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Propagation Modeling Over Terrain Using the
Parabolic Wave Equation

Denis J. Donohue, Member, IEEE,and J. R. Kuttler

Abstract—We address the numerical solution of the parabolic
wave equation over terrain using the Fourier/split-step approach.
The method, referred to as a shift map, generalizes that of
Beilis and Tappert, who introduced a coordinate transformation
technique to flatten the boundary. This technique is extended to a
wide-angle form, allowing larger propagation angles with respect
to the horizon. A new impedance boundary condition is derived
for electromagnetic waves incident on a finitely conducting sur-
face that enables solution of the parabolic wave (PWE) using the
previously developed mixed Fourier transform. It is also shown
by example that in many cases of interest, the boundary may
be approximated by discrete piecewise linear segments without
affecting the field solution. A more accurate shift map solution of
the PWE for a piecewise linear boundary is, therefore, developed
for modeling propagation over digitally sampled terrain data. The
shift-map solution is applied to various surface types, including
ramps, wedges, curved obstacles, and actual terrain. Where
possible, comparisons are made between the numerical solution
and an exact analytical form. The examples demonstrate that
the shift map performs well for surface slopes as large as 10–15
and discontinuous slope changes on the order of 15–20. To
accommodate a larger range of slopes, it is suggested that the most
viable solution for general terrain modeling is a hybrid of the shift
map with the well-known terrain masking (knife-edge diffraction)
approximation.

Index Terms—Clutter, electromagnetics, parabolic wave equa-
tion, propagation, rough boundaries, terrain.

I. INTRODUCTION

FOR many years the parabolic wave equation (PWE) has
been widely used to model the propagation of electro-

magnetic and acoustic waves through inhomogeneous media.
Most applications of the PWE consider low-grazing angle
or near-horizontal propagation of radar or acoustic waves.
In many cases, the horizontal boundary, be it terrain, ocean
surface, or ocean bottom, plays a significant role. Numerical
solutions of the PWE are largely split into two categories: fi-
nite-difference methods and the Fourier/split-step approach [5].
In the finite-difference methods, implementing the appropriate
boundary condition is usually straightforward. A disadvantage
of finite difference methods, however, is a requirement for
fine sampling on the horizontal or range grid, which makes
the calculations computationally intensive. Fourier/split-step
methods, the subject of this paper, allow for a relatively large
range step; however, the boundary condition must be enforced
in transform space.
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To accommodate a finitely conducting dielectric (but planar
or spherical) boundary in the split-step solution, Kuttler and
Dockery [2] developed the mixed Fourier transform (MFT). In
addition, several researchers have also considered the problem
of large-scale (compared to the wavelength) surface undula-
tions. Tappert and Ngiem-Phu [11] developed a method in which
the computational domain is doubled and an “image ocean” or
“image atmosphere” is introduced. Rouseff and Ewart [12] sub-
sequently used this method to examine the effect of sea sur-
face and bottom roughness on shallow water acoustic propaga-
tion. Because it is an image method, this approach is limited to
perfectly conducting or pressure release boundaries. A simple
approximation that has also been used [7], [18] is the terrain
masking approach. This method, which advances the field as if
in free-space and then at each step zeros the field below the alti-
tude of the boundary, is equivalent to representing the boundary
by a series of knife-edge diffractors. As a result, all surface re-
flections are approximated by tip diffraction.

In another approach, Dozier [8] used a local or piecewise con-
formal mapping to locally flatten the surface while retaining the
elliptic form of the wave equation. The parabolic approxima-
tion was then applied to the transformed wave equation. Kut-
tler and Huffaker [6] used a global conformal map to calculate
scattering from a sinusoidal boundary. Their results showed ex-
cellent agreement with classical Bragg scattering theory based
on the Rayleigh plane wave expansion. Beilis and Tappert [9]
developed a general coordinate transformation for the narrow
angle version of the parabolic wave equation that flattens the
undulating surface and retains the PWE. McArthur and Beb-
bington [22], [23] subsequently investigated tilting or steering
the field to counteract the flattening of the surface, which, in
part, resembles Beilis and Tappert’s approach, but without an
explicit coordinate transformation. Barrios [13] tested the actual
Beilis/Tappert approach on a variety of sample terrain problems.
In another approach to rough surfaces, Rino [14] recently intro-
duced a hybrid PWE/integral equation method that circumvents
the numerical difficulties introduced by the rough boundary in
the PWE/split-step method. Rino’s method also accounts for
fine-scale surface roughness, but requires range sampling on the
order of the incident wavelength, which is considerably more re-
strictive than usual for split-step calculations. All of the above-
mentioned rough surface studies are limited to perfectly con-
ducting (or acoustically rigid) boundaries and, in most cases,
modest surface slopes.

In this paper, we improve on the mapping technique, subse-
quently referred to as the shift map, developed by Beilis and
Tappert [9]. In Section II, we extend the technique to wide angle
propagators in the context of the Fourier/split-step method. Sec-
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tion III demonstrates that, with sufficiently fine sampling, repre-
senting terrain by a piecewise linear surface gives essentially the
same propagation results as a continuous representation. There-
fore, the wide-angle shift map for piecewise linear terrain can
be further improved (Section IV) to handle terrain with larger
slopes. The improved shift map is applied in Section V to a
model terrain problem and the results are also compared with
the geometrical theory of diffraction (GTD) for a perfectly con-
ducting wedge. The slope dependence of the method is exam-
ined, and a comparison is made with the terrain masking ap-
proach that indicates some important differences.

We also extend the Leontovich impedance boundary condi-
tion in such a way that finitely conducting terrain can be solved
by the MFT procedure. As discussed above, previous Fourier
methods for terrain have generally been restricted to perfectly
conducting surfaces. Section VI contains the mathematical
derivation of the extended impedance boundary condition,
while Section VII compares propagation predictions based on
the piecewise linear shift map with impedance boundary to
the exact solution for a simple terrain problem. Section VIII
describes an application of the new method to an actual terrain
sample. Further comparisons are made between horizontal/ver-
tical polarization, and perfect/finite conductivity for a range
of frequencies. Section IX summarizes the performance of the
improved shift-map technique, its applicability to the general
terrain problem, and possible future improvements. The im-
proved shift map will give accurate propagation at angles up to
nearly 30 , which means that terrain with slopes up to nearly
15 can be handled. For steeper angles, it is apparently the
commutator error in the factorization producing the PWE that
limits accuracy.

