable for B +1 B Oz

computation. The operator may be written as

2
r 22 =1 \/% + 24kT" aa — E2T'2 + k2n2 - 4. (16)
k\/1+x:k<1+§—§+---> 9) z g
To retain higher order terms in the approximation of the radical,
where we use
1 2 lt+e+n+lmVitet/I+n+i¢-1 (@17
p= L (LY oy ViterntemVirer Vien+ic ()
k2 \ 9z az
where
and it is assumed thatis small compared to one. If we retain 1 82 2%T &
only the first-order terms, (7) becomes =g 17 n’—1 (= & an "
9 L 9 (9 w a0 " With this choice, (16) can be rearranged to give
dx dx Oz Oz o 5 96
; 2 9w _ e . ; _ 1,12 .
(LY i iy o) @ TV a2 w“’“(” 1+2T>¢ TV
2k \ 0z Oz 2

(18)
To obtain the desired form of the parabolic equation, we wish

to eliminate terms i /d, which may be done by choosing As in the narrow-an_gle deriyation, (18) can be put in a simpler
form by an appropriate choice fé®/9x. Taking

o6 ,

o = kT (11) flx) =k(-1+ 3777 (19)
which also implies the wide-angle shift map equation is then

926 o 92 .

w = 0 % =1 ]ﬂ}2 —|— ﬁ "(/) + 'L]%(TL — ZT”)"(/). (20)
After substituting (11) and rearranging, (10) becomes Equation (20) leads directly to the form of the split-step

o P , 90 algorithm conjecture_d by Barrio§ [13, eq. (8)], wh_o solved the
=— 4= (M2 4+ 1+T 2 —i— 1. (12) narrow angle equation [essenua_lly (19)] wnhvade—gngle
dx 2k 0z 2 o split-step propagator, but cautioned that the wide-angle
Some flexibility remains in the choice éf From (11), we have propagator had not been self-consistently obtained from (15).
Because we have employed a similar factoring of the Helmholtz
0(x,2) = k2T (x) + f(x) (13) equation, in the limit7” — 0 (flat surface), (20) also reduces
. ) . ) to the wide angle form of the PWE first derived in [15].
where f(«) is an arbitrary function. We could simply choose 4 optain some measure of the accuracy of the expansion used
96/0x = 0, as it only affects the overall phase of the figld , 17) consider the expansion under the assumption of a plane
However, to put (12) in a particularly simple form, we can takg ., propagating along. Ignoring the effect of the boundary
k , on the plane wave we may therefore 8¢t~ = 92/92* = 0.
fllw)=50+T %) (14)  To simplify matters further, consider propagation in free-space
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(n = 1). Under these conditions, the approximate equality of For now, we assume that the range step integration of the
(17) becomes/’1 — T2 = 1—T'2/2. The approximation there- refractivity term is simply approximated by

fore reduces to a first-order binomial expansion of the radical N

that is obviously inaccurate unless the sldfe <¢ 1. How- / m(z', z)da’ = m(xy, 2)Ax (25)
ever, we remark that (20) is only one possible approximation zq

to (16) that may be considered “wide angle.” Other choices for,

: . wherexr; = (xo+2)/2andAz = x— x. The suitability of this
the expansion parameters;, ¢ and functionf (x) lead to other S . .
slightly better approximate solutions. In Section IV, we will deapproxmatlon will obviously be governed by the range step and

. . radius of curvature of the surface profile, an issue that is further
velop an alternative method that is more advantageous for tﬁj_

rain problems and also better approximates the radical while s iscussed below. The key to the Fourier/split-step method is that

retaining the required form of the PWE. Section V also includessz(r?eld.?.lrﬁsofe ecrﬁr:?rlljz ([é]g)relzlljrlr':spIi(rawrgennut?ndelrri]ci]ligli?izfr?:zn 23)
a numerical comparison of both methods with the GTD on ' q

classical diffraction problem. thatis given by
1/)(.1’, Z) o~ ei(k/Q)m(azl,z)Aa;f-—l{ei\/kz—pzf-

lIl. WIDE-ANGLE SHIFT MAP: EXAMPLES iR/ Dm DAy (26)
Having derived a wide-angle shift-map PWE, in this section,

we examine its application to simple or model terrain probrhe type of transform represented BY } is a function of the

lems. Specifically, we consider two surface profiles. The firétoundary condition. For calculations in this section, we assume

is a curved and continuously differentiable profile, the sinusod,Dirichlet boundary conditior(z, 2 = 0) = 0), which is

which has the analytical form satisfied by a field having odd symmetry with respect to the
boundary. Since we are only interested in the upper half-plane
1 . {7z — 1) (= > 0), the Fourier sine transform enforces this condition.
T(x) = h 2 [1 + Sm( w )} ’ 21) Fig. 2 illustrates the application of (26) to the sinuson profile
- —w<z— 1 <3w (21). The result is calculated at a frequency of 3 GHz and stan-
0, else dard atmosphere refractivity is assumed. The antenna is located

30.5 m above the origin, and a range step of 100 m is used. The
wherez; simply translates the profile anfd, w are the peak result shows strong reflections off of the front face of the sinuson
height and half width. The second profile, the pyramid, is a pagind deep shadowing of the incident field beyond the peak. The
ticularly simple example of a piecewise linear surface. It has tehadowing is very nearly geometric; that is, the field strength is

analytical form significantly reduced within the shadow zone, which follows a
roughly geometric form bounded by a line joining the antenna
h(z — 21)/w, <z <z tw with the peak of the sinuson [16].
T(z) =4 hley +2w—x)/w, =1 +w<z<z+2w To apply the shift-map algorithm over a piecewise linear
0, else boundary, one must recall that although (26) propagates the

