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Numerical Stability of NonorthogonalFDTD Methods

Stephen D. Gedneyenior Member, IEEEBNd J. Alan RoderViember, IEEE

Abstract—In this paper, a sufficient test for the numerical these methods can lead to formulations that are unstable in the
stability of generalized grid finite-difference time-domain (FDTD) |ate time independenbf the time step. Alternative methods
schemes is presented. It is shown that the projection operators of |)55ad on the NEDTD and the DSI/GY algorithms are proposed
such schemes must be symmetric positive definite. Without this h d stable wh lovi drilateral ori
property, such schemes can exhibit late-time instabilities. The thatare aC(_:urate and stable when employing qua r aerg prlsm
origin and the characteristics of these late-time instabilities are €lements (i.e., elements that are orthogonal in the vertical di-

also uncovered. Based on this study, nonorthogonal grid FDTD rection and irregular quadrilaterals in the horizontal direction).
schemes (NFDTD) and the generalized Yee (GY) methods are
proposed that are numerically stable in the late time for quadri- Il. GENERAL FORMULATION
lateral prism elements, allowing these methods to be extended )

to problems requiring very long-time simulations. The study of ~ The FDTD methods described herein assume a dual-stag-
”“ml.e”cal Stab'“tyl that is ?resemeﬁ, is very general and can l!o‘? gered grid with an edge-based discretization of Maxwell’'s equa-
S&Q[Z%rﬁ?amoiﬁgﬁgghs of Maxwell's equations based on explicit tions. Specifical_ly, the e_Iectric field intensit_y i; prqjecteq or_1to
the edges of @rimary grid and the magnetic field intensity is
projected onto the edges of tkecondarygrid. Implementing
Maxwell’s curl equations in their integral form, the flux den-
|. INTRODUCTION sities normal to the primary and secondary grid faces are nat-
HE finite-diff . q in (FDTD hod h urally updated given the circulation of the dual field about the
T b mr:Fer'ﬂ' erence ?nl]?- orr?am (I ; )fmetl Oh a§?ces. Before performing the field update, the normal flux den-
een highly successiut for the analysis of a plet ora gtyvectormust be projected onto the dual edge passing through
e_:le_ctr(_)magnetm Interaction problems [1].' Yet one _prmmp%e face. This is accomplished in the NFDTD algorithm [3] via
limitation of the classical FDTD mefchod Is the restriction %he local Jacobian tensor and local interpolation and a local in-
orthogonal grids. A number of techniques have been proposgfl,|.tion scheme in the DSI and GY methods [5], [8]. The de-
to develop FDTD methods based on conformal meSh”fgiIs of these algorithms are not repeated here. Rather, the reader

such as the contour path FDTD (CPFDTD) method [.2]’ “\E referred to the original articles as well as [9] for a detailed
nonorthogonal FDTD (NFDTD) method [3], and the d'scre:?ummary of the algorithms

integral equation (DSI) [4] and gener_alized .Yee (GY) methods Both the NFDTD and the DSI/GY methods result in explicit
[5]. The advantage of these techniques is that through %ﬁdate schemes that can be expressed in general form as a cou-

Index Terms—~DTD methods, numerical stability.

introduction of more generalized discretizations, error dug. et of first-order difference equations
to boundary discretization can be alleviated. Unfortunately,
these and similar methods can sometimes suffer from late-time b =b""1 — AtC.D. Agd? /D (1)
instabilities [6]. n+(1/2) _ m—(1/2) 7

It was demonstrated by Craddoekal. that the source of in- d = + AtCLAD )
stability of the CPFDTD method was due to the nonreciproc@hered andb are vectors of the discrete vector flux densities, the
nature of the original algorithm [7]. By analyzing the FDTDsuperscripts refer to discrete tim@, andC), represent the dis-
method as a passive circuit, an alternative stable and accuggt&e contour integrals of the electric and magnetic fields about
solution was proposed. Such an extension is not directly apgdiimary and secondary cell faces, respectfuily,is a diagonal
cable to the NFDTD, DSI, and GY methods because of the comatrix with entries representing the inverse of the relative per-
plexity of the projection operations required to project the fieldsittivity, and A, and A4 are the projection matrices. Note that
normal to the grid faces onto the dual edges passing through §esimplicity the domain is assumed to be lossless and nonmag-

faces. netic. However, the following analyses are not limited by these
In this paper, it is demonstrated that the source of Iate-tirgﬁnp"ﬁcations_

instabilities in the NFDTD and DSI/GY methods is due to the
basic definitions for the projection operators. Consequently, . STABILITY ANALYSIS