II. WIDE-ANGLE SHIFT MAP: THEORY

In this section, we develop a terrain flattening transformation,
subsequently referred to as the shift map, which improves on
the mapping developed by Beilis and Tappert [9]. The improved
mapping avoids the paraxial approximation, resulting in a self-
consistent wide-angle form of the transformed PWE.

The derivation starts with the two-dimensional (2-D)
Helmholtz equation

(1)

where
is the scalar field;

is the wavenumber;

is the relative index of refraction of the propa-
gating medium;

are the fixed (unmapped) coordinates as shown
in Fig. 1.

In these coordinates, the terrain height is assumed to be given
by an equation of the form

(2)

Fig. 1. Illustration of the mapped(x; z) and unmapped(u; v) coordinate
systems with a terrain profile.

The terrain flattening transformation originally introduced in [9]
is then simply

(3)

In the new coordinates, with , the Helmholtz
equation (1) becomes

(4)

where .
To eliminate first derivatives inas required for Fourier trans-

form methods, the function is replaced with , where the
phase factor is yet to be determined. The same substitu-
tion was also introduced in [9]. Substituting into (4), we have

(5)

where a common factor has been dropped from all terms.
Equation (5) is now factored as

(6)

This factorization of (5) introduces an error when the square
root operator and the expression in brackets do not commute
[15]. This will be the case if the index of refraction depends on
the range coordinate [5]. However, it can be shown that this
commutator erroris small if is reasonably uniform in range
in the original coordinates.

As discussed in [15], the first and second factors of (6) cor-
respond to backward and forward propagating waves, respec-
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tively. To obtain the parabolic wave equation, we consider for-
ward scattering only by retaining the factor

(7)

In the limit of a flat surface , it can be seen that
(7) reduces to

(8)

which is the well-known starting point for deriving the wide-
angle form of the PWE.

To continue with the derivation of the shift-map algorithm,
the square root operator in (7) must be put in a form suitable for
computation. The operator may be written as

(9)

where

and it is assumed that is small compared to one. If we retain
only the first-order terms, (7) becomes

(10)

To obtain the desired form of the parabolic equation, we wish
to eliminate terms in , which may be done by choosing

(11)

which also implies

After substituting (11) and rearranging, (10) becomes

(12)

Some flexibility remains in the choice of. From (11), we have

(13)

where is an arbitrary function. We could simply choose
, as it only affects the overall phase of the field.

However, to put (12) in a particularly simple form, we can take

(14)

which gives us

(15)

where .
Equation (15) is essentially the same PWE derived and used

by both Beilis and Tappert [9, eq. (14)] and Barrios [13, eq.
(7)]. By retaining only first-order terms in the expansion of
the radical of (9), we have recovered the standard form for the
narrow-anglesplit-step solution of the PWE. This derivation is
more physically intuitive than the one given in [9], where the
paraxial approximation is used to derive the PWE before ap-
plying the shift-map transformation. We next show that with a
higher order (more accurate) expansion of (9), a self-consistent
wide angleformulation can be obtained.

We return to (7) and incorporate the choice made in (11) to
obtain

(16)

To retain higher order terms in the approximation of the radical,
we use

(17)

where

With this choice, (16) can be rearranged to give

(18)

As in the narrow-angle derivation, (18) can be put in a simpler
form by an appropriate choice for . Taking

(19)

the wide-angle shift map equation is then

(20)

Equation (20) leads directly to the form of the split-step
algorithm conjectured by Barrios [13, eq. (8)], who solved the
narrow angle equation [essentially (15)] with awide-angle
split-step propagator, but cautioned that the wide-angle
propagator had not been self-consistently obtained from (15).
Because we have employed a similar factoring of the Helmholtz
equation, in the limit (flat surface), (20) also reduces
to the wide angle form of the PWE first derived in [15].

To obtain some measure of the accuracy of the expansion used
in (17), consider the expansion under the assumption of a plane
wave propagating along. Ignoring the effect of the boundary
on the plane wave we may therefore set .
To simplify matters further, consider propagation in free-space
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. Under these conditions, the approximate equality of
(17) becomes . The approximation there-
fore reduces to a first-order binomial expansion of the radical
that is obviously inaccurate unless the slope . How-
ever, we remark that (20) is only one possible approximation
to (16) that may be considered “wide angle.” Other choices for
the expansion parameters and function lead to other
slightly better approximate solutions. In Section IV, we will de-
velop an alternative method that is more advantageous for ter-
rain problems and also better approximates the radical while still
retaining the required form of the PWE. Section V also includes
a numerical comparison of both methods with the GTD on a
classical diffraction problem.

III. W IDE-ANGLE SHIFT MAP: EXAMPLES

Having derived a wide-angle shift-map PWE, in this section,
we examine its application to simple or model terrain prob-
lems. Specifically, we consider two surface profiles. The first
is a curved and continuously differentiable profile, the sinuson,
which has the analytical form

else

(21)

where simply translates the profile and are the peak
height and half width. The second profile, the pyramid, is a par-
ticularly simple example of a piecewise linear surface. It has the
analytical form

else
(22)

which consists of two linear segments on an otherwise flat plane.
One of the advantages of the shift map (20) is that it may be

solved by the well-known Fourier/split-step methods developed
for flat boundaries. To briefly summarize this method, it can be
seen that (20) has a formal solution given by [2]

(23)

where

(24)

contains all of the effects of nonzero slope and curvature of the
boundary. We note that substitution of (23) into (20) results in
additional error terms on the right-hand side of (20). These kinds
of error terms and their effects have been previously analyzed
in [2, Appendix].

For now, we assume that the range step integration of the
refractivity term is simply approximated by

(25)

where and . The suitability of this
approximation will obviously be governed by the range step and
radius of curvature of the surface profile, an issue that is further
discussed below. The key to the Fourier/split-step method is that
the middle operator in (23) is implemented in the transform
space. This technique [2] results in a numerical solution to (23)
that is given by

(26)

The type of transform represented by is a function of the
boundary condition. For calculations in this section, we assume
a Dirichlet boundary condition , which is
satisfied by a field having odd symmetry with respect to the
boundary. Since we are only interested in the upper half-plane

, the Fourier sine transform enforces this condition.
Fig. 2 illustrates the application of (26) to the sinuson profile

(21). The result is calculated at a frequency of 3 GHz and stan-
dard atmosphere refractivity is assumed. The antenna is located
30.5 m above the origin, and a range step of 100 m is used. The
result shows strong reflections off of the front face of the sinuson
and deep shadowing of the incident field beyond the peak. The
shadowing is very nearly geometric; that is, the field strength is
significantly reduced within the shadow zone, which follows a
roughly geometric form bounded by a line joining the antenna
with the peak of the sinuson [16].

To apply the shift-map algorithm over a piecewise linear
boundary, one must recall that although (26) propagates the
transformed field , the physical field has been replaced by
the product , where is given by (12) and (19). In Fig. 2,
the term was ignored since it only affects the phase of the
field . However, over a piecewise linear surface, the function

is discontinuous across each segment joint, where there is a
discontinuous change in slope (13). Since the physical field
must be continuous in space, the transformed amplitudemust
have a corresponding phase discontinuity to match the change
in . Specifically, when propagating across the boundary
between segments 1 and 2, the fieldbecomes

(27)

where is the point of discontinuity and is the
corresponding change in slope of the piecewise linear boundary
[Fig. 6(a)]. In analogy with phased antenna arrays, the factor

resembles a “steering” of the incident field or beam
within each piecewise column. The beam steering is necessary
because the coordinate system, while shifted up and down
with the boundary, is simultaneously tilted with respect to the
boundary. Note that because the boundary is piecewise linear,
the curvature term in (24) is now zero. By going from the
continuous shift map to the piecewise linear representation, the
continuous integration of the rate of change of slope (23)–(25) is
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Fig. 2. Propagation over a continuously curved sinuson profile calculated by the wide-angle shift map. A horizontal polarized, 3-GHz source with 3beamwidth
is located 30.5 m above the origin. The surface is perfectly conducting.

Fig. 3. Same as Fig. 2, but for a piecewise linear wedge or pyramid.

replaced by discrete changes in slope at each segment boundary
(27). The relationship between the two approaches is discussed
further below.

The application of the piecewise linear shift map to the second
profile, the pyramid (22), is illustrated in Fig. 3. Aside from the
surface profile, the problem parameters are the same as used in
Fig. 2, including the peak height (229 m), and half-width

(10 km). The most significant difference between Figs. 2 and
3 is the contrast 25 dB) in the shadowing beyond the peak
of the obstacle. There is strong diffraction of the incident field
by the vertex of the pyramid, resulting in significantly increased
field intensities well into the geometric shadow zone. This re-
sult could be critical to radar-terrain applications. Obviously, the
shadowing is strongly dependent on both the height and radius
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Fig. 4. Same as Fig. 2, except with the sinuson represented byN = 8 discrete piecewise linear segments.

of curvature of the terrain. However, when working with sam-
pled terrain data, curvature information may not be available.
It is therefore important to know whether accurate propagation
predictions can be based solely on terrain elevation samples and,
if so, how finely the terrain must be sampled to minimize mod-
eling errors. In the absence of refractive effects , GTD
may also be used to generate results similar to Figs. 2 and 3, but
with limitations on the radius of curvature of the vertex.

To address the terrain sampling issue, the sinuson profile of
(21) was also implemented by a piecewise linear representation.
Over the range , the profile was broken into

discrete linear segments. A sample calculation for
is shown in Fig. 4. The result differs noticeably from Fig. 2,
with the shadowing intermediate to that observed in Figs. 2 and
3. In this case, the piecewise sampling artificially introduces a
diffracting wedge that does not appear in the actual (continuous)
problem. Fortunately, the result obtained with samples
(not shown) is nearly indistinguishable from the continuous re-
sult (Fig. 2). Also of interest is that for the choice ofand ,
with the surface segment length of 1 km spans ten range
steps. Thus, the 100-m range step used is more than adequately
small. Although not conclusive, this result suggests that pro-
vided the sampling is sufficiently fine, the piecewise linear rep-
resentation is a suitable approximation to the continuous shift
map. Moreover, the piecewise linear shift map captures vertex
or peak diffraction that would be unfeasible to model in the con-
tinuously curved case.

It is not surprising that the two representations produce sim-
ilar results in situations where the terrain lacks sharp disconti-
nuities. To illustrate, consider the problem of Fig. 5, where the
continuous map is propagated across a “rounded” corner. From

(a) (b)

Fig. 5. Geometry for propagating over a changing surface slope for (a) discrete
piecewise linear corner and (b) continuously curved sharp corner. The vectors
T represent the local surface slope.

(23) and (24), the slope dependence of the solution at point
is given by

(28)

where

Computing the integral we have

(29)

which is precisely the “beam-steering” factor of (27). The factor
in (29) appears because the operator is split into two in (23).

Here we have assumed that the range step is sufficiently small
so that the integral of (28) is adequately approximated by the
trapezoidal rule in discrete steps. However, in situations where
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the radius of curvature is comparable to or smaller than the typ-
ical 100-m range step, this may not be the case. In contrast, the
piecewise linear shift map will correctly characterize the sharp
change in slope (and wedge diffraction) without the fine range
step restriction, provided the sharp peak or corner is correctly
sampled in the terrain data.

Based on the favorable results obtained with the piecewise
linear shift map and the fact that in actual terrain problems one
works from discretely sampled data, the remainder of this paper
further develops the piecewise linear representation. The results
shown in this section are without independent validation. How-
ever, the wide-angle shift map, (20) with (27), and the improved
piecewise linear representation (Section IV) are all compared
with GTD calculations in Section V.