. ] ) . (22)  transformed field), the physical fieldd has been replaced by
which consists of two linear segments on an otherwise flat plafge product)e?®, whered is given by (12) and (19). In Fig. 2,

One of the advantages of the shift map (20) is that it may Bge termci was ignored since it only affects the phase of the
solved by the well-known Fourier/split-step methods developgg|q &. However, over a piecewise linear surface, the function
for flat boundaries. To briefly summarize this method, it can b discontinuous across each segment joint, where there is a

seen that (20) has a formal solution given by [2] discontinuous change in slofi& (13). Since the physical field
Py must be continuous in space, the transformed amplifucteist
P(x, 2) = exp<L_/ m(z’, z) da:’) have a corresponding phase discontinuity to match the change
2 Jay in . Specifically, when propagating across the boundary

92 between segments 1 and 2, the fi¢gldbecomes
cexp| 1Az k2 + 5.2
z k=(T{—T5)

(w12, 2) = P1(w1,2,2) (27)

X eXp(E /w m(z’, z) dx,) P(ro,2)  (23) wherez, » is the point of discontinuity and}’ — 75’ is the
’ corresponding change in slope of the piecewise linear boundary
where [Fig. 6(a)]. In analogy with phased antenna arrays, the factor
¢*=(T1=T3) resembles a “steering” of the incident field or beam
m(z,z) = n(x,z) — 21" (x) (24) within each piecewise column. The beam steering is necessary
because the, = coordinate system, while shifted up and down
contains all of the effects of nonzero slope and curvature of thwéth the boundary, is simultaneously tilted with respect to the
boundary. We note that substitution of (23) into (20) results imoundary. Note that because the boundary is piecewise linear,
additional error terms on the right-hand side of (20). These kintte curvature ternfi”’ in (24) is now zero. By going from the
of error terms and their effects have been previously analyzeghtinuous shift map to the piecewise linear representation, the
in [2, Appendix]. continuous integration of the rate of change of slope (23)—(25) is
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Allitude [meters|

One-Way Propagation Factor [dB]

Fig. 2. Propagation over a continuously curved sinuson profile calculated by the wide-angle shift map. A horizontal polarized, 3-GHz sotrriceamitivigth
is located 30.5 m above the origin. The surface is perfectly conducting.
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Fig. 3. Same as Fig. 2, but for a piecewise linear wedge or pyramid.

replaced by discrete changes in slope at each segment boun@Hdykm). The most significant difference between Figs. 2 and
(27). The relationship between the two approaches is discus8ed the contras{> 25 dB) in the shadowing beyond the peak
further below. of the obstacle. There is strong diffraction of the incident field
The application of the piecewise linear shift map to the secobgt the vertex of the pyramid, resulting in significantly increased
profile, the pyramid (22), is illustrated in Fig. 3. Aside from thdield intensities well into the geometric shadow zone. This re-
surface profile, the problem parameters are the same as useslilhcould be critical to radar-terrain applications. Obviously, the
Fig. 2, including the peak heigltt (229 m), and half-widthw  shadowing is strongly dependent on both the height and radius
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Fig. 4. Same as Fig. 2, except with the sinuson representéd by 8 discrete piecewise linear segments.

of curvature of the terrain. However, when working with sam-
pled terrain data, curvature information may not be available. v

i
v

It is therefore important to know whether accurate propagation :

predictions can be based solely on terrain elevation samples an | T2 v

if so, how finely the terrain must be sampled to minimize mod- | T/

eling errors. In the absence of refractive effeets= 1), GTD

may also be used to generate results similar to Figs. 2 and 3, bt X1,2 x

with limitations on the radius of curvature of the vertex. segment]  segment2

To address the terrain sampling issue, the sinuson profile of @ )

(21) was also implemented by a piecewise linear representation. , _ _
Over the range-w <.» — 1 < 3w, the profile was broken into 1.5,  Geameny orpropagatng ove s changng suface dope for (2 dicete
N discrete linear segments. A sample calculation¥or= 8 77 represent the local surface slope.
is shown in Fig. 4. The result differs noticeably from Fig. 2,
with the shadowing intermediate to that observed in Figs. 2 a%) and (24), the slope dependence of the solution at peint
3. In this case, the piecewise sampling artificially introducesi given by
diffracting wedge that does not appear in the actual (continuous)
problem. Fortunately, the result obtained with= 20 samples
(not shown) is nearly indistinguishable from the continuous re- ¥(x2, 2)
sult (Fig. 2). Also of interest is that for the choicewfand Az, h

. ere
with & = 20 the surface segment length of 1 km spans ten range
steps. Thus, the 100-m range step used is more than adequately
small. Although not conclusive, this result suggests that pro-
vided the sampling is sufficiently fine, the piecewise linear rep-
resentation is a suitable approximation to the continuous shi

N ei(k/?) fl‘l m(z’,z) dz

P(x1,2) (28)

d*T ()

m(z,z) ~—z e

mputing the integral we have

map. Moreover, the piecewise linear shift map captures vertex o (ikz/2)(T]—T}) 29
or peak diffraction that would be unfeasible to model in the con- Wz z) ~e Vules,2) (29)
tinuously curved case. which is precisely the “beam-steering” factor of (27). The factor

