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Two-Step Inverse Scattering Method for
One-Dimensional Permittivity Profiles

Valeri A. Mikhnev and Pertti Vainikainen, Member, IEEE

Abstract—A numerical method to invert the dielectric permit-
tivity profile from the Riccati equation using the Newton–Kan-
torovich iterative scheme is described. Instead of handling the
equations in terms of usual geometrical depth, we determine
the profile as a function of the electromagnetic path length since
the convergence and the stability of the solution are found to
be significantly better in this case. The initial profile used as a
starting point for the inversion is obtained by another method
employing successive reconstruction of dielectric interfaces and
homogeneous layers in a step-like form. This method, though not
always accurate, is fast and well suited for the approximate re-
construction of the profile, thus creating ideal starting conditions
for the previous approach. As a result, the computation time is
considerably reduced without using anya priori information. The
approach is applicable to both continuous and discontinuous pro-
files of high contrast and exhibits a good stability of the solution
with respect to noisy input data. A lossy medium profile can also
be inverted provided the overall thickness of the inhomogeneous
slab and the background permittivity are known.

Index Terms—Inverse scattering, nonhomogeneous media.

I. INTRODUCTION

V ARIOUS methods have been used to reconstruct one-di-
mensional permittivity profiles from electromagnetic re-

flection coefficient data. The first-order Born and Rytov approx-
imations assuming that the medium acts as a small perturbation
on the incident wave [1]–[3], can be applied to accurate imaging
of the quasi-homogeneous objects and produce qualitative im-
ages in other cases. Nevertheless, the methods of this kind are
mostly used in practice because of their simplicity and stability.

A large number of investigations have been carried out using
the Gel’fand–Levitan–Marchenko theory [4]–[7]. Unfortu-
nately, this in principle exact approach is actually very difficult
to implement due to considerable mathematical complexity.
This leads sometimes to failures especially when faced with
the discontinuous profiles of high contrast [6]. A nonlinear
approximation of the Riccati equation allowing its solution in
closed form with subsequent inversion yields in some cases
very accurate reconstructions [8].

Iterative numerical methods based on the exact equations are
also widely used in microwave imaging [9]–[12]. They do not
principally have contrast limitations. Unfortunately, because of
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ill-posedness of the inverse problem, the convergence, and the
stability of solution essentially depend on the actual contrast
values, deteriorating for highly contrasted discontinuous pro-
files. To improve the reliability of the solution and the conver-
gence rate, as much as possible ofa priori knowledge of the
object under test should be included in the inversion procedure.
However, this is not always convenient in practice.

The purpose of this paper is to improve the convergence and
the stability of the iterative optimization scheme for compli-
cated highly contrasted dielectric profiles. Noa priori infor-
mation of the reconstructed profile is used in a lossless case,
whereas minimal additional information is needed when con-
ductive losses are taken into account. Besides, angular depen-
dency of the reflected signal is excluded from consideration.
Although multiangle measurements [9], [13], [14] yield addi-
tional input data allowing to get more reliable reconstruction
and to retrieve, e.g., material dispersion, their implementation
results in large and expensive antenna arrangements. Further-
more, the measurement routine becomes time consuming. This
is not always appropriate for many practical applications such
as ground penetrating radar, nondestructive testing in civil engi-
neering, etc. Consequently, the consideration is restricted here
to the case of normal incidence only.

The reconstruction of dielectric half-space is performed using
a new two-step approach. The Newton–Kantorovich iterative
method applied to the Riccati equation is used as the basic re-
construction algorithm. It is shown that a linear integral equa-
tion to obtain the next iterate to the profile is more accurate in
case if the derivation is accomplished in terms of electromag-
netic path length rather than in usual spatial coordinate. This
allows improving the convergence and the stability of the so-
lution. The initial profile needed for the iterative procedure is
obtained by another method employing discrete reconstruction.
At this step, the permittivities and the thicknesses of the layers
can be determined one after another by minimizing the max-
imum of the reflection coefficient in the frequency band of op-
eration. The method yields the exact reconstruction for simple
one- and two-layered profiles, if the reflection data are given
in a wide enough frequency band. Otherwise, the inversion is
approximate. Nevertheless, the difference between the recon-
structed profile and the exact one is quite small. Hence, good
starting conditions are created for the previous approach. Only
a few iterations are needed now to complete the reconstruