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Numerical Stability of NonorthogonalFDTD Methods
Stephen D. Gedney, Senior Member, IEEE,and J. Alan Roden, Member, IEEE

Abstract—In this paper, a sufficient test for the numerical
stability of generalized grid finite-difference time-domain (FDTD)
schemes is presented. It is shown that the projection operators of
such schemes must be symmetric positive definite. Without this
property, such schemes can exhibit late-time instabilities. The
origin and the characteristics of these late-time instabilities are
also uncovered. Based on this study, nonorthogonal grid FDTD
schemes (NFDTD) and the generalized Yee (GY) methods are
proposed that are numerically stable in the late time for quadri-
lateral prism elements, allowing these methods to be extended
to problems requiring very long-time simulations. The study of
numerical stability that is presented is very general and can be
applied to most solutions of Maxwell’s equations based on explicit
time-domain schemes.

Index Terms—FDTD methods, numerical stability.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been highly successful for the analysis of a plethora of

electromagnetic interaction problems [1]. Yet one principal
limitation of the classical FDTD method is the restriction to
orthogonal grids. A number of techniques have been proposed
to develop FDTD methods based on conformal meshing
such as the contour path FDTD (CPFDTD) method [2], the
nonorthogonal FDTD (NFDTD) method [3], and the discrete
integral equation (DSI) [4] and generalized Yee (GY) methods
[5]. The advantage of these techniques is that through the
introduction of more generalized discretizations, error due
to boundary discretization can be alleviated. Unfortunately,
these and similar methods can sometimes suffer from late-time
instabilities [6].

It was demonstrated by Craddocket al. that the source of in-
stability of the CPFDTD method was due to the nonreciprocal
nature of the original algorithm [7]. By analyzing the FDTD
method as a passive circuit, an alternative stable and accurate
solution was proposed. Such an extension is not directly appli-
cable to the NFDTD, DSI, and GY methods because of the com-
plexity of the projection operations required to project the fields
normal to the grid faces onto the dual edges passing through the
faces.

In this paper, it is demonstrated that the source of late-time
instabilities in the NFDTD and DSI/GY methods is due to the
basic definitions for the projection operators. Consequently,
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these methods can lead to formulations that are unstable in the
late time independentof the time step. Alternative methods
based on the NFDTD and the DSI/GY algorithms are proposed
that are accurate and stable when employing quadrilateral prism
elements (i.e., elements that are orthogonal in the vertical di-
rection and irregular quadrilaterals in the horizontal direction).

II. GENERAL FORMULATION

The FDTD methods described herein assume a dual-stag-
gered grid with an edge-based discretization of Maxwell’s equa-
tions. Specifically, the electric field intensity is projected onto
the edges of aprimary grid and the magnetic field intensity is
projected onto the edges of thesecondarygrid. Implementing
Maxwell’s curl equations in their integral form, the flux den-
sities normal to the primary and secondary grid faces are nat-
urally updated given the circulation of the dual field about the
faces. Before performing the field update, the normal flux den-
sity vector must be projected onto the dual edge passing through
the face. This is accomplished in the NFDTD algorithm [3] via
the local Jacobian tensor and local interpolation and a local in-
terpolation scheme in the DSI and GY methods [5], [8]. The de-
tails of these algorithms are not repeated here. Rather, the reader
is referred to the original articles as well as [9] for a detailed
summary of the algorithms.

Both the NFDTD and the DSI/GY methods result in explicit
update schemes that can be expressed in general form as a cou-
pled set of first-order difference equations

(1)

(2)

where and are vectors of the discrete vector flux densities, the
superscripts refer to discrete time, and represent the dis-
crete contour integrals of the electric and magnetic fields about
primary and secondary cell faces, respectfully,is a diagonal
matrix with entries representing the inverse of the relative per-
mittivity, and and are the projection matrices. Note that
for simplicity the domain is assumed to be lossless and nonmag-
netic. However, the following analyses are not limited by these
simplifications.

III. STABILITY ANALYSIS

The coupled difference equations in (1) and (2) are explicit
in nature and are conditionally stable. To derive a sufficient sta-
bility condition, the coupled difference equations are reposed as
a single first-order difference equation. To this end, first substi-
tute (1) into (2). Then, introducing the vector

(3)
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(1) and (2) are reposed as a first-order difference equation

(4)

where

(5)

Let be the initial condition or the input into the system.
Then, from (4)

(6)

where represents raised to the th power. To ensure sta-
bility for a passive linear system must
be satisfied. This is true if there exists a constantsuch that

(7)

for all positive values of , where the subscript 2 refers to the
2-norm, is a constant that is dependent on the spatial dis-
cretization and later defined in (18), andis the duration. A
necessary condition for (7) to be satisfied is that the eigenvalues
of must satisfy and must have a complete set of
distinct eigenvalues and eigenvectors (i.e.,is diagonalizable)
[11].

The eigenspectrum of is explored from the eigenvalue
equation

(8)

Subtracting the identity matrix from both sides of (8) leads to

(9)

where . This is written more explicitly as

(10)

The first row of (10) is multiplied by , leading to

(11)

Then, substituting (11) for the first term from the second row of
(10), leads to

(12)

where

(13)

which represents the discrete curl–curl operation. At this point,
it is assumed that is diagonalizable. Then, introducing,
the matrix of eigenvectors of and , the diagonal matrix
containing the eigenvalues of , is diagonalized as

(14)

Diagonalizing (12) leads to a quadratic characteristic equation

(15)

where are the eigenvalues of . This leads to the relation-
ship

(16)

Finally, from (16), the eigenvalues for are determined as

(17)

Earlier, it was stated that a necessary condition for (7) is for
and that the are distinct. Observing (17), this will

be true if:

1) are positive real and distinct;
2)

The second requirement leads to a restriction on the time step.
Specifically, the time step is bound by, where from (7) and
condition 2)

(18)

A similar bound was derived in [10]. (Note that the square root
was neglected in [10].)

It is observed that if and is positive real, then the
term within the radical in (17) will be negative. Thus, (17) can
be rewritten as

(19)

It is seen immediately that for all that are real and
. Interestingly, this is expected since without dissipation, the

total energy in the system is unchanged with time.
A complex will lead to an eigenpair of with one of

the eigenvalues lying outside of the unit circle independent of
(including ). Subsequently, the system will be un-

conditionally unstable for all . This instability will typically
occur in late time and is characterized by a high-frequency os-
cillation with exponential growth. This is discussed further in
the Appendix. It can further be shown that adding loss into the
medium is not sufficient to push the eigenvalue into the unit
circle. At best, it will push it closer to the unit circle, delaying
the corruption of data into later time.

Based on this analysis, it is thus finally concluded that (1)
and (2) will be stable iff 1) is a positive definite matrix with
distinct real eigenvalues and 2) , where is
defined by (18).

A. Discussion

For the classical FDTD scheme the Courant limit alone is a
sufficient condition for stability. This is strictly because

is positive definite. However, for general grid schemes
such as the NFDTD and DSI/GY methods, the time stability
limit is a necessary but not sufficient condition. must also be
positive definite.
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As originally posed, the NFDTD and DSI/GY methods do
not result in a positive definite for general meshing. This is
because the projection matrices and are nonsymmetric.
Thus, these methods suffer from late-time instability. The ques-
tion that remains is what are the necessary conditions forand

to produce a stable scheme?
It is first noted that even for nonorthogonal grids, the product

of the circulation matrices is positive definite. It can also
be shown that if and are positive definite symmetric, then

will be positive definite. Unfortunately, if is in-
homogeneous, then may no longer be pos-
itive definite since will be nonsymmetric. An effective
way to force symmetry in the projection operator is to approxi-
mate (1) as

(20)

Then is rewritten as

(21)

If is symmetric positive definite, then will also
be symmetric positive definite. Subsequently,will be posi-
tive definite for inhomogeneous medium.

It must be realized that this is an approximation. The projec-
tion operation maps the normal flux density
to the field intensity projected on the edge passing through the
face. Examining theth entry of the vector

(22)

where is the entry of matrix in the th row and th
column. The diagonal term of the projection operation is un-
changed. Whereas the off-diagonal terms are normalized by an
effective permittivity expressed as the geometric mean of the
permittivities of the two adjacent edges. It is demonstrated in
Section V that this approximation does not significantly degrade
the accuracy of the NFDTD or GY algorithms.

Finally, it is realized that if the projection operators can be
posed as symmetric positive definite matrices, then the explicit
scheme can be rendered stable within the time-stability limit.

IV. SYMMETRIC PROJECTIONOPERATORS

A. The NFDTD Algorithm

The NFDTD algorithm, as proposed by Leeet al. [3], is for-
mulated through a discretization of Maxwell’s curl equations in
local curvilinear coordinates on an irregular structured dual grid.
The curvilinear coordinates are chosen locally to each face of a
primary or secondary grid cell. The flux normal to each cell face
(or the contravariant field) is then calculated from the net circu-
lation of the dual covariant field about the edges bounding the
face using Ampere’s or Faraday’s laws. Once the normal fluxes
are known, they must be projected onto the dual edge passing
through the face in order to perform the update of the dual flux
vector. The contravariant field vectors are then projected onto
the covariant field vectors. The contravariant-to-covariant field

projection is performed with the use of the metric tensor that is
computed from the local curvilinear coordinates. Specifically

(23)

where are the contravariant fields normal to the local grid
faces, is the covariant field passing through theth face, and

(24)

where and are the unitary vectors defined for theth and
th coordinate axes.
To perform the projection as specified by (23) and (24), the

fields weighted by the off-diagonal elements of the metric tensor
are not uniquely known since only one flux vector is associated
with each cell face. Subsequently, an averaging scheme is used
to perform the update. Leeet al. [3] originally suggested using
a simple linear average. Thus, the projection ontowould be
expressed as

(25)

where the are the discrete coordinates of the edge. It is
noted that the entries of (25) would contribute to one row of
in (2).

The local metric tensorassumesa locally curvilinear coordi-
nate system based on local cell face information. However, if the
grid is irregular, then the off-diagonal terms of the metric tensor
are not consistent between adjacent faces. This arises because
the normal vectors of the adjacent faces may not all be colinear
with the contravariant vector for that face. This results in asym-
metry in and .

An alternative projection scheme was recently introduced by
Roden [6]. This projection method will be referred to as the

method. To this end, the assumption is made that the pri-
mary and dual grids arelocally regular. Under this assumption,
the dual and primary grids arelocally equivalent. Subsequently,
the projections for the primary and secondary grids may be de-
fined independently. This leads to a simple unambiguous defi-
nition of the metric tensor.

The covariant field components for the primary grid are com-
puted by projecting each field component individually. These
projections are accomplished entirely from primary grid edge
vectors. Likewise, the covariant fields for the secondary grid are
computed using only secondary grid edge vectors. Using this
technique, the projection operation in (23) is compactly stated
as

(26)

where
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and the index scans through the eight adjacent faces with con-
travariant flux’s and is the contravariant vector of theth
face. It is noted that the geometric averaging of the permittivity
is also included as specified in (30). For example, the projection
of the electric field onto the primary grid edge is

(27)

Each of the other projections are computed in this same straight-
forward manner. It is noted that the computational burden of this
method is somewhat higher than the original formulation of Lee
[3] since is unique for each of the nine field components
which appear on the right-hand side of (27) and individual mul-
tiplications are required.

B. DSI/GY Algorithms

Similar to the NFDTD algorithm, DSI/GY algorithms are
based on dual staggered grids. The principal difference is that
DSI/GY algorithms are generalized to unstructured grids. To
this end, the discrete electric and magnetic field intensity vec-
tors are assumed to be parallel to each grid edge and constant
along the length of the edge. A normal flux density vector is
associated with each grid face. Again, Ampere’s and Faraday’s
laws expressed in their integral form are enforced about each
grid face. Approximating the time derivative of the flux results
in an explicit update expression. Similar to the NFDTD algo-
rithm, the normal flux vector must be projected onto the dual
edge passing through its face. Due to the unstructured nature of
the grid, this is done using a local field interpolation [4], [5], [9].

The face, which is uniquely shared by two cells unless it is
on a Dirichlet or Neumann boundary, is assumed to be bound
by edges that connect vertices. The th vertex

of the th face is shared by three faces of theth cell (
or ). Assume Faraday’s law has been used to update the discrete
normal magnetic flux densities. Then, the magnetic flux density
associated with theth vertex and theth cell can be computed
by solving the 3 3 system of equations

(28)

where and are unit vectors normal to each of the
adjacent primary cell faces. Since the right-hand sides are all
known after enforcing Faraday’s law local to each face, (28) is
used to solve for the three orthogonal components of. Sub-
sequently, this is performed for each of the vertices of the face

and for each cell ( ) shared by the face.
Then, is projected onto the dual edge with unit vector
along its length through a dot product, i.e., . The magnetic
flux density vector over the face is then expressed by the inter-
polation of the local field values as

(29)

where are weighting factors to be determined. This equa-
tion then contributes to one row of .

Employing some simple algebra, it can be shown from (28)
that

(30)

This allows for a simple computation of the projection coeffi-
cients as well as further insight into the asymmetry of the pro-
jection scheme. Specifically, it is observed that the first term
contributes to a diagonal entry of and the second two terms
contribute to off diagonal entries. Next, presuppose that one was
projecting onto the edge passing through the face with
normal . When interpolating using (28) and (29), the same
corner would be involved in the interpolation. Following (30),
the off-diagonal term contributing to updating due to
the flux is

(31)

This is the reciprocal term of the second term on the right-hand
side of (30). As expected, the two terms share the same denom-
inator, which is the volume of the parallel piped bound by the
three unit normal vectors. The numerators are the triple scalar
products of the edge vector with the two adjacent normal vec-
tors. An interesting observation is that

(32)

where are vectors parallel to the edges of the primary grid. If
the mesh was truly reciprocal, then the primary and secondary
grids would share the same curvilinear coordinates (i.e.,

). This would lead to a symmetric system. However, for an
unstructured and irregular grid, this will only be true for special
discretizations.

The question is how can one then enforce symmetry in the
projections without sacrificing accuracy. An effective means
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that has been used is to average the off-diagonal terms of
and . Or assuming

(33)

To investigate the mathematical significance of this averaging
scheme, it is seen that the second term in (30) will be modified
as

(34)

The third term in (30) is modified in a similar manner. In
essence, this averages the projections between the two dual
coordinate systems. If the grid is regular yet nonorthogonal, the
averaged formulation reduces back to the original algorithm in
(30) since .

Finally, the weights in (29) need be addressed. In the
original formulation, Madsen proposed to use the triple scalar
product , where the are the
normal area vectors (i.e., and is the primary cell
face area) [4]. The are identical for the corner shared by
the two projections. However, the sum of the weights will not
be the same for an irregular grid leading to asymmetry. Through
experimentation, it has been found that choosing is a
sufficient and accurate weighting for prism elements.

The projection matrix can be made symmetric in an iden-
tical fashion based on the secondary cell.

The proposed symmetric projection schemes have been
found to work very well with unstructured quadrilateral prism
elements. This is verified in Section V. However, the proposed
symmetric projection operators are not accurate when using
more generalized elements such as tetrahedron. The problem is
that with tetrahedral meshes the dual-edge vectors can become
highly skewed relative to one another. Hence, averaging the
projections as proposed in (34) introduces significant error.
For such elements, a more appropriate scheme is yet to be
developed.

C. Discussion

It must be noted at this point that posing and as sym-
metric matrices isnotsufficient for stability. They must also be
positive definite. It is difficult to prove that the symmetric pro-
jection operators defined in (27) and in (33) and (34) are positive
definite for all meshes. In fact, they are not. However, through
extensive numerical experimentation using quadrilateral prism
elements and hexahedron, it has been found that the symmetric
forms proposed for and are positive definite for many
general meshes. When this appears to break down is when an in-
terior angle of a grid cell becomes very small (near 0) or highly
oblique (near 180), and can contain negative real eigen-
values. Reviewing the unitary basis introduced for the NFDTD
algorithm, it is seen that if an interior angle of a cell tends to 0
(or 180), the local coordinate system becomes singular since
the cell volume tends to zero as two of the curvilinear coordi-
nates nearly align. This is similar for the DSI/GY algorithm,
for which the triple scalar product in the denominator of (34)

Fig. 1. Cross section of the small hexahedral mesh (primary grid) used for the
eigenvalue analysis.

will tend to zero. Hence, this leads to ill-conditionedness in the
projection operators. In practice, it has been found through nu-
merical experimentation cells with an interior angle of a cell
face smaller than about 10or greater than about 170should
be avoided. Such thin elements are more easily avoidable when
discretizing with unstructured meshes as opposed to structured
meshing.

V. VALIDATION

In this section, the proposed techniques are validated through
numerical examples. All of the problems employ quadrilateral
prism elements for both the DSI/GY and the simulations. These
elements are orthogonal in the vertical direction and irregular
quadrilaterals in the horizontal plane that are either unstructured
(DSI/GY) or structured (NFDTD). Initially, a simple problem is
presented for which an eigenvalue analysis of the explicit oper-
ators is performed. Then some deterministic solutions are pre-
sented to illustrate stability and accuracy of the methods.

A. Eigenvalue Analysis

To demonstrate the affect of the eigenspectrum on stability,
an eigenvalue analysis of a simple problem is presented. To this
end, an irregular and unstructured grid was generated to model a
homogeneous cavity. A cross section of the grid is illustrated in
Fig. 1. Only TM modes are excited by a vertical electric current
source. Thus, it is sufficient to simulate the transverse magnetic
fields and the vertical electric field. This was done to reduce the
order of , which will undergo a full eigenvalue analysis. The
matrices and were constructed using the DSI/GY algo-
rithm. was constructed using (29) and (30), leading to an
asymmetric sparse matrix. The projection matrix was also
constructed in a symmetric manner as outlined in (33) and (34).
This symmetric matrix is referred to as . Note that for this ex-
ample is an identity matrix since the TE fields were assumed
to be zero.

The matrices and were ex-
plicitly constructed and the eigenvalues were computed using
a numerical eigenvalue routine. The set of eigenvalues for
contained three complex conjugate pairs. This implies that this
system is unstable. The eigenvalues of were all real and .

The matrix was constructed using and was con-
structed using . For both cases, was assumed,
where is defined in (18). A plot of the eigenvalues ofand

in the right half of the complex plane is illustrated in Fig. 2.
As a consequence of the properties of, six conjugate pairs
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Fig. 2. Eigenvalues ofG andG plotted in the complex plane.

of eigenvalues of are off the unit circle. These eigenvalues
are listed in Table I. Three of the pairs lie inside of the unit
circle and three pairs lieoutsidethe unit circle. Because these
eigenvalues lie outside of the unit circle this system will ulti-
mately be unstable. In fact, for this small example, the nonsym-
metric case goes unstable after about 8000 time steps. As de-
scribed in the Appendix, the instability occurred as a high-fre-
quency oscillation, which grew exponentially in the late time.
On the other hand, was stable for over 250 000 time steps
and showed no signs of impending instability. It is noted for the
nonsymmetric case, that even as the time step was made smaller
and smaller these spurious eigenvalues drifted closer to the unit
circle but always remained outside of the unit circle. Conductive
loss was also added into the domain. Even as the conductivity
was dramatically increased, the nonsymmetric case had eigen-
values outside of the unit circle and was unstable in the late time.

B. Cavity Resonance Problem

A second example is now presented to study the accuracy of
the symmetric projection operators. To this end, a benchmark
test case of a circular dielectric ring in a rectangular PEC
cavity is studied [12]. The geometry is provided in Fig. 3. Both
unstructured and structured grids composed of quadrilateral
prisms were generated to analyze this problem using the
DSI/GY and NFDTD algorithms, respectively. A two-dimen-
sional cross section of these grids are illustrated in Fig. 4.

The fields in the resonant cavity were simulated using the
original NFDTD algorithm and presented in Section IV
as well as the original DSI/GY algorithm and the symmetric
projection algorithm presented in Section IV. The fields in the
cavity were driven by injecting a vertically oriented current den-
sity placed at a nonsymmetric point described by

(35)

TABLE I
EIGEVALUE PAIRS OFF THE UNIT CIRCLE OFG

Fig. 3. Dielectric ring in a rectangular PEC cavity (a = 324 mm, b = 121

mm,c = 43mm. The ring is centered atw = 207:25mm,w = 116:75mm,
b=2 along they-direction and rests on the ground plane. The ring has a height
of h = 39 mm, inner radiusr = 16:65 mm, and outer radius (r = 26:75
mm.)

where ns and . The vertical field was
probed in the cavity and the time simulation was performed for
25 000 time steps with ps. The vertical field was
Fourier transformed using an FFT and the resonant frequencies
were extracted. Table II presents the resonant frequencies for
the first four modes as calculated using the symmetric DSI/GY
and NFDTD methods and the measured dominant mode [12].
These results are also compared to those obtained using an im-
plicit FETD method [13] and the nonsymmetric algorithms. The
resonant frequencies compare to within 0.1%. It is noted that
for this case, the nonsymmetric DSI/GY method ran for 30 000
time steps before going unstable. The symmetric DSI/GY and
NFDTD methods ran for 250 000 time steps and still showed no
signs of instability.

The dielectric ring in cavity problem was repeated when the
dielectric relative permittivity was increased to 9.8. For this
case, the grid density in and near the ring was roughly doubled
to properly resolve the fields. The calculated resonant frequen-
cies are presented in Table III. Again, the symmetric DSI/GY
simulation was stable for over 250 000 time steps. Interestingly,
the symmetric NFDTD simulation did eventually go unstable in
the very late time for this geometry. Observing Fig. 4(a), at each
of the four corners of near the outer boundary of the dielectric
ring, a cell is observed with a highly obtuse interior angle. For
the refined mesh used in this case, this interior angle became
more obtuse leading to an ill-conditioned matrix as discussed in
the previous section. This is a penalty of structured gridding.

C. Patch Antenna

Finally, the microstrip-coupled circular patch antenna il-
lustrated in Fig. 5 was modeled using the DSI/GY algorithm.



GEDNEY AND RODEN: NUMERICAL STABILITY OF NONORTHOGONAL FDTD METHODS 237

(a)

(b)

Fig. 4. Cross section of the mesh (primary grid) used to model the fields within the cavity. (a) Structured mesh. (b) Unstructured mesh.

TABLE II
RESONANT FREQUENCIES OF THEDIELECTRIC RING-LOADED CAVITY ,

� = 2.06

TABLE III
RESONANTFREQUENCIES OF THEDIELECTRIC RING-LOADED CAVITY , � = 9.8

The patch antenna was also simulated using Zeland Software’s
IE3D, a commercial method of moments code [14], for a
comparative solution. An unstructured mesh composed of
quadrilateral prism elements was generated for the patch
antenna that consisted of 159 600 hexahedron. The exterior
boundaries of the mesh were terminated using an anisotropic
perfectly matched layer (PML) [15] that was ten cells thick.
The PML regions on the side walls and corner regions were
composed of orthogonal cells. The top horizontal PML layer
was composed of a mesh that is orthogonal along the vertical
direction, but unstructured and nonorthogonal in the transverse
direction (the exception is the corner regions where the mesh

is orthogonal). Since the PML interface is planar, the interface
is perfectly matched.

The GY simulation was performed using both the nonsym-
metric formulation and the symmetric formulation outlined in
Section IV. Both simulations were run for 20 000 time steps
( ps). The nonsymmetric formulation remained
stable throughout the entire computation. However, ultimately
it would go unstable. The magnitude of as calculated using
the GY code, the symmetric GY method, and the method of
moment code (IE3D) is illustrated by the graph in Fig. 6. It is
observed that enforcing symmetry in the projections introduces
nearly negligible error to the computation. Both methods com-
pare well with the method of moments solution with the excep-
tion of a slight shift in the resonant frequency.

VI. SUMMARY

In this paper, an analysis of the stability of generalized
FDTD solutions has been presented. It was demonstrated that
it is not sufficient to only restrict the time step for generalized
grid FDTD schemes. Rather, numerical stability also requires
that be a positive definite matrix with real and distinct eigen-
values (where is defined in (14)). This was demonstrated
explicitly through a closed-form eigenvalue analysis.