It is not surprising that the two representations produce sirh/2 in (29) appears because the operator is split into two in (23).
ilar results in situations where the terrain lacks sharp discontiere we have assumed that the range step is sufficiently small
nuities. To illustrate, consider the problem of Fig. 5, where theo that the integral of (28) is adequately approximated by the
continuous map is propagated across a “rounded” corner. Friapezoidal rule in discrete steps. However, in situations where
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the radius of curvature is comparable to or smaller than the typwe then rearrange and choose

ical 100-m range step, this may not be the case. In contrast, the

piecewise linear shift map will correctly characterize the sharp () = ko(—1 + T'Q) (35)

change in slope (and wedge diffraction) without the fine range

step restriction, provided the sharp peak or corner is correciid substitute (34) and (35) into (31) and (33), we obtain the

sampled in the terrain data. equation
Based on the favorable results obtained with the piecewise

linear shift map and the fact that in actual terrain problems one

works from discretely sampled data, the remainder of this paper% =iyt —

further develops the piecewise linear representation. The resultsd® 1+772 022

shown in this section are without independent validation. How- _ ) ) ) o )

ever, the wide-angle shift map, (20) with (27), and the improved_Equat'On (36) is an improved piecewise linear version of the

piecewise linear representation (Section IV) are all compar@’dde'angle shift_—map algorithm [(20), for example]. In partic-
with GTD calculations in Section V. ular, the expansion of (32) takes advantage of the fact that slope

T’ is a known constant over the piecewise linear segment. Thus,
by moving the termi:27"2 into the constank that is factored
outside of the radical, the magnitude of the expansion variable
Section Il demonstrated the advantage and practical utilityis reduced relative to the choice made earlier in (17). For ex-
of a piecewise linear representation of the shift map. Given thi@tple, to compare the two expansions more directly, consider
over each linear segment the sldfieis constant and curvaturethe situation posed in Section Il, where the expansion of (17) re-
T" is zero, it is now shown that the algorithm developed in Seduces toy1 — 772 ~ 1 — T2 /2. Using the same expansion as
tion I, specifically the operator expansion of (17), can be furthém (17) but with the choice of, 17, ¢ shown in (32), for the same

12 92 2 _ 2

IV. PIECEWISELINEAR SHIFT MAP: THEORY

improved. plane wave propagation alongand forn = 1, the variable
In place of (12), we write the phase functifras ¢ becomes zero and the expansion is exact. Specific numerical
tests of these two expansions are also shown in the following
0(x,2) = kozT" + f(x) (30)  section.

_ ) _ Comparing (36) to (20), the previous wide-angle result, we
wherek is a constant whose value will be determined presentlyq that the wavenumbeéin the p-space propagator of (20) is

Substituting into (7) and rearranging gives replaced by /v/1 + 772. If we write
9 +if =T 0 +ikoT" ) ¢ T =tanf (37)
oz oz -
— \/3_22 T koI a _ kgTrQ +k2p2 (31) Where/_i is the angle that the_ local terrain slo_pe mak_es Wi_th
0z 0z the horizontal, then the effective wavenumber in the piecewise

linear version may also be written &sos 3. This contraction

which resembles (16). Now the radical may be written as
(16) y of the wavenumber (or stretching of the wavelength) is due to

92 P the fact that the tilting of the coordinate system by an arigle
\/—2 + 2iko T’ —— — k3T + k?n? relative to the surface has locally contracted the horizontal range
az dz . . 7 .
step. Given (37), the piecewise linear shift map (36) may also
=KyitetntC (32)  pe written as
where
g 9?
) —wzi k2cos? B+ — - +iky/n2 —sin? 8- 1. (38)
212 12472 1 9 Oz 922
K = ]C — kOT € = F W
2 2%0}}/ 9 As a result of (30) and (34), the phase discontinuity when
=52 (n*—1) ¢= K2 92 propagating across the boundary between linear segments 1 and
: 2 is now accounted for by
Using (17) to expand the radical, the right-hand side of (31)
becomes R THT) — (T /14 T5 )]

(w12, 2) =91(21,2, 2)

92 ikoT' O :”(/) T19,7 eikz[sin,ﬁl—sin,ﬁz] (39)
i[\/K2+872+\/k2n2—k§T’2+L;( a;«_K] b e12,2)

in place of (27). Thus, the phase term can be exactly
(33) interpreted as a steering factor on the phased array
¥(x1,2,4dz),7 = 0,1,---, N. Unlike the previous wide-angle
result (27), the angle through which the array is steered is now
precisely the physical angle representing the difference in tilt
b — k (34) of the linear segments on either side of the vettg). Note
that when steering a phased array, there is a condition on the

T ixT?

Getting thed) / 9z terms to cancel from (31) requires that=
K or
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Allitude [rgters]

Ona-Way Propagation Factor [dB]

Fig.6. Propagation over a model terrain profile calculated by the piecewise linear wide-angle shift map. The pyramid slopes are.eabbi8z6ntal polarized
3-GHz source with 3 beamwidth is located 152 m above the origin. The surface is perfectly conducting.

array spacing to avoid grating lobes. The condition, discussBiichlet boundary condition (perfect conductivity—horizontal

in [17, ch. 6, p. 545], is polarization). As in Section lll, standard atmosphere refrac-
tivity is assumed. The result is shown in Fig. 6. The sharp
dz < 27” (40) peak diffraction identified in Section Il is again observed

k(1 + sinfr) over each of the obstacles. Because of the changing angle of

geidence relative to the vertex, the shadow region behind each
pstacle is progressively deeper for the larger peaks. A very
light distortion of the field is observed near the vertices. This
Istortion is apparently a limitation of the shift-map method
whose severity is directly related to the discontinuous change
de< — " (41) in surface slope. For example, the change in slope at each
ksin 6y vertex or the angle through which the field is steered relative to
The mathematical formalism of the shift map, starting 1‘ror'§1he surface is 17'.3 Jor each .Of the peaks shown in F!g. 6._For_
. . - smaller changes in slope (Fig. 3, for example) the distortion is
the coordinate transformation of Beilis and Tappert [9], has led . .
. : Imperceptible. For changes on the order of 2he algorithm
to (38) and (39). These equations can now be physically in- X
- . ) . clearly begins to break down.
terpreted as a tilting or steering of the field array, contraction . . : .
i : . As discussed in the previous sections, there are three sources
of the wavenumber in the locally tilted coordinate frame, an . . ) )
error in these calculations. The first source is the commu-

a slope-dependent modification of the index of refraction X ) . .
shown in (38). This may be contrasted with the approach a[tor error that is made _when factor!ng the wave equation (5).
i Rthough the operators in (5) are written in terms of the trans-

McArthur and Bebbington [22], who simply tilted the field arraYormed (z,z) coordinates, the equation is essentially factored

without the additional corrections to the wavenumber and index . . . 2
of refraction. In the original(w, v) coordinates. Thus, if the refractive index

n is reasonably uniform in range, the commutator error will be
small. The second source of error is the inherent error terms
that arise from the split-step solution (23) of the parabolic wave

We next demonstrate the application of the improved piecequation. Finally, additional errors arise from the expansion of
wise linear shift map to model terrain problems. The firdhe square root operator in the transformed coordinates. Al-
problem consists of a series of four pyramid shapes with akough the accuracy of this expansion is explicitly slope de-
cending peak heights. The pyramid slopes are fixel867, pendent, the choice of expansion variables made in (32) for the
with peak heights of 76, 152, 229, and 305 m, respectivelyiecewise linear representation of the shift map was shown to be
A 3-GHz source with3° beamwidth is located 152 m aboveoptimal. Itis important to recall that the expansion used must re-
the terrain. The source is propagated according to (38) witltaan the parabolic form of the wave equation.

wheref, is the largest angle through which the array is steerd
Interestingly, this is a more severe condition on the vertical mef
spacing than is imposed by the sampling condition, which on
requires that

V. PIECEWISELINEAR SHIFT MAP: EXAMPLES
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Fig. 7. Same as Fig. 6 but calculated by the terrain masking approximation.

It is interesting to compare the result of Fig. 6 to a simple afarization is assumed to be incident on the wedge at afigle
proximation, known as terrain masking, that has been used prelative to the front face. For a given observation arighad ob-
viously for propagation over terrain. As mentioned in the intraservation distance from the vertex, the incident and diffracted
duction, this method is equivalent to representing the bounddigids are then given by
by a series of knife-edge diffractors. Fig. 7 shows the terrain ) ‘ )
masking approach applied to the four-peak problem. Qualita- ~ E™(s, ¢) = ¢'F* «os(¢=¢")
tively, the results of Figs. 6 and 7 appear quite similar. How- e ‘ e~k
ever, significant differences are found in the surface reflections E(s,¢) =E™(Qc)D*(¢, ¢, 7/2,m) 7
and, to a lesser extent, the degree of shadowing behind the ob-
stacles. While Fig. 6 shows strong reflections from the fromthere (43), shown at the bottom of the pag:<(Q. ) is the
faces, through their interference with the direct wave (abovrcident field at the vertex, anth = (27 — «)/w, wherew is
each peak) the reflections in Fig. 7 are very weak. Furthermotke internal wedge angle.
while the shift-map approach may also be developed for finitely The GTD solution for the diffracted field is to be compared
conducting boundaries (Section VI), terrain masking is limitedith PWE solutions for a wedge of base- 8000 m and height
to perfect conductivity. Therefore, in situations where surfade = 760 m [Fig. 8(b)]. For these values, the slope relative to
reflections are important, the shift map is the preferred methdtie lower boundary ig = +£10.79° or an internal wedge angle

It can also be seen by careful inspection of Figs. 6 and 7 that= = — 23 = 158.43°. To reproduce the problem geometry
the shift map predicts deeper shadow regions behind eachasfclosely as possible for PWE solutions, the finite wedge is
the obstacles. To examine the shadowing more carefully apldced 10 km downrange from a 3-GHz source located 152 m
also to provide a comparative measure of the accuracy of tigove the lower boundary. To model the wedge in free-space,
various approaches discussed here, we next consider the dias-lower boundary for < 10 km andz > 18 km is treated
sical problem of diffraction by a perfectly conducting wedgeas perfectly absorbing. The absorbing or free-space boundary
The problem, shown in Fig. 8(a), is chosen because of the avél-eliminated from the propagation step (26) by the following
ability of a GTD solution. Referring to the GTD formalism ofchoice of transforms. The sine transform and its inverse enforce
references [20] and [21], a plane wave of horizontal (TE) pa:Dirichlet boundary conditiofy = 0 on S), which is equiv-

(42)

—e /% sin(7/m) 1 1

D* = 2m\/2rk cos(m/m) — cos <¢ p d)/) _ et/ e <M)

(43)

m
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Fig. 8. Propagation over a perfectly conducting wedge. (a) Coordinate system and geometry for GTD solution. (b) Geometry for PWE numeridabsbietion.
line indicates perfectly absorbing (nonreflecting) boundary. (c) Relative intensity calculated by the shift map, piecewise linear shift ereginandsk methods

compared with GTD solution. Solution is plotted as a function of range at 152 m altitude as shown in (b) and (d). Relative intensity plotted asad &ltictin
at 20 km range, as shown in (b).

alent to having a negative image source below the boundasyaken directly from the PWE solution and used to normalize
or, in the upper half-space, odd reflections from the boundathie GTD results as shown in (42). As a result, no free parame-
The cosine transform and its inverse is equivalent to a posititers are assumed for either GTD or PWE solutions.