The coupled difference equations in (1) and (2) are explicit
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(1) and (2) are reposed as a first-order difference equation wherel,,, are the eigenvalues @f/. This leads to the relation-

ship
w" = Guw" ! 4)
_A#2 2 2 2
where u:ﬁi\/<At A"’) —2<At A"’). (16)
2 2 2
G I —AtC, D Ay )
T lAtCLA, T — APCLAC. DA | Finally, from (16), the eigenvalues f6f are determined as
Let w° be the initial condition or the input into the system. A2\ AL 2 A2
Then, from (4) Ag=1- ™4 < 2"’) —2< 2"’). (17)
w" = G w’ (6)

Earlier, it was stated that a necessary condition for (7) is for

whereG” represent€s raised to thexth power. To ensure sta- [A¢| < 1 and that the\ are distinct. Observing (17), this will
bility for a passive linear systefiim,, .. [|w”|| < [|w°|| must P€ trueif:
be satisfied. This is true if there exists a constEnsuch that 1) A, are positive real and distinct;

2) (AA,/2) < 2.

IG™l: <K(T) 0<At <7, 0<nAt<T (7) The second requirement leads to a restriction on the time step.
for all positive values of, where the subscript 2 refers to thefgr?giltfilgﬁlg)’ the time step is bound by where from (7) and
2-norm, 7 is a constant that is dependent on the spatial dis-
cretization and later defined in (18), afidis the duration. A 2 2
necessary condition for (7) to be satisfied is that the eigenvalues T= sup(v/Am) - sup( \/m) )
of G must satisfyj\¢| < 1 andG must have a complete set of
distinct eigenvalues and eigenvectors (i2is diagonalizable) A similar bound was derived in [10]. (Note that the square root

(18)

[11]. was neglected in [10].)
The eigenspectrum off is explored from the eigenvalue Itis observed thatif\t < +andA,, is positive real, then the
equation term within the radical in (17) will be negative. Thus, (17) can
be rewritten as
Gw = Agw. (8)
. o _ _ AN, . A2, A2\
Subtracting the identity matrix from both sides of (8) leadsto Ag = <1 — T) i]\/z < 5 ) — < 5 ) .
(G—Dw=(\g —1Dw— Guw = pw 9) (19)
whereAg = 1 + p. This is written more explicitly as It is seen immediately thab| = 1 for all A, that are real and
> 0. Interestingly, this is expected since without dissipation, the
0 —AtCDeAq } [wl} —_ [wl} . (10) total energy in the system is unchanged with time.
AtCLA,  —APCLACeDeAg | | wa w2 A complex ), will lead to an eigenpair o\ with one of
The first row of (10) is multiplied byAtC;, A;, leading to the eigenvalues lying outside of the unit circle independent of

At (including At < 7). Subsequently, the system will be un-
— AP0, A CL D, Agws = AC), Aywy. (11) conditionally unstable for al\t. This instability will typically
occur in late time and is characterized by a high-frequency os-
Then, substituting (11) for the first term from the second row @fillation with exponential growth. This is discussed further in
(10), leads to the Appendix. It can further be shown that adding loss into the
medium is not sufficient to push the eigenvalue into the unit
circle. At best, it will push it closer to the unit circle, delaying
the corruption of data into later time.
Based on this analysis, it is thus finally concluded that (1)
M = C,A,C.D Ay (13) and (2) will be stable iff 1)/ is a positive definite matrix with
distinct real eigenvalues and B) < At < 7, wherer is
which represents the discrete curl—curl operation. At this pointefined by (18).
it is assumed thad/ is diagonalizable. Then, introducing,
the matrix of eigenvectors a¥/ and D,, the diagonal matrix A. Discussion

containing the eigenvalues 61, M is diagonalized as For the classical FDTD scheme the Courant limit alone is a
_ fficient condition for stability. This is strictly becaugé —
P~IMP = Dj,. 14) Sumicient con " ;
A (14) C,C. is positive definite. However, for general grid schemes
Diagonalizing (12) leads to a quadratic characteristic equatici/ch as the NFDTD and DSI/GY methods, the time stability
limit is a necessary but not sufficient conditiaW. must also be
12+ pAP N, + AN, =0 (15) positive definite.

(u* + pAEPM + A2 M)ws =0 (12)

where
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As originally posed, the NFDTD and DSI/GY methods dgrojection is performed with the use of the metric tensor that is
not result in a positive definitd/ for general meshing. This is computed from the local curvilinear coordinates. Specifically
because the projection matricds and A, are nonsymmetric. 5
Thus, these methods suffer from late-time instability. The ques- D — Z i D 23)
tion that remains is what are the necessary conditiond f@and ¢ — J
A, to produce a stable scheme? =

It is first noted that even for nonorthogonal grids, the produethere D’ are the contravariant fields normal to the local grid
of the circulation matrice€’;, C, is positive definite. It can also faces,D; is the covariant field passing through thk face, and
be shown that ifi; and 4, are positive definite symmetric, then L.