IV. PIECEWISELINEAR SHIFT MAP: THEORY

Section III demonstrated the advantage and practical utility
of a piecewise linear representation of the shift map. Given that
over each linear segment the slopeis constant and curvature

is zero, it is now shown that the algorithm developed in Sec-
tion II, specifically the operator expansion of (17), can be further
improved.

In place of (12), we write the phase functionas

(30)

where is a constant whose value will be determined presently.
Substituting into (7) and rearranging gives

(31)

which resembles (16). Now the radical may be written as

(32)

where

Using (17) to expand the radical, the right-hand side of (31)
becomes

(33)

Getting the terms to cancel from (31) requires that
or

(34)

If we then rearrange and choose

(35)

and substitute (34) and (35) into (31) and (33), we obtain the
equation

(36)

Equation (36) is an improved piecewise linear version of the
wide-angle shift-map algorithm [(20), for example]. In partic-
ular, the expansion of (32) takes advantage of the fact that slope

is a known constant over the piecewise linear segment. Thus,
by moving the term into the constant that is factored
outside of the radical, the magnitude of the expansion variable

is reduced relative to the choice made earlier in (17). For ex-
ample, to compare the two expansions more directly, consider
the situation posed in Section II, where the expansion of (17) re-
duces to . Using the same expansion as
in (17) but with the choice of shown in (32), for the same
plane wave propagation alongand for , the variable

becomes zero and the expansion is exact. Specific numerical
tests of these two expansions are also shown in the following
section.

Comparing (36) to (20), the previous wide-angle result, we
find that the wavenumber in the -space propagator of (20) is
replaced by . If we write

(37)

where is the angle that the local terrain slope makes with
the horizontal, then the effective wavenumber in the piecewise
linear version may also be written as . This contraction
of the wavenumber (or stretching of the wavelength) is due to
the fact that the tilting of the coordinate system by an angle
relative to the surface has locally contracted the horizontal range
step. Given (37), the piecewise linear shift map (36) may also
be written as

(38)

As a result of (30) and (34), the phase discontinuity when
propagating across the boundary between linear segments 1 and
2 is now accounted for by

(39)

in place of (27). Thus, the phase term can be exactly
interpreted as a steering factor on the phased array

. Unlike the previous wide-angle
result (27), the angle through which the array is steered is now
precisely the physical angle representing the difference in tilt
of the linear segments on either side of the vertex. Note
that when steering a phased array, there is a condition on the



DONOHUE AND KUTTLER: PROPAGATION MODELING OVER TERRAIN USING PARABOLIC WAVE EQUATION 267

Fig. 6. Propagation over a model terrain profile calculated by the piecewise linear wide-angle shift map. The pyramid slopes are each 8.67. A horizontal polarized
3-GHz source with 3 beamwidth is located 152 m above the origin. The surface is perfectly conducting.

array spacing to avoid grating lobes. The condition, discussed
in [17, ch. 6, p. 545], is

(40)

where is the largest angle through which the array is steered.
Interestingly, this is a more severe condition on the vertical mesh
spacing than is imposed by the sampling condition, which only
requires that

(41)

The mathematical formalism of the shift map, starting from
the coordinate transformation of Beilis and Tappert [9], has led
to (38) and (39). These equations can now be physically in-
terpreted as a tilting or steering of the field array, contraction
of the wavenumber in the locally tilted coordinate frame, and
a slope-dependent modification of the index of refraction as
shown in (38). This may be contrasted with the approach of
McArthur and Bebbington [22], who simply tilted the field array
without the additional corrections to the wavenumber and index
of refraction.

V. PIECEWISELINEAR SHIFT MAP: EXAMPLES

We next demonstrate the application of the improved piece-
wise linear shift map to model terrain problems. The first
problem consists of a series of four pyramid shapes with as-
cending peak heights. The pyramid slopes are fixed to8.67 ,
with peak heights of 76, 152, 229, and 305 m, respectively.
A 3-GHz source with beamwidth is located 152 m above
the terrain. The source is propagated according to (38) with a

Dirichlet boundary condition (perfect conductivity–horizontal
polarization). As in Section III, standard atmosphere refrac-
tivity is assumed. The result is shown in Fig. 6. The sharp
peak diffraction identified in Section III is again observed
over each of the obstacles. Because of the changing angle of
incidence relative to the vertex, the shadow region behind each
obstacle is progressively deeper for the larger peaks. A very
slight distortion of the field is observed near the vertices. This
distortion is apparently a limitation of the shift-map method
whose severity is directly related to the discontinuous change
in surface slope. For example, the change in slope at each
vertex or the angle through which the field is steered relative to
the surface is 17.33for each of the peaks shown in Fig. 6. For
smaller changes in slope (Fig. 3, for example) the distortion is
imperceptible. For changes on the order of 25, the algorithm
clearly begins to break down.

As discussed in the previous sections, there are three sources
of error in these calculations. The first source is the commu-
tator error that is made when factoring the wave equation (5).
Although the operators in (5) are written in terms of the trans-
formed coordinates, the equation is essentially factored
in the original coordinates. Thus, if the refractive index

is reasonably uniform in range, the commutator error will be
small. The second source of error is the inherent error terms
that arise from the split-step solution (23) of the parabolic wave
equation. Finally, additional errors arise from the expansion of
the square root operator in the transformed coordinates. Al-
though the accuracy of this expansion is explicitly slope de-
pendent, the choice of expansion variables made in (32) for the
piecewise linear representation of the shift map was shown to be
optimal. It is important to recall that the expansion used must re-
tain the parabolic form of the wave equation.
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Fig. 7. Same as Fig. 6 but calculated by the terrain masking approximation.

It is interesting to compare the result of Fig. 6 to a simple ap-
proximation, known as terrain masking, that has been used pre-
viously for propagation over terrain. As mentioned in the intro-
duction, this method is equivalent to representing the boundary
by a series of knife-edge diffractors. Fig. 7 shows the terrain
masking approach applied to the four-peak problem. Qualita-
tively, the results of Figs. 6 and 7 appear quite similar. How-
ever, significant differences are found in the surface reflections
and, to a lesser extent, the degree of shadowing behind the ob-
stacles. While Fig. 6 shows strong reflections from the front
faces, through their interference with the direct wave (above
each peak) the reflections in Fig. 7 are very weak. Furthermore,
while the shift-map approach may also be developed for finitely
conducting boundaries (Section VI), terrain masking is limited
to perfect conductivity. Therefore, in situations where surface
reflections are important, the shift map is the preferred method.

It can also be seen by careful inspection of Figs. 6 and 7 that
the shift map predicts deeper shadow regions behind each of
the obstacles. To examine the shadowing more carefully and
also to provide a comparative measure of the accuracy of the
various approaches discussed here, we next consider the clas-
sical problem of diffraction by a perfectly conducting wedge.
The problem, shown in Fig. 8(a), is chosen because of the avail-
ability of a GTD solution. Referring to the GTD formalism of
references [20] and [21], a plane wave of horizontal (TE) po-

larization is assumed to be incident on the wedge at angle
relative to the front face. For a given observation angleand ob-
servation distance from the vertex, the incident and diffracted
fields are then given by

(42)

where (43), shown at the bottom of the page, is the
incident field at the vertex, and , where is
the internal wedge angle.

The GTD solution for the diffracted field is to be compared
with PWE solutions for a wedge of base m and height

m [Fig. 8(b)]. For these values, the slope relative to
the lower boundary is or an internal wedge angle

. To reproduce the problem geometry
as closely as possible for PWE solutions, the finite wedge is
placed 10 km downrange from a 3-GHz source located 152 m
above the lower boundary. To model the wedge in free-space,
the lower boundary for km and km is treated
as perfectly absorbing. The absorbing or free-space boundary
is eliminated from the propagation step (26) by the following
choice of transforms. The sine transform and its inverse enforce
a Dirichlet boundary condition on , which is equiv-

(43)
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(a)

(b)

(c) (d)

Fig. 8. Propagation over a perfectly conducting wedge. (a) Coordinate system and geometry for GTD solution. (b) Geometry for PWE numerical solution.Dashed
line indicates perfectly absorbing (nonreflecting) boundary. (c) Relative intensity calculated by the shift map, piecewise linear shift map, and terrain mask methods
compared with GTD solution. Solution is plotted as a function of range at 152 m altitude as shown in (b) and (d). Relative intensity plotted as a functionof altitude
at 20 km range, as shown in (b).

alent to having a negative image source below the boundary
or, in the upper half-space, odd reflections from the boundary.
The cosine transform and its inverse is equivalent to a positive
image source below the boundary or even reflections from the
boundary. The sum of the cosine and sine transform is there-
fore equivalent to no image source and no reflections. Thus, the
source propagates as if no boundary is present. Over the range
10 km 18 km, the surface of the wedge is perfectly con-
ducting, thus a sine transform (Dirichlet boundary) is used. In
addition, the PWE solutions are generated under free-space con-
ditions . For a direct comparison of the GTD and PWE
solutions, the numerical value of the field at the vertex

is taken directly from the PWE solution and used to normalize
the GTD results as shown in (42). As a result, no free parame-
ters are assumed for either GTD or PWE solutions.

Fig. 8(c) compares the propagation factor from each of the
various methods as a function of range behind the wedge. The
result is generated at a fixed altitude of 152 m, as shown in
Fig. 8(b). The GTD solution and piecewise linear shift map (38)
agree to within 0.25 dB throughout the entire range of the calcu-
lation. The original wide-angle form of the shift map (20) dif-
fers from the GTD solution by as much as 2 dB. We remark
that the same calculations have been repeated for smaller slopes

and, as expected, both versions of the shift-map converge to
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the GTD solution in this limit. For comparison, the terrain mask
solution is also shown in Fig. 8(c). Consistent with the observa-
tions of Figs. 6 and 7, the terrain mask solution overestimates
the penetration of the field into the shadowed regions. In partic-
ular, within the deep shadow zone (19 km 21 km), the
differences are as large as 6–7 dB.

Fig. 8(d) examines the same calculations as a function of
altitude at a fixed range of 20 km (immediately behind the
wedge). Again, the GTD solution and piecewise linear shift
map are nearly indistinguishable. As in Fig. 8(c), the original
wide-angle shift map solution differs from the GTD result
by 1–2 dB. The terrain mask solution again overestimates
the field throughout. Deep into the shadow zone (near the
surface, ) the terrain mask error approaches 10 dB. Fig. 8
therefore demonstrates the improved accuracy of the piecewise
linear form of the wide-angle shift map as well as the errors
encountered (particularly in the shadow zone) when using the
simple terrain mask (knife-edge diffraction) approximation. As
mentioned in Section III, accurate field strength predictions in
the shadow zone are potentially of great interest to radar appli-
cations. For example, the shadowing impacts the detectability
of low-flying targets, as well as the clutter return from the
shadowed terrain.

VI. PIECEWISE LINEAR SHIFT MAP WITH FINITELY

CONDUCTING BOUNDARIES

Section III briefly described the Fourier/split-step solution to
the PWE of the form of (38), the improved piecewise linear shift
map. As mentioned, the type of transform that is used depends
on the boundary condition. Kuttler and Dockery [2] developed
the MFT to propagate an equation of the form of (38) over an
impedance-type boundary. To apply the MFT in space re-
quires an approximate relation connecting and on the
boundary . Since the coordinate is in general oblique,
the derivative must be expressed in terms of normal and tan-
gential derivatives with respect to the boundary. The standard
Leontovich impedance boundary condition [4], [24] provides
the required relation on the normal derivative but does not in-
volve the tangential derivative [24]. Strictly speaking, the ratio
of the field to its oblique derivative is not an impedance condi-
tion since it does not follow from a relationship between elec-
tric and magnetic fields. However, we can derive the required
relationship from first principles as an extension of the standard
Leontovich impedance boundary condition.