image source below the boundary or even reflections from theFig. 8(c) compares the propagation factor from each of the
boundary. The sum of the cosine and sine transform is thewarious methods as a function of range behind the wedge. The
fore equivalent to no image source and no reflections. Thus, tlesult is generated at a fixed altitude of 152 m, as shown in
source propagates as if no boundary is present. Over the rakge 8(b). The GTD solution and piecewise linear shift map (38)
10 km< x < 18 km, the surface of the wedge is perfectly coragree to within 0.25 dB throughout the entire range of the calcu-
ducting, thus a sine transform (Dirichlet boundary) is used. lation. The original wide-angle form of the shift map (20) dif-
addition, the PWE solutions are generated under free-space dens from the GTD solution by as much as 2 dB. We remark
ditions(n = 1). For a direct comparison of the GTD and PWEhat the same calculations have been repeated for smaller slopes
solutions, the numerical value of the fiegti*°(().. ) atthe vertex () and, as expected, both versions of the shift-map converge to
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the GTD solution in this limit. For comparison, the terrain mask ’

solution is also shown in Fig. 8(c). Consistent with the observa- /n

tions of Figs. 6 and 7, the terrain mask solution overestimates . R

the penetration of the field into the shadowed regions. In partic- P incident eflected

ular, within the deep shadow zone (19 kinz < 21 km), the —B\

differences are as large as 6-7 dB. ~ / v=T()
Fig. 8(d) examines the same calculations as a function of % >

altitude at a fixed range of 20 km (immediately behind the

wedge). Again, the GTD solution and piecewise linear shift B u

map are nearly indistinguishable. As in Fig. 8(c), the original

wide-angle shift map solution differs from the GTD resulEig. 9. Geometry for deriving an extended Leontovich impedance boundary

by 1-2 dB. The terrain mask solution again overestimatgdition for the shift map.

the field throughout. Deep into the shadow zone (near the

surface = 0) the terrain mask error approaches 10 dB. Fig. @flected plane wave in the vicinity of the boundary point. The

therefore demonstrates the improved accuracy of the piecewisear segment of terrain in, v space is given by = w tan j3,

linear form of the wide-angle shift map as well as the erromnd the incident plane wave is

encountered (particularly in the shadow zone) when using the

simple terrain mask (knife-edge diffraction) approximation. As

mentioned in Section lll, accurate field strength predictions in

the shadow zone are potentially of great interest to radar apembereﬁ iskthe aqgltehthﬁt the ditrelct_:%n of propagtgtiog_of tT.e pltar11ne
cations. For example, the shadowing impacts the detectabifﬁ’?ve makes wi € horizontal. The propagation direction then
ersects the boundary segment at the grazing angle + 3

of low-flying targets, as well as the clutter return from the_ - .
shadowed terrain. Fig. 9). Similarly, the reflected wave is

Czk(u cos{—vsinf) (45)

Rezk(u cos n+v sinn) (46)
VI. PIECEWISE LINEAR SHIFT MAP WITH FINITELY

CONDUCTING BOUNDARIES whereR is the polarization-dependent Fresnel reflection coef-

Section I1l briefly described the Fourier/split-step solution t§¢ient, andn = ~ 4 j. Differentiating the total (incident-
the PWE of the form of (38), the improved piecewise linear shifeflected) field with respect te, we have
map. As mentioned, the type of transform that is used depengg . . . N
on the boundary condition. Kuttler and Dockery [2] developed, - = —ik sin Eetk(ucosEvsing) 4 Rk gin etk (v cosntusing)
the MFT to propagate an equation of the form of (38) over an 47
impedance-type boundary. To apply the MFTzin: space re- On the boundary = wtan /3, it can be shown that
quires an approximate relation connectihg/dz and« on the 05y
boundary(z = 0). Since thez coordinate is in general oblique, ucosé —wvsiné =wucosn+wvsing = u .
the = derivative must be expressed in terms of normal and tan- cos 5
gential derivatives with respect to the boundary. The standaT@dmbining (45)—(48), we obtain the relation betwdeand its
Leontovich impedance boundary condition [4], [24] providegertical derivative inu, v space
the required relation on the normal derivative but does not in- ] ]
volve the tangential derivative [24]. Strictly speaking, the ratio 9% _ _,; siné — Rsinn &, onv=utanf.  (49)

of the field to its oblique derivative is not an impedance condi- dv L 1+ R

tion since it does not follow from a relationship between elegqyation (49) is now substituted into (44) to obtain

tric and magnetic fields. However, we can derive the required

relationship from first principles as an extension of the standard% — ik siné — Rsinn

Leontovich impedance boundary condition. 9z 1+ R
Given the substitution) = ¢*° ¢, we have

(48)

—|—Sin[3> ¥, onz=0 (50)

where we have used the above-noted relationships between the
Y _ it <% 00 ¢> fields v, ¢, ®, and their vertical derivatives. Finally, in terms of

1

dz dz dz the anglesy andg3, (50) becomes
0 (D kT
= ( o ¢) 48y o, o (1R
9z 14712 g—i—LkCOS/} sy TR +tan 8(1 — cosvy)| ¥
where (30) is used for the functidi(z, ). According to the onz=0 (51)

coordinate transformation of Sectionfi(x, z) = ®(u,v), and ) iy , L )
9/9z = 9B 9. Therefore, (44) gives the required relation ort\he |mpedan9e poundary condition for thg piecewise linear shift
the ~ derivative, provided we can find the relationship betwed@P- I the limit of zero slopes = 0), this again reduces to

® and its vertical derivativé® /Jv on the boundary. As in the the standard Leontovich impedance boundary condition
derivation of the standard Leontovich boundary condition, we W

suppose thab can be locally approximated by an incident and 9, T ap =0, onz =0. (52)
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With the boundary condition (51), the previously-developed
MFT [2], [3] can be used to propagate the shift map PWE, (38),
over an impedance boundary. In place of the usual Leontovich

coefficient
1-R

Zs

Y
we have B

X1

Xoru

& = cos fBla + tan (1 — cosv)]. (54)