C, A, C. Ag will be positive definite. Unfortunately, i, is in- gi,j = A A (24)

homogeneous, theWd = C}, A, C. D. A, may no longer be pos-
itive definite sinceD. A, will be nonsymmetric. An effective
way to force symmetry in the projection operator is to appro

Whereffi andﬁj are the unitary vectors defined for tita and
X47'_th coordinate axes.
To perform the projection as specified by (23) and (24), the

mate (1) as fields weighted by the off-diagonal elements of the metric tensor
pro— pr—l AtceDel/QAdDel/an—(l/Q). (20) &€ not uniquely known since only one flux ve_ctor is assoc_:iated
with each cell face. Subsequently, an averaging scheme is used
Then M is rewritten as to perform the update. Lest al. [3] originally suggested using
a simple linear average. Thus, the projection afitovould be
M = C, AyC. D2 A4DY2, (21) expressed as
n+(1/2 n+(1/2 n+(1/2
If Ay is symmetric positive definite, thel’? A, D2 will also Dl'l‘i(k/ ) = 911D1|i,;(k/ = %Lgl2(D2|i,—;,(k/ )

be symmetric positive definite. Subsequenfiy, will be posi- + D2|?:1(lj/i? + D2|?J;(_1f2,3 + D2|?:1(1j/f)1 )

tive definite for inhomogeneous medium. nH(1/2 n(1/2 nH(1/2
It must be realized that this is an approximation. The projec- T igl3(D3|i,j,(k/ '+ D3|i+1(, J/k) + D3|z‘,j,(k/—1)
tion operatiore = DY/? A4, D% d maps the normal flux density + D3|?:1(71]<i?_1) (25)
to the field intensity projected on the edge passing through the ) ) )
face. Examining théth entry of the vector where the(é, 7, k) are the discrete coordinates of the edge. It is
noted that the entries of (25) would contribute to one rovdpf
d & d: in (2).
e = ad;”-e_ + Z ad; ; - 16 (22) The local metric tensassumes locally curvilinear coordi-
=1 VAR nate system based on local cell face information. However, if the

) i i ) ] grid is irregular, then the off-diagonal terms of the metric tensor
whereay, , is t_he entry of matrixA, m_theﬁh row andj t_h are not consistent between adjacent faces. This arises because
column. The diagonal term of the projection operation is Uze normal vectors of the adjacent faces may not all be colinear
changed. Whereas the off-diagonal terms are normalized by\g#, the contravariant vector for that face. This results in asym-
effective permittivity expressed as the geometric mean of t try in Az and 4.

permittivities of the two adjacent edges. It is demonstrated in pp, 5jernative projection scheme was recently introduced by
Section V that this approximation does n(_)tS|gn|f|cantIy degrag®,gen [6]. This projection method will be referred to as the
the accuracy of the NFDTD or GY algorithms. G=Y™ method. To this end, the assumption is made that the pri-
Finally, it is realized that if the projection operators can bg s and dual grids arecally regular. Under this assumption,
posed as symmetric positive defln!te_matr|c¢s, then Fhe gxph%e dual and primary grids atecally equivalent. Subsequently,
scheme can be rendered stable within the time-stability I'm't'the projections for the primary and secondary grids may be de-
fined independentlyThis leads to a simple unambiguous defi-
IV. SYMMETRIC PROJECTIONOPERATORS nition of the metric tensoy.
A. The NFDTD Algorithm The covariant field components for the primary grid are com-
. . _ puted by projecting each field component individually. These
mulated through adiscretvaton of Masswells ol quations {fe1EC0S are accomplished eniely from prmary grid edge
nroug . ) g .\c/jectors. Likewise, the covariant fields for the secondary grid are
local curvilinear coordinates on anirregular structured dualg”cf()mputed using only secondary grid edge vectors. Using this
Tr_\e curvilinear coordlne_ltes are chosen locally to each face Ote%hnique, the projection operation in (23) is compactly stated
primary or secondary grid cell. The flux normal to each cell face
(or the contravariant field) is then calculated from the net circu-

lation of the dual covariant field about the edges bounding the Di 5. DP
face using Ampere’s or Faraday’s laws. Once the normal fluxes Ei = Gii + Z gi?p\/? (26)
o e Ery

are known, they must be projected onto the dual edge passing
through the face in order to perform the update of the dual flyhere
vector. The contravariant field vectors are then projected onto

the covariant field vectors. The contravariant-to-covariant field Gip = iA} . A},
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and the index scans through the eight adjacent faces with comheren;, ;, and#ny ;, are unit vectors normal to each of the
travariant flux'sD? andffp is the contravariant vector of tgh  adjacent primary cell faces. Since the right-hand sides are all
face. It is noted that the geometric averaging of the permittiviknown after enforcing Faraday’s law local to each face, (28) is
is also included as specified in (30). For example, the projectiased to solve for the three orthogonal componenékgf. Sub-

of the electric field onto the primary grid edgg is sequently, this is performed for each of the vertices of the face
1 (k = 1, N.;) and for each celli(= 1,2) shared by the face.
E1|?7;(;1/2) = A1l jx - ALli sk D1|?J;(;1/2) Then, by, ; is projected onto the dual edge with unit vecégr
. 6”';%]% k along its length through a dot product, i.B.; §;. The magnetic
Arli gk Aali, i x D2tL/2) flux density vector over the face is then expressed by the inter-
+ 4, /e ' o e polation of the local field values as
T, 5,4 \/72\i,j,k
Aslivt, ik o Asli j—1, 2 e
4 Al D 4 2li i1,k 5 s
VT2l VT2l o Z |wk’l| ko1 8
- b — =L k=1 (29)
.D2|n+(1/2) n Aslig1, i1,k D2|n+(1/2) J 2 N,

G i1,k — it1,i—1,k
vV o2l -1k |wk,l|

Aal: Aalir =1 k=1
L Aslig D3 | 3li+1, ),k
m bk m wherewy, ; are weighting factors to be determined. This equa-
i » tion then contributes to one row ¢f;.
.D3|?-:—1(,1j/,2k) + Mpﬂﬁfi/j) Employing some simple algebra, it can be shown from (28)
\/ 67’3\7',3',1\»71 that
fri iok— N 5. - (he XA‘ N S - (N1 XA/.
+ MDﬂ?:l(}j/,i)—l ) (27) Bt = f] (7}k,11 7}k,12)B.ﬁj + ASJ E”k,lz ATLJ)
N - (R, 1, X e, 1,) - (k1 X A, 1,)
. . . . . =N § * 7/:L X 7/2L 9 =
Each of the other projections are computed in this same straight- “B-fg gy + 2 (A i) B -k 1,- (30)

forward manner. Itis noted that the computational burden of this g+ (T, 1 X k1)

method is somewhat higher than the original formulation of Leghis allows for a simple computation of the projection coeffi-
[3] sinceG,, , is unique for each of the nine field componentgients as well as further insight into the asymmetry of the pro-
which appear on the right-hand side of (27) and individual mylection scheme. Specifically, it is observed that the first term
tiplications are required. contributes to a diagonal entry df, and the second two terms
) contribute to off diagonal entries. Next, presuppose that one was

B. DSI/GY Algorithms projecting onto the edgé. ;, passing through the face with

Similar to the NFDTD algorithm, DSI/GY algorithms arenormali; ;, . When interpolating using (28) and (29), the same
based on dual staggered grids. The principal difference is ticarner would be involved in the interpolation. Following (30),
DSI/GY algorithms are generalized to unstructured grids. The off-diagonal term contributing to updati®~ Sk,1, due to
this end, the discrete electric and magnetic field intensity veihe flux 5 - fi; IS
tors are assumed to be parallel to each grid edge and constant . . .
along the length of the edge. A normal flux density vector is Skt - (k2 X ”k:lz)g iy (31)
associated with each grid face. Again, Ampere’s and Faraday’s g - (R, 1, X k1) ’
Iziry\ésfexpreAssed n thte_ " |rt1kt]egtral fczjrm_arte_ enf;):ﬁecil about elf‘mis is the reciprocal term of the second term on the right-hand
gnid face. Approximating the time derivative ot the TuX resultg;q . ¢ (30). As expected, the two terms share the same denom-

in an explicit update expression. Similar to the NFDTD algo- U .
rithm, the normal flux vector must be projected onto the dug ator, which is the volume of the parallel piped bound by the

edge passing through its face. Due to the unstructured nature F§§e unit normal vectors. The numerators are the triple scalar
the grid, this is done using a local field interpolation [4], [5], [9]p Gducts of the edge vector with the two adjacent normal vec-