Given the substitution , we have

(44)

where (30) is used for the function . According to the
coordinate transformation of Section II, , and

. Therefore, (44) gives the required relation on
the derivative, provided we can find the relationship between

and its vertical derivative on the boundary. As in the
derivation of the standard Leontovich boundary condition, we
suppose that can be locally approximated by an incident and

Fig. 9. Geometry for deriving an extended Leontovich impedance boundary
condition for the shift map.

reflected plane wave in the vicinity of the boundary point. The
linear segment of terrain in space is given by ,
and the incident plane wave is

(45)

where is the angle that the direction of propagation of the plane
wave makes with the horizontal. The propagation direction then
intersects the boundary segment at the grazing angle
(Fig. 9). Similarly, the reflected wave is

(46)

where is the polarization-dependent Fresnel reflection coef-
ficient, and . Differentiating the total (incident
reflected) field with respect to, we have

(47)
On the boundary , it can be shown that

(48)

Combining (45)–(48), we obtain the relation betweenand its
vertical derivative in space

on (49)

Equation (49) is now substituted into (44) to obtain

on (50)

where we have used the above-noted relationships between the
fields , and their vertical derivatives. Finally, in terms of
the angles and , (50) becomes

on (51)

the impedance boundary condition for the piecewise linear shift
map. In the limit of zero slope , this again reduces to
the standard Leontovich impedance boundary condition

on (52)
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With the boundary condition (51), the previously-developed
MFT [2], [3] can be used to propagate the shift map PWE, (38),
over an impedance boundary. In place of the usual Leontovich
coefficient

(53)

we have

(54)

This result is very straightforward, but requires knowledge
of the grazing angle at each range step. Several methods
for grazing angle estimation [3], [18] have been developed,
including one based on the spectral estimator MUSIC [19].
Because the estimated grazing angle is a numerical approxima-
tion based on the assumption of a single, dominant plane wave
incidence angle, an additional source of error is introduced
into the calculation. The approximation of the fields as locally
plane waves in the vicinity of the boundary can break down
under certain types of strong refractive ducting conditions. In
[3], it is shown that a single dominant grazing angle may still
be determined using a combination of spectral estimation and
geometric optics. The grazing angle is also required to model
the effect of fine scale terrain roughness on the reflection.

VII. FINITELY CONDUCTING BOUNDARIES: EXAMPLES

This section compares the solution generated by the piece-
wise linear shift map (38) with the impedance boundary condi-
tion (51) to an analytical solution of a simple terrain problem.
In Section V, the shift map was compared with the GTD so-
lution for the perfectly conducting wedge. Here, the surface
impedance is included as well, and the slope dependence of the
solution is explicitly tested with a suitable benchmark problem.
The problem consists of a point source radiator

in vacuum with a semi-infinite planar
surface originating at the point and having slope .
Mathematically, the surface segment is given by

(55)

For , the problem is unbounded. This is done to elimi-
nate multiple reflections from the surface and thereby permit an
analytical solution. For PWE simulations, the boundary is elim-
inated from the propagation step by a combination of cosine and
sine transforms as discussed in Section V.

The analytical solution for the test problem is straightforward
to obtain when the Norton ground wave term is neglected. This
approximation is justified on the basis of numerical compar-
isons in the examples to follow. For comparison to the piecewise
linear shift map PWE, we consider only the magnitude of the
field evaluatedon the surface of the ramp . In addition,
we consider only the propagation factor, or the magnitude of
the field relative to that obtained at the same point in free-space
without the boundary present. Given that no multiple reflections
occur, the propagation factor (in decibels) for the test problem
neglecting the ground wave term is given by
where is the complex reflection coefficient at the surface

Fig. 10. Sample terrain problem used to test the extended impedance boundary
condition. To avoid multiple reflections, the boundary originates at the point
u = x , v = 0.

point. Note that in the PWE solution, the reflected field is in-
cluded implicitly through the impedance boundary condition.
Comparing the PWE solution to this analytical formula directly
on the surface gives a strong test of the coordinate-transformed
boundary condition approach. For the analytical solution to the
test problem, the reflection coefficient [1] is a function of both
the complex dielectric constant of the surface (values of
and mho/m are used here) and the grazing angleof
the incident field. Since we have chosen a point source radiator
in vacuum, the grazing angle is simply the geometric angle in-
tercepted by a ray from the source point. From Fig. 10, an ana-
lytical expression for the grazing angle is

(56)

One advantage of this simple problem is that values of the
grazing angle vary from very large near the source to vanish-
ingly small far from the source. Our objective is to demonstrate
that the MFT correctly reflects the physical field when applied
to the transformed PWE and boundary condition and that the
result holds over a range of surface slopes and grazing
angles.

Fig. 11 compares the MFT result to the analytical solution for
a ramp originating at nautical miles (nmi). The source
is located at ft and radiates at 50 MHz. The solution
for is 0 dB since the field propagates in free-space.
The solution for corresponds to an untilted surface, which
does not require the shift map algorithm. The excellent agree-
ment between the analytical and PWE solutions for this case
justifies omitting the Norton ground wave term in the analytical
solution. For , the agreement between exact
and PWE solution is very good. For larger angles, the agreement
is not as good, though still reasonable. The results for negative
slope are somewhat better, apparently resulting from the much
smaller local grazing angles than for the positive slope (for this
problem, a slope of would give zero grazing angle.)