Fig. 10. Sampleterrain problem used to test the extended impedance boundary
This result is very straightforward, but requires knowledgendition. To avoid multiple reflections, the boundary originates at the point
of the grazing angle at each range step. Several methdds “+v = -
for grazing angle estimation [3], [18] have been developed,
including one based on the spectral estimator MUSIC [1Q}Qint. Note that in the PWE solution, the reflected field is in-
Because the estimated grazing angle is a numerical approxirgded implicitly through the impedance boundary condition.
tion based on the assumption of a single, dominant plane wévemparing the PWE solution to this analytical formula directly
incidence angle, an additional source of error is introduc&d the surface gives a strong test of the coordinate-transformed
into the calculation. The approximation of the fields as locallfoundary condition approach. For the analytical solution to the
p|ane waves in the Vicinity of the boundary can break dOV\IﬁSt problem, the reflection coefficient [l] is a function of both
under certain types of strong refractive ducting conditions. fe complex dielectric constant of the surface (values ef 80
[3], it is shown that a single dominant grazing angle may sti#nde = 4 mho/m are used here) and the grazing arfgleof
be determined using a combination of Spectra| estimation aﬂf@ incident field. Since we have chosen a point source radiator
geometric optics. The grazing angle is also required to modg|vacuum, the grazing angle is simply the geometric angle in-

the effect of fine scale terrain roughness on the reflection. tercepted by a ray from the source point. From Fig. 10, an ana-
lytical expression for the grazing angle is

—T(z)

VII. FINITELY CONDUCTING BOUNDARIES. EXAMPLES 2
v=pf+tan"} < 2

) T > 7. (56)

This section compares the solution generated by the piece-

wise linear shift map (38) with the impedance boundary condi- o )
tion (51) to an analytical solution of a simple terrain problen?n€ advantage of this simple problem is that values of the

In Section V, the shift map was compared with the GTD s@razing angle vary from very large near the source to vanish-
lution for the perfectly conducting wedge. Here, the surfadggly small far from the source. Our objective is to demonstrate
impedance is included as well, and the slope dependence offifd the MFT correctly reflects the physical field when applied

solution is explicitly tested with a suitable benchmark probleriP the transformed PWE and boundary condition and that the
The problem consists of a point source radigipfz = 0, z) = result holds over a range of surface slopes. 3) and grazing

8(2 — 2,)) in vacuum(n(z, z) = 1) with a semi-infinite planar angles. . _
surface originating at the point = =1 and having slopes. Fig. 11 compares the MFT result to the analytical solution for

Mathematically, the surface segment is given by aramp originating at; = 0.2 nagtical miles (nmi). The source
is located at, = 1000 ft and radiates at 50 MHz. The solution

T(z) = (x — z1)tan 3 x> . (55) for0 <z <z;is0dBsince the field propagates in free-space.
The solution for? = 0 corresponds to an untilted surface, which
For z < x1, the problem is unbounded. This is done to elimidoes not require the shift map algorithm. The excellent agree-
nate multiple reflections from the surface and thereby permit ament between the analytical and PWE solutions for this case
analytical solution. For PWE simulations, the boundary is elinjastifies omitting the Norton ground wave term in the analytical
inated from the propagation step by a combination of cosine asmlution. For—10° < g < 10°, the agreement between exact
sine transforms as discussed in Section V. and PWE solution is very good. For larger angles, the agreement
The analytical solution for the test problem is straightforwarnd not as good, though still reasonable. The results for negative
to obtain when the Norton ground wave term is neglected. Thebope are somewhat better, apparently resulting from the much
approximation is justified on the basis of nhumerical compasmaller local grazing angles than for the positive slope (for this
isons in the examples to follow. For comparison to the piecewipeoblem, a slope of = —39.4° would give zero grazing angle.)
linear shift map PWE, we consider only the magnitude of the While Fig. 11 provides a test of the piecewise linear shift
field evaluatedn the surface of the ramfp = 0). In addition, map and impedance boundary condition, actual terrain prob-
we consider only the propagation factor, or the magnitude lgims typically involve sudden changes in slope at large distances
the field relative to that obtained at the same point in free-spaftem the source (with correspondingly small grazing angles).
without the boundary present. Given that no multiple reflectiorihe change in slope causes a discontinuity in the reflection co-
occur, the propagation factor (in decibels) for the test problegfficient and should result in a discontinuous jump in the field
neglecting the ground wave term is given2log;,(|1 + R|) magnitude on the surface. The discontinuity is next examined
where R is the complex reflection coefficient at the surfacéora ramp originating at; = 10 nmi (Fig. 12). The grazing

x
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Fig. 11. Comparison of the shift map with impedance boundary condition (solid line) to the exact solution (dotted line) for the problem shown.ift&g. 10
pointz, is located at 0.2 nmi. Panels (a)—(e) are for slope angl¢®f —20, —10, 0°, 1&, 20, respectively.
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Fig. 12. Comparison of the shift map with impedance boundary condition (solid line) to the exact solution (dotted line) for the problem shown. ifiliég. 10
pointz, is located at 10.0 nmi. Panels (a)—(d) are for slope angl¢®f 5°, 10, 15°, 20°, respectively.

angle at this distance &94° for an untilted surface. We there- VIIl. PROPAGATION OVERSAMPLED TERRAIN

fore considerlonly positive slopes since negative slopes Iargeﬁn the previous sections, a model was developed for propaga-

itsglns_o(l)l;l?:)nvg:ggsslgeilhzgg\\l/vefrigﬂ;hlirfogrr?;?c?d ';ZZﬁgﬂztﬂ?n over finitely conducting boundaries having a relatively wide