The face, which is uniquely shared by two cells unless it }grs. An interesting observation is that

on a Dirichlet or Neumann boundary, is assumed to be bound (P 1y, X P 1,) = B3 (A ty X Ay) = Br gy
by N.; edges that conned¥. ; vertices. Thekth vertex(k = 1, ’ I(A ' ><7A2 ) ToamEe T (32)
N.;) of the jth face is shared by three faces of ttrecell ( = 1 T 2 e ) = Pl ks

or2). Assume Faraday’s law has been used to update the disc{gi@, e 7 are vectors parallel to the edges of the primary grid. If
normal magnetic flux densities. Then, the magnetic flux densiffe mesh was truly reciprocal, then the primary and secondary
associqted with th&th vertex and théf[h cell can be computed grids would share the same curvilinear coordinates fi,e=

by solving the 3x 3 system of equations %;). This would lead to a symmetric system. However, for an
unstructured and irregular grid, this will only be true for special
5 S discretizations.

By, 1,1, = B -1, The question is how can one then enforce symmetry in the
EM A1, = B Ak, (28) projections without sacrificing accuracy. An effective means

o]

By, iy =B -y

Ik
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that has been used is to average the off-diagonal term, of
andA,. Or assuming

7

Ay, ; = %(abi,j +abj,i)' (33)

To investigate the mathematical significance of this averagil
scheme, it is seen that the second term in (30) will be modifis

as h—d
1 < 55+ (n,1, X Aj) L kb (k1 X Pige, 1) I
2 \ 7y - (w1, X Ny 7y - (A, 1, X N,
J ( L 1’ 2) J ( o ’ 2) Fig. 1. Cross section of the small hexahedral mesh (primary grid) used for the

(§j 'ﬁk,ll + §k711 ]5}) (34) eigenvalue analysis.

1
2 Ay (A1, X A ty)

The third term in (30) is modified in a similar manner Ir]willtend to zero. Hence, this leads to ill-conditionedness in the

essence, this averages the projections between the two (R[g'ectlon operators. In practice, it has been found through nu-

coordinate systems. If the grid is regular yet nonorthogonal, tE?%encal experimentation cells with an interior angle of a cell

averaged formulation reduces back to the original algorithm ce smaller than at_)out 10r greater than abqut 17QhOU|d
(30) sincep; = 3. e avoided. Such thin elements are more easily avoidable when

Finally, the weightsy, ; in (29) need be addressed. In théiiscretizing with unstructured meshes as opposed to structured

original formulation, Madsen proposed to use the triple Scalg}eshmg.
productwy, ; = N; - (Ny1, x Ny 1,), where theN are the

normal area vectors (i.eN; = A;7; andA, is the primary cell

face area) [4]. Thev, ; are identical for the corner shared by In this section, the proposed techniques are validated through
the two projections. However, the sum of the weights will natumerical examples. All of the problems employ quadrilateral
be the same for an irregular grid leading to asymmetry. Throughism elements for both the DSI/GY and the simulations. These
experimentation, it has been found that choosing = 1isa elements are orthogonal in the vertical direction and irregular

V. VALIDATION

sufficient and accurate weighting for prism elements. guadrilaterals in the horizontal plane that are either unstructured
The projection matrixd,; can be made symmetric in an iden{DSI/GY) or structured (NFDTD). Initially, a simple problem is
tical fashion based on the secondary cell. presented for which an eigenvalue analysis of the explicit oper-

The proposed symmetric projection schemes have besors is performed. Then some deterministic solutions are pre-
found to work very well with unstructured quadrilateral prisnsented to illustrate stability and accuracy of the methods.
elements. This is verified in Section V. However, the proposed
symmetric projection operators are not accurate when usifig Eigenvalue Analysis

more generalized elements such as tetrahedron. The problem ifo demonstrate the affect of the eigenspectrum on stability,
that with tetrahedral meshes the dual-edge vectors can becfi@igenvalue analysis of a simple problem is presented. To this
highly skewed relative to one another. Hence, averaging tBfd, an irregular and unstructured grid was generated to model a
projections as proposed in (34) introduces significant errgfemogeneous cavity. A cross section of the grid is illustrated in
For such elements, a more appropriate scheme is yet tofg. 1. Only TM. modes are excited by a vertical electric current
developed. source. Thus, it is sufficient to simulate the transverse magnetic
fields and the vertical electric field. This was done to reduce the
order of G, which will undergo a full eigenvalue analysis. The

It must be noted at this point that posirlg and A; as sym- matricesC. andCj, were constructed using the DSI/GY algo-
metric matrices isot sufficient for stability. They must also berithm. A, was constructed using (29) and (30), leading to an
positive definite. It is difficult to prove that the symmetric pro-asymmetric sparse matrix. The projection matfix was also
jection operators defined in (27) and in (33) and (34) are positicenstructed in a symmetric manner as outlined in (33) and (34).
definite for all meshes. In fact, they are not. However, througrhis symmetric matrix is referred to & . Note that for this ex-
extensive numerical experimentation using quadrilateral prissmpleA, is an identity matrix since the TE fields were assumed
elements and hexahedron, it has been found that the symmetribe zero.
forms proposed ford, and A, are positive definite for many  The matricesM = CrA,C. andM?® = C,A;C. were ex-
general meshes. When this appears to break down is when amiieitly constructed and the eigenvalues were computed using
terior angle of a grid cell becomes very small (n€grd highly a numerical eigenvalue routine. The set of eigenvalues\for
oblique (near 180, A, and A, can contain negative real eigenontained three complex conjugate pairs. This implies that this
values. Reviewing the unitary basis introduced for the NFDTEystem is unstable. The eigenvaluedtfwere all real ang- 0.
algorithm, it is seen that if an interior angle of a cell tendsto O The matrixG was constructed using;, and G* was con-
(or 180), the local coordinate system becomes singular sinstucted usingd;. For both casesA¢ = 0.9r was assumed,
the cell volume tends to zero as two of the curvilinear coordivherer is defined in (18). A plot of the eigenvalues Gfand
nates nearly align. This is similar for the DSI/GY algorithm¢Z*® in the right half of the complex plane is illustrated in Fig. 2.
for which the triple scalar product in the denominator of (34As a consequence of the propertiesMdf six conjugate pairs

C. Discussion
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1 T 7T T TABLE |
® 5 EIGEVALUE PAIRS OFF THE UNIT CIRCLE OF ¢
: AG) [A4G)| ZMG)|
| 0.81936339+0.57362192 1.00019921 +34.995190
05k 0.81903702%50.57339344 0.99980096 +34.99519°
“1 0.8804681550.47307256 0.99951078 +28.2489880°
0.88133026+50.47353577 1.00049152 +28.2489880
0.8768807350.48211204 1.00067569 +28.802146°
> U.87569694550.48 136119 0.99932478 +28.802146°
E oL ° MO
g | X MG
g a
[ c
0.5
h ‘ /
) ) o __b__
I S NP R 74
b/2 4
0 0.5 1 /
Real /| ’

Fig. 2. Eigenvalues off andG*# plotted in the complex plane.

Fig. 3. Dielectric ring in a rectangular PEC cavity £ 324 mm,b = 121

o sigenvalues o ae of the unit ik, THese SgeMVaed . e i ity o a1 o 8
are listed in Table I. Three of the pairs lie inside of the unif . = 39 mm, inner radius, = 16.65 mm, and outer radius'{ = 26.75
circle and three pairs lieutsidethe unit circle. Because thesemm.)
eigenvalues lie outside of the unit circle this system will ulti-
mately be unstable. In fact, for this small example, the nonsymheret,, = 0.2122 ns andt, = 3t,,. The vertical field was
metric case goes unstable after about 8000 time steps. As gibed in the cavity and the time simulation was performed for
scribed in the Appendix, the instability occurred as a high-fr@5 000 time steps withi\t = 4.5 ps. The vertical field was
guency oscillation, which grew exponentially in the late time=ourier transformed using an FFT and the resonant frequencies
On the other hand7* was stable for over 250 000 time stepsvere extracted. Table Il presents the resonant frequencies for
and showed no signs of impending instability. It is noted for thiae first four modes as calculated using the symmetric DSI/GY
nonsymmetric case, that even as the time step was made smaltelr NFDTD methods and the measured dominant mode [12].
and smaller these spurious eigenvalues drifted closer to the Ftiese results are also compared to those obtained using an im-
circle but always remained outside of the unit circle. Conductiygicit FETD method [13] and the nonsymmetric algorithms. The
loss was also added into the domain. Even as the conductiviégonant frequencies compare to within 0.1%. It is noted that
was dramatically increased, the nonsymmetric case had eigkm-this case, the nonsymmetric DSI/GY method ran for 30 000
values outside of the unit circle and was unstable in the late timiene steps before going unstable. The symmetric DSI/GY and
NFDTD methods ran for 250 000 time steps and still showed no
B. Cavity Resonance Problem signs of instability.