While Fig. 11 provides a test of the piecewise linear shift
map and impedance boundary condition, actual terrain prob-
lems typically involve sudden changes in slope at large distances
from the source (with correspondingly small grazing angles).
The change in slope causes a discontinuity in the reflection co-
efficient and should result in a discontinuous jump in the field
magnitude on the surface. The discontinuity is next examined
for a ramp originating at nmi (Fig. 12). The grazing



272 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 2, FEBRUARY 2000

(a) (b)

(c) (d)

(e)

Fig. 11. Comparison of the shift map with impedance boundary condition (solid line) to the exact solution (dotted line) for the problem shown in Fig. 10. The
pointx is located at 0.2 nmi. Panels (a)–(e) are for slope angles(�) of �20,�10, 0�, 10�, 20, respectively.
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(a) (b)

(c) (d)

Fig. 12. Comparison of the shift map with impedance boundary condition (solid line) to the exact solution (dotted line) for the problem shown in Fig. 10. The
pointx is located at 10.0 nmi. Panels (a)–(d) are for slope angles(�) of 5�, 10�, 15�, 20�, respectively.

angle at this distance is for an untilted surface. We there-
fore consider only positive slopes since negative slopes larger
than will be in shadow from the source and the analyt-
ical solution discussed above is no longer valid. As shown in
Fig. 12, the jump in the field is well reproduced, and it correctly
follows the analytical solution as a function of surface slope. As
expected, the results for are markedly better, and the
accuracy degrades for large angles. The slope-dependent error is
discussed at length in Sections IV and V. It is shown that the ex-
pansion of (17) can be made optimal in the piecewise linear case
by the choice made in (32). Although this expansion is exact in
certain limits, in the general case there will be an increasing
error with surface slope that is unavoidable. Based on numer-
ical experiments of this type, an upper limit for positive surface
slopes is therefore observed to be on the order ofto for
small grazing angles. In the near field of the source, where much
larger grazing angles may occur (Fig. 10), the slope limit will
be correspondingly smaller.

VIII. PROPAGATION OVERSAMPLED TERRAIN

In the previous sections, a model was developed for propaga-
tion over finitely conducting boundaries having a relatively wide
range of surface slopes. To conclude the paper, we demonstrate
an application of the model to an actual terrain profile taken
from National Imagery and Mapping Agency’s digital terrain
elevation data (DTED). The example, shown in Fig. 13(a), is
mountainous terrain climbing to an elevation greater than 6000
ft. The surface slopes for this profile, shown in Fig. 13(b), ex-
ceed the range of validity of the wide angle shift map as es-
tablished in the previous sections. To make the profile suitable
for propagation predictions, a smoothing algorithm is applied.
The smoothed realization of the surface is shown in Fig. 13(c),
and the corresponding slopes in Fig. 13(d). The latter profiles
show a sharply peaked feature in the terrain near 62 nmi, with a
total slope change of about 25, which slightly exceeds the limit
established in Section V. Therefore, to avoid errors, the propa-
gation is calculated to a maximum range of about 62 nmi.
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(a) (b)

(c) (d)

Fig. 13. (a) Sample terrain profile from the digital terrain elevation database (DTED) with (b) slope angles(�). (c) A filtered (smoothed) realization is shown
with (d) corresponding slopes.

The impedance boundary condition for the shift map, devel-
oped in Section VI, requires knowledge of the grazing angle
at each range step. For propagation over a terrain sample, the
grazing angles are estimated numerically by the spectral esti-
mation algorithm MUSIC. Details of the MUSIC implementa-
tion are described, for example, in [3] and [18]. The piecewise
linear wide-angle shift map is first run over the terrain assuming
perfect conductivity. This accounts for atmospheric refraction
and gives a good approximation for the grazing angles on the
boundary. The fields at each range step are then used to es-
timate the dominant propagation directions, which are stored
for future use. The propagation is then recalculated using the
new impedance boundary condition, with grazing angles taken
from the perfectly conducting calculation. A similar approach
has been used extensively for propagation over rough sea water
[3] with excellent results.

Calculations are made from a source located 100 ft above
the surface at nmi. A 3-GHz antenna is directed at 0
elevation angle, with 3main beamwidth. A complex dielec-
tric constant with and mho/m is assumed ev-
erywhere, and standard atmosphere is used for the refractivity
profile. Fig. 14 illustrates the result for vertical polarization.
Substantial reflections from the terrain, and a complicated in-
terference pattern, are observed. By comparing with the terrain
profile [Fig. 13(c)] we find deep shadowing behind the various
peaks in the terrain. Fig. 15 shows the same problem recalcu-
lated with the terrain masking approximation using exactly the
same parameters as for Fig. 14, with the exception of surface
conductivity, which requires to be infinite (Dirichlet boundary).
By comparison, terrain masking substantially underestimates
the shadowing, consistent with the results of Section VI.

The differences between terrain masking and the shift map
approach over finitely conducting terrain are more clearly
illustrated in Fig. 16. The various methods are compared at a
fixed altitude of 100 ft above the terrain profile. Results are
shown for a range of frequencies. In addition to the vertical

polarized (Fig. 14) and terrain masking (Fig. 15) results,
horizontal polarization and horizontal polarization/perfect con-
ductor (sine transform, Dirichlet boundary) are also included
in Fig. 16. Again, all problem parameters are the same, with
the exception of surface conductivity (terrain masking) and
boundary condition. At 500 MHz [Fig. 16(a)], it is found that

-polarized and -polarized results are significantly different,
particularly in the shadow zones. Especially noticeable are 20
dB or larger separations betweenand in the deep shadow
regions (for example, 41, 49.5, 51–52, 55–56 nmi), in agree-
ment with rough surface scattering theory that predicts much
deeper shadows for due to the effects of surface (creeping)
waves at . The -polarized results over finite and perfect
electrically conducting (PEC) surfaces are also substantially
different. At a higher frequency of 3-GHz [Fig. 16(b)], the PEC
and -polarized results are indistinguishable. The shift map
also predicts minor differences betweenand polarization,
except perhaps in the deep shadow regions, where differences
of several decibels are found. At much higher frequencies
such as 10 GHz [Fig. 16(c)], as expected, all three shift map
results converge. In general, we find that at-band and higher
frequencies, H polarization is relatively insensitive to surface
conductivity. Vertical polarization becomes insensitive to
conductivity at roughly -band and higher. At much lower
frequencies, both polarizations are strongly sensitive, which
we have observed in calculations as low as 50 MHz. These
polarization differences are also expected to be more significant
for weakly conducting surfaces such as dry ground.