Fia. 12 the iump in the field is well re roguced aﬁd " correctlrange of surface slopes. To conclude the paper, we demonstrate
g. L, thejump ) pro ' ¥4n application of the model to an actual terrain profile taken

follows the analytical solution as a function of surface slope. 4

fom National Imagery and Mapping Agency’s digital terrain
expected, the results fgr < 10° are markedly better, and the gery Pping Agency g

elevation data (DTED). The example, shown in Fig. 13(a), is
accuracy degrades for large angles. The slope-dependent errpfdg nainous terrain climbing to an elevation greater than 6000

discussed at length in Sections IV and V. Itis shown that the g¢-The surface slopes for this profile, shown in Fig. 13(b), ex-
pansion of_(17) can b_e made optimal inthe piecewise _Iinear Ca%d the range of validity of the wide angle shift map as es-
by the choice made in (32). Although this expansion is exactigplished in the previous sections. To make the profile suitable
certain limits, in the general case there will be an increasipgy propagation predictions, a smoothing algorithm is applied.
error with surface slope that is unavoidable. Based on numghe smoothed realization of the surface is shown in Fig. 13(c),
ical experiments of this type, an upper limit for positive surfacgnd the corresponding slopes in Fig. 13(d). The latter profiles
slopes is therefore observed to be on the ordénsdtto 20° for  show a sharply peaked feature in the terrain near 62 nmi, with a
small grazing angles. In the near field of the source, where mughal slope change of about 25vhich slightly exceeds the limit
larger grazing angles may occur (Fig. 10), the slope limit widstablished in Section V. Therefore, to avoid errors, the propa-
be correspondingly smaller. gation is calculated to a maximum range of about 62 nmi.
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Fig. 13. (a) Sample terrain profile from the digital terrain elevation database (DTED) with (b) slope @hplés) A filtered (smoothed) realization is shown
with (d) corresponding slopes.

The impedance boundary condition for the shift map, devedolarized (Fig. 14) and terrain masking (Fig. 15) results,
oped in Section VI, requires knowledge of the grazing angherizontal polarization and horizontal polarization/perfect con-
at each range step. For propagation over a terrain sample, dhetor (sine transform, Dirichlet boundary) are also included
grazing angles are estimated numerically by the spectral egti+ig. 16. Again, all problem parameters are the same, with
mation algorithm MUSIC. Details of the MUSIC implementathe exception of surface conductivity (terrain masking) and
tion are described, for example, in [3] and [18]. The piecewis®mundary condition. At 500 MHz [Fig. 16(a)], it is found that
linear wide-angle shift map is first run over the terrain assuminfg-polarized and’-polarized results are significantly different,
perfect conductivity. This accounts for atmospheric refractiguarticularly in the shadow zones. Especially noticeable are 20
and gives a good approximation for the grazing angles on tB or larger separations betweg&handV in the deep shadow
boundary. The fields at each range step are then used toregions (for example, 41, 49.5, 51-52, 55-56 nmi), in agree-
timate the dominant propagation directions, which are storetent with rough surface scattering theory that predicts much
for future use. The propagation is then recalculated using ttleeper shadows faf due to the effects of surface (creeping)
new impedance boundary condition, with grazing angles takemves atV’. The H-polarized results over finite and perfect
from the perfectly conducting calculation. A similar approachlectrically conducting (PEC) surfaces are also substantially
has been used extensively for propagation over rough sea walifferent. At a higher frequency of 3-GHz [Fig. 16(b)], the PEC
[3] with excellent results. and H-polarized results are indistinguishable. The shift map

Calculations are made from a source located 100 ft aboatkso predicts minor differences betweHnandV polarization,
the surface at = 0 nmi. A 3-GHz antenna is directed at 0 except perhaps in the deep shadow regions, where differences
elevation angle, with 3main beamwidth. A complex dielec-of several decibels are found. At much higher frequencies
tric constant withe; = 80 ande = 4 mho/m is assumed ev-such as 10 GHz [Fig. 16(c)], as expected, all three shift map
erywhere, and standard atmosphere is used for the refractiviggults converge. In general, we find thatsaband and higher
profile. Fig. 14 illustrates the result for vertical polarizationfrequencies, H polarization is relatively insensitive to surface
Substantial reflections from the terrain, and a complicated inenductivity. Vertical polarization becomes insensitive to
terference pattern, are observed. By comparing with the terraonductivity at roughlyX-band and higher. At much lower
profile [Fig. 13(c)] we find deep shadowing behind the variousequencies, both polarizations are strongly sensitive, which
peaks in the terrain. Fig. 15 shows the same problem recalete have observed in calculations as low as 50 MHz. These
lated with the terrain masking approximation using exactly theolarization differences are also expected to be more significant
same parameters as for Fig. 14, with the exception of surfdoe weakly conducting surfaces such as dry ground.
conductivity, which requires to be infinite (Dirichlet boundary). Finally, the results in Fig. 16 show that terrain masking, in
By comparison, terrain masking substantially underestimatesmparison with the shift map, consistently overestimates the
the shadowing, consistent with the results of Section VI. field in shadowed areas (the deeper the shadow, the greater the

The differences between terrain masking and the shift mdjscrepancy). The terrain masking approach also significantly
approach over finitely conducting terrain are more clearlyeakens surface reflections, as shown in Fig. 15. Although the
illustrated in Fig. 16. The various methods are compared abDéichlet boundary condition used suggests perfect conductivity
fixed altitude of 100 ft above the terrain profile. Results arghence, perfectly reflecting), the reflections are lost by approx-
shown for a range of frequencies. In addition to the verticahating the surface by a series of knife-edge diffractors. As a
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Altitude [kit]

One-Way Propagation Factor [dB]

Fig. 14. Propagation over the terrain profile of Fig. 13(c) calculated by the piecewise linear wide-angle shift map with impedance boundany Aweditbal
polarized, 3-GHz source with"®eamwidth is located 100 ft above the origin. Surface electrical parametersar80 andoe = 4 mho/m. Standard atmosphere
is assumed.

Altitude [kft]

One-Way Propagation Factor [dB]

Fig. 15. Same as Fig. 14, but calculated by the terrain masking approximation (horizontal polarization, perfectly conducting).

result, the complicated multiwave interference pattern observed IX. SUMMARY

in Fig. 14 is not reproduced by terrain masking. Given the ap-

proximate nature of the terrain mask boundary condition andin the Fourier/split-step approach to numerically solving the
the good agreement shown earlier between shift map and GPRVE, several methods have previously been used for gener-
results, Fig. 16 suggests that terrain masking is a poor apprading solutions over an undulating boundary, each with signifi-
mation, regardless of frequency. cant limitations. For example, all of the previous techniques are
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limited to perfectly conducting boundaries. A significant
advance, the coordinate transformation technique of Beilis and
Tappert [9], is derived from the paraxial approximation and
is therefore restricted to narrow propagation angles about the
horizon. The new methods developed in this paper, the shift
map, extend the coordinate transformation technique to address
these limitations. A wide angle form of the PWE is derived
by starting from a coordinate transformation of the original
Helmholtz equation, thereby avoiding the paraxial approxi-
mation. An extension of the Leontovich impedance boundary
condition is also developed for the shift map that permits
solution of the PWE over finitely conducting terrain using the
previously developed mixed Fourier transform. The impedance
boundary condition requires knowledge of the grazing angle on
the boundary, which is also required for modeling the effects
of fine-scale surface roughness.

The new shift map is extensively tested on both simple and
more complex model terrain problems. For example, the numer-
ical solutions are compared with GTD for the classical problem
of diffraction by a perfectly conducting wedge. The more accu-
rate piecewise linear form of the wide-angle shift map is found
to be in excellent agreement with GTD, particularly in the deep
shadow region behind the wedge. Propagation over a smoothly
curved obstacle is also examined, and it is found that a piecewise
linear representation of the shift map correctly approximates the
continuous map, provided the curved terrain is adequately sam-
pled. Interestingly, it is shown that the effect of surface curva-
ture is accounted for in the piecewise linear representation by
steering the field in discrete steps. The steering is analogous to
that used in linear phased array antennas and is therefore phys-
ically intuitive.

Investigations of smoothly curved versus sharply peaked ter-
rain features also show considerable differences in the shad-
owing or blockage of the low grazing angle field by the terrain.
In the piecewise linear representation, strong tip diffraction can
be modeled that significantly fills in the shadow regions. How-
ever, modeling such effects requires an accurate characterization
of crested terrain. While diffraction by a rounded wedge can be
modeled by other techniques, such as GTD, the PWE solution
is valid at arbitrarily low frequency and may also include atmo-
spheric refraction.

Through various investigations of triangular wedges (pyra-
mids) and upward/downward sloping ramps, approximate slope
limits are identified for the terrain. For example, noticeable er-
rors are observed from a field incident at’2frazing angle on
a reflecting surface. A similar limit is observed for the total
slope change between two successive linear terrain segments.
When propagating over a 17.3%edge, for example, a slight
distortion of the field is observed in the entire vertical column
above the wedge. At 25the solution clearly breaks down. The
sources of these errors are clearly identified as a commutator
error, split-step solution error and approximate expansion of
the operator square root. By factoring the original Helmholtz

Fig. 16. Comparison of the relative intensity at 100 ft above the surfagduation in the physical coordinate system rather than the trans-
calculated by the terrain masking and shift map (horizontal polarizatioformed coordinates, it is shown that the commutator error is

vertical polarization, horizontal polarization over perfect conductor) methodﬁ]
for the problem shown in Figs. 13-15. (a)—(c) 500 MHz, 3 GHz, and 10 GHz
respectively.

inimized but cannot be eliminated for propagation at large an-
gles from the horizontal. The square root expansion is also im-
proved by the piecewise linear version of the shift map.
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While the techniques presented in this paper have extendeg]

the accuracy of the split-step Fourier method to terrain with

. [10]
slopes as large as 20other approaches are required for ter-
rain containing larger slopes. The approach we currently use,
despite the limitations of the simple terrain mask approxima{l1l
tion, is a hybrid scheme that alternates between piecewise linear
shift map and terrain masking when steep slopes are encoupnz]
tered. However, because multiple surface reflections are poorly
modeled by terrain masking, it is likely that multipath inter- [13]
ference patterns are not well reproduced. This is confirmed by
the extensive comparisons we have made between the two al-
ternative methods. These comparisons also indicate that terraﬁlﬁ1 ]
masking consistently overestimates the field intensity in shad-
owed regions. A problem using digital terrain elevation data[15]
for example, showed differences as large as 20 dB or greater
for frequencies ranging from 500 MHz to 10 GHz. In general,[16]
the deeper the shadow, the greater the discrepancy between 517e]
two approaches. Such differences are of great interest to radar
applications, where they impact the detectability of low-flying [18]
targets, and the clutter return from shadowed terrain.

In conclusion, we have demonstrated that the shift map ap-
proach significantly advances our ability to model practical ter{19]
rain problems. While this represents an important new capa-
bility for propagation modeling, the examples demonstrate tha[go]
the solution cannot accommodate all terrain scenarios of in-
terest. To broaden the capability of the approach even furthé#ll
will require additional study. We wish to emphasize that therem]
are many situations in which the usual approximations, such as
perfectly conducting or rigid boundaries, horizontal polariza-
tion, and narrow angle propagation are inadequate and that[2a3]
more general solution such as the one developed here must be
employed. [24]
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