A second example is now presented to study the accuracy the c.iielectri.c ring in f:qv?ty problc_am was repeated when the
the symmetric projection operators. To this end, a benchmgr'l?lecmc re'latlve permlttwny was |ncr.eased to 9.8. For this
test case of a circular dielectric ring in a rectangular PEESS the grid density in and near the ring was roughly doubled

cavity is studied [12]. The geometry is provided in Fig. 3. BotfP properly resolve t_he fields. The ca_\lculated resonant frequen-
unstructured and structured grids composed of quadrilate?éffS are presented in Table I1l. Again, Fhe symmetric DSI./GY
prisms were generated to analyze this problem using t |§nulat|on was stable for over 250 000 time steps. Interestingly,

DSI/GY and NFDTD algorithms, respectively. A two-dimenthe symmetric NFDTD simulation did eventually go unstable in

sional cross section of these grids are illustrated in Fig. 4. the very late time for this geometry. Observing Fig. 4(a), at each

The fields in the resonant cavity were simulated using tﬁg the foulrl f:orr;)ers of(gleqrhthehgurgler bgundgry Of, the d'TleCFt”C
original NFDTD algorithm and7°¥™ presented in Section [v 'NY: & CEll IS ObSEVe with a highly obtuse interior angle. For

s ol s th arinl DSUGY agorm an the symmewlE e T 1 e e e T 20t e
projection algorithm presented in Section IV. The fields in th e brevious sectior? This is a penalty of structured ariddin
cavity were driven by injecting a vertically oriented current derfn€ P ' P y 9 9.
sity placed at a nonsymmetric point described by C. Patch Antenna
Fi) — L2 —t0) _(—e)2 2y 35 Finally, the microstrip-coupled circular patch antenna il-
() =—2 ¢ b (35) |ustrated in Fig. 5 was modeled using the DSI/GY algorithm.

w
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Fig. 4. Cross section of the mesh (primary grid) used to model the fields within the cavity. (a) Structured mesh. (b) Unstructured mesh.

TABLE I is orthogonal). Since the PML interface is planar, the interface
RESONANT FREQUENCIES OF THEDIELECTRIC RING-LOADED CAVITY, is perfectly matched
€, =2.06 . - .
The GY simulation was performed using both the nonsym-
Mode T Meas. [I2] T WP-DSI G FETD metric formulation and the symmetric formulation outlined in
K0T T T.258GHz | 1.258GHz | 1258 GHz | 1259 GHz ; : : ;
T 2 50O TS0 G TS TTGHs Section IV. Both simulations were run for 20 0.00 time steps
k03 - T836GHz | 1.835GHz | 1.841 GHz (At = 0.725 ps). The nonsymmetric formulation remained
ko4 - ZIS¥GHz | 2161GHz | 2,175 GHz stable throughout the entire computation. However, ultimately
it would go unstable. The magnitude 8f; as calculated using
the GY code, the symmetric GY method, and the method of
TABLE II

RESONANT FREQUENCIES OF THEDIELECTRIC RING-LOADED CAVITY , €,. = 9.8

moment code (IE3D) is illustrated by the graph in Fig. 6. It is
observed that enforcing symmetry in the projections introduces

Mode | WP-DSI Gom FETD nearly negligible error to the computation. Both methods com-
k01 _10.9520 GHz | 0.9520 GHz | 0.9518 GHz pare well with the method of moments solution with the excep-
K07 TAI5GHz | 1415GHz | 1.420GHz . . i
K03 | T.608GHz | T612GHz | T615GHz tion of a slight shift in the resonant frequency.

k04 | 2024 GHz | 2026 GHz | 2.034GHz

] ) VI. SUMMARY
The patch antenna was also simulated using Zeland Software’s

IE3D, a commercial method of moments code [14], for a In this paper, an analysis of the stability of generalized
comparative solution. An unstructured mesh composed BPTD solutions has been presented. It was demonstrated that
guadrilateral prism elements was generated for the paitls not sufficient to only restrict the time step for generalized
antenna that consisted of 159600 hexahedron. The extedod FDTD schemes. Rather, numerical stability also requires
boundaries of the mesh were terminated using an anisotrofsiat} be a positive definite matrix with real and distinct eigen-
perfectly matched layer (PML) [15] that was ten cells thickvalues (wherel is defined in (14)). This was demonstrated
The PML regions on the side walls and corner regions weegplicitly through a closed-form eigenvalue analysis.
composed of orthogonal cells. The top horizontal PML layer For generalized grid schemes such as the NFDTD and
was composed of a mesh that is orthogonal along the verti€&®$l/GY algorithms, it was demonstrated that if the projection
direction, but unstructured and nonorthogonal in the transversatrices are positive definite symmetric, théd will be
direction (the exception is the corner regions where the megbsitive definite. If the projection matrices are not positive
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such cells. However, for complex geometries, structured meshes
upon which the NFDTD scheme is based may often contain

such elements. For this reason, the DSI/GY algorithms tend to
be more robust.