Finally, the results in Fig. 16 show that terrain masking, in
comparison with the shift map, consistently overestimates the
field in shadowed areas (the deeper the shadow, the greater the
discrepancy). The terrain masking approach also significantly
weakens surface reflections, as shown in Fig. 15. Although the
Dirichlet boundary condition used suggests perfect conductivity
(hence, perfectly reflecting), the reflections are lost by approx-
imating the surface by a series of knife-edge diffractors. As a
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Fig. 14. Propagation over the terrain profile of Fig. 13(c) calculated by the piecewise linear wide-angle shift map with impedance boundary condition. A vertical
polarized, 3-GHz source with 3beamwidth is located 100 ft above the origin. Surface electrical parameters are� = 80 and� = 4 mho/m. Standard atmosphere
is assumed.

Fig. 15. Same as Fig. 14, but calculated by the terrain masking approximation (horizontal polarization, perfectly conducting).

result, the complicated multiwave interference pattern observed
in Fig. 14 is not reproduced by terrain masking. Given the ap-
proximate nature of the terrain mask boundary condition and
the good agreement shown earlier between shift map and GTD
results, Fig. 16 suggests that terrain masking is a poor approxi-
mation, regardless of frequency.

IX. SUMMARY

In the Fourier/split-step approach to numerically solving the
PWE, several methods have previously been used for gener-
ating solutions over an undulating boundary, each with signifi-
cant limitations. For example, all of the previous techniques are
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Fig. 16. Comparison of the relative intensity at 100 ft above the surface
calculated by the terrain masking and shift map (horizontal polarization,
vertical polarization, horizontal polarization over perfect conductor) methods,
for the problem shown in Figs. 13–15. (a)–(c) 500 MHz, 3 GHz, and 10 GHz,
respectively.

limited to perfectly conducting boundaries. A significant
advance, the coordinate transformation technique of Beilis and
Tappert [9], is derived from the paraxial approximation and
is therefore restricted to narrow propagation angles about the
horizon. The new methods developed in this paper, the shift
map, extend the coordinate transformation technique to address
these limitations. A wide angle form of the PWE is derived
by starting from a coordinate transformation of the original
Helmholtz equation, thereby avoiding the paraxial approxi-
mation. An extension of the Leontovich impedance boundary
condition is also developed for the shift map that permits
solution of the PWE over finitely conducting terrain using the
previously developed mixed Fourier transform. The impedance
boundary condition requires knowledge of the grazing angle on
the boundary, which is also required for modeling the effects
of fine-scale surface roughness.

The new shift map is extensively tested on both simple and
more complex model terrain problems. For example, the numer-
ical solutions are compared with GTD for the classical problem
of diffraction by a perfectly conducting wedge. The more accu-
rate piecewise linear form of the wide-angle shift map is found
to be in excellent agreement with GTD, particularly in the deep
shadow region behind the wedge. Propagation over a smoothly
curved obstacle is also examined, and it is found that a piecewise
linear representation of the shift map correctly approximates the
continuous map, provided the curved terrain is adequately sam-
pled. Interestingly, it is shown that the effect of surface curva-
ture is accounted for in the piecewise linear representation by
steering the field in discrete steps. The steering is analogous to
that used in linear phased array antennas and is therefore phys-
ically intuitive.

Investigations of smoothly curved versus sharply peaked ter-
rain features also show considerable differences in the shad-
owing or blockage of the low grazing angle field by the terrain.
In the piecewise linear representation, strong tip diffraction can
be modeled that significantly fills in the shadow regions. How-
ever, modeling such effects requires an accurate characterization
of crested terrain. While diffraction by a rounded wedge can be
modeled by other techniques, such as GTD, the PWE solution
is valid at arbitrarily low frequency and may also include atmo-
spheric refraction.

Through various investigations of triangular wedges (pyra-
mids) and upward/downward sloping ramps, approximate slope
limits are identified for the terrain. For example, noticeable er-
rors are observed from a field incident at 20grazing angle on
a reflecting surface. A similar limit is observed for the total
slope change between two successive linear terrain segments.
When propagating over a 17.33wedge, for example, a slight
distortion of the field is observed in the entire vertical column
above the wedge. At 25, the solution clearly breaks down. The
sources of these errors are clearly identified as a commutator
error, split-step solution error and approximate expansion of
the operator square root. By factoring the original Helmholtz
equation in the physical coordinate system rather than the trans-
formed coordinates, it is shown that the commutator error is
minimized but cannot be eliminated for propagation at large an-
gles from the horizontal. The square root expansion is also im-
proved by the piecewise linear version of the shift map.
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While the techniques presented in this paper have extended
the accuracy of the split-step Fourier method to terrain with
slopes as large as 20, other approaches are required for ter-
rain containing larger slopes. The approach we currently use,
despite the limitations of the simple terrain mask approxima-
tion, is a hybrid scheme that alternates between piecewise linear
shift map and terrain masking when steep slopes are encoun-
tered. However, because multiple surface reflections are poorly
modeled by terrain masking, it is likely that multipath inter-
ference patterns are not well reproduced. This is confirmed by
the extensive comparisons we have made between the two al-
ternative methods. These comparisons also indicate that terrain
masking consistently overestimates the field intensity in shad-
owed regions. A problem using digital terrain elevation data,
for example, showed differences as large as 20 dB or greater
for frequencies ranging from 500 MHz to 10 GHz. In general,
the deeper the shadow, the greater the discrepancy between the
two approaches. Such differences are of great interest to radar
applications, where they impact the detectability of low-flying
targets, and the clutter return from shadowed terrain.

In conclusion, we have demonstrated that the shift map ap-
proach significantly advances our ability to model practical ter-
rain problems. While this represents an important new capa-
bility for propagation modeling, the examples demonstrate that
the solution cannot accommodate all terrain scenarios of in-
terest. To broaden the capability of the approach even further
will require additional study. We wish to emphasize that there
are many situations in which the usual approximations, such as
perfectly conducting or rigid boundaries, horizontal polariza-
tion, and narrow angle propagation are inadequate and that a
more general solution such as the one developed here must be
employed.
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