For generalized grid schemes such as the NFDTD and
DSI/GY algorithms, it was demonstrated that if the projection
matrices are positive definite symmetric, then will be
positive definite. If the projection matrices are not positive
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(a)

(b)

Fig. 5. Microstrip coupled circular patch antenna. The microstrip is printed on
a 1.59-mm substrate (� = 2:62) over a ground plane and the patch antenna is
printed above a 1.59-mm superstrate (� = 2:62). (a) Top view. (b) End view.

Fig. 6. Comparison of the reflection loss of the microstrip coupled circular
patch antenna computed using the method of moments (MoM), the GY
algorithm, and the symmetric GY algorithm.

definite symmetric the system is not numerically stable and
will suffer from instabilities occurring in the late time and
would be characterized by a high-frequency oscillation and an
exponential growth in amplitude.

A scheme was introduced to construct symmetric projection
matrices for the NFDTD and DSI/GY algorithms. While sym-
metry is not sufficient for stability, it was found that for quadri-
lateral prism elements, this scheme can result in positive definite
symmetric projection matrices. However, it was found that if the
mesh contains highly elongated or very narrow cells with inte-
rior angles breaching 0or 180 the projection matrices will lose
their positive definite properties. In general, automatic mesh
generation schemes based on unstructured meshing will avoid

such cells. However, for complex geometries, structured meshes
upon which the NFDTD scheme is based may often contain
such elements. For this reason, the DSI/GY algorithms tend to
be more robust.

Through numerical validation, it was shown that the sym-
metric schemes provide stable and accurate results for quadri-
lateral prism elements. Unfortunately, these schemes are not ap-
plicable to meshes composed of general 3-D tetrahedral meshes
for which alternate methods of imposing the projection opera-
tors are still under investigation.

The generalized FDTD equations presented by (1) and (2)
are quite general and the eigenvalue analysis presented can be
applied to the stability analysis of other FDTD-based schemes.

APPENDIX

Further insight into the characteristics of late-time instabil-
ities can be gained by analyzing the properties of the space-
eigenvalue problem. Assume that a volume discretization is de-
fined over a volume bound by a surface . Then (1) and (2)
are expressed in discrete space and continuous time as

(A.1)

(A.2)

where and are discrete in space and continuous in time
and the coefficients of the matrices arising from the spatial dis-
cretization over are assumed to be constant in time. Then,
differentiating (A.1) with respect with time and substituting in
(A.2) leads to

(A.3)

Define the initial conditions

(A.4)

Also, for simplicity, a Dirichlet boundary condition is defined
on , i.e., . Based on these initial
conditions and boundary conditions, (A.3) is solved. Again, it
is assumed that is diagonalizable as in (14), whereis the
matrix containing the complete set of eigenvectors of. Then

can be described as a linear combination of the eigenvectors
as

(A.5)

where is the th eigenvector and is a time-dependent
coefficient. Substituting (A.5) and (A.3) and then performing a
similarity transform based on leads to

(A.6)
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This has the general solution

(A.7)
where and are discrete coefficient vectors based on the
initial conditions in (A.4).

The system of ordinary differential equations will thus be well
posed or stable if the are real and . Obviously, if the

are , this will lead to an unbounded growth of the so-
lution. Furthermore, if a is complex, an unbounded growth
with time would result. Specifically, assume a conjugate pair for

. Then, expanding the trigonometric functions
using Euler’s law will lead to exponential terms of the form

(A.8)

Typically, the imaginary part of is quite small, leading to a
very small . Subsequently, an instability will occur in the late
time and will be dominated by the largest value of. Hence, the
instability is characterized by a very high-frequency oscillation
in the fields that ultimately grows in magnitude exponentially in
the late time.

Finally, from this analysis, it is seen that if does not have
distinct (or simple) eigenvalues, a term with linear time depen-
dence needs to be included in (A.7) (note that eigenvalues of
zero are considered to be simple eigenvalues). This, of course,
can lead to unbounded solutions.
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