Through numerical validation, it was shown that the sym-
metric schemes provide stable and accurate results for quadri-
lateral prism elements. Unfortunately, these schemes are not ap-
plicable to meshes composed of general 3-D tetrahedral meshes
for which alternate methods of imposing the projection opera-
tors are still under investigation.

The generalized FDTD equations presented by (1) and (2)
are quite general and the eigenvalue analysis presented can be
applied to the stability analysis of other FDTD-based schemes.

i3

21 mm

r =34 mm
APPENDIX
Further insight into the characteristics of late-time instabil-
ities can be gained by analyzing the properties of the space-
(CY eigenvalue problem. Assume that a volume discretization is de-
fined over a volume? bound by a surfacd. Then (1) and (2)
! . 159 mm are expressed in discrete space and continuous time as
. g 159 mm
AT 9 - 5
—d =Cj, Apb (A1)
®) %t
Fig.5. Microstrip coupled circular patch antenna. The microstrip is printed on —b=—C.D,Aqd (A.2)
a 1.59-mm substrate ( = 2.62) over a ground plane and the patch antenna is ot

printed above a 1.59-mm superstrate £ 2.62). (a) Top view. (b) End view. N N ) ] ] o
whered and & are discrete in space and continuous in time

and the coefficients of the matrices arising from the spatial dis-
cretization over? are assumed to be constant in time. Then,
differentiating (A.1) with respect with time and substituting in
(A.2) leads to

oy ! 92 . . .
= ! el = ~CLAC.DeAgd = = Md. (A.3)
2 --a--MoM i ]
0 ey (Sym) ¢ ] Define the initial conditions
—a— GY (Non-Sym) t.; ] N
: ) ; {d(7,0) = f(7);7 € 2}
-15 PRI ETUNT T S R | R BRI a .
0 ! 2t GHz) 4 5 {a (1) = g(M; 7€t = 0} ) (A.4)

Fig. 6. Comparison of the reflection loss of the microstrip coupled circuldlso, for simplicity, a Dirichlet boundary condition is defined
patch antenna computed using the method of moments (MoM), the Gy A j.e., {J(F, t) = 0;#7 € A,t > 0}. Based on these initial
algorithm, and the symmetric GY algorithm. conditions and boundary conditions, (A.3) is solved. Again, it
is assumed that/ is diagonalizable as in (14), whereis the

definite symmetric the system is not numerically stable amdatrix containing the complete set of eigenvectordhfThen
will suffer from instabilities occurring in the late time andd can be described as a linear combination of the eigenvectors
would be characterized by a high-frequency oscillation and as
exponential growth in amplitude.

A scheme was introduced to construct symmetric projection J— _<(t)P(i) (A5)
matrices for the NFDTD and DSI/GY algorithms. While sym- -t '
metry is not sufficient for stability, it was found that for quadri- =t

lateral prism elements, this scheme can resultin positive definigiere (9 is theith eigenvector and;(¢) is a time-dependent

symmetric projection matrices. However, it was found that if thgyefficient. Substituting (A.5) and (A.3) and then performing a
mesh contains highly elongated or very narrow cells with intgjmijarity transform based off leads to

rior angles breaching’®r 180 the projection matrices will lose
their positive definite properties. In general, automatic mesh 92 _ _
generation schemes based on unstructured meshing will avoid g% = ~Amdi. (A.6)
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This has the general solution

d=

N
Z So. cos( )\mit)—i—%sm( Am,t) P
=1

my;

(A7)

(7]

(8]

where f,, andg,, are discrete coefficient vectors based on the [9]
initial conditions in (A.4).
The system of ordinary differential equations will thus be well

posed or stable if tha,, are real and,,, > 0. Obviously, if the

A are< 0, this will lead to an unbounded growth of the so-

lution. Furthermore, if &,,, is complex, an unbounded growth [11]
with time would result. Specifically, assume a conjugate pair for
w2eti¢, Then, expanding the trigonometric functions [

)\’nlg

using Euler’s law will lead to exponential terms of the form

(23]

Cj\/)‘_mit _ Cjwc cos(@/2)tFw, Sin(¢/2)t_ (A8)

[14]
Typically, the imaginary part of,,,, is quite small, leading to a  [15]

very small¢. Subsequently, an instability will occur in the late
time and will be dominated by the largest valuexpfHence, the
instability is characterized by a very high-frequency oscillation
in the fields that ultimately grows in magnitude exponentially in

the late time.

Finally, from this analysis, it is seen thati does not have
distinct (or simple) eigenvalues, a term with linear time depe
dence needs to be included in (A.7) (note that eigenvalues
zero are considered to be simple eigenvalues). This, of cou
can lead to unbounded solutions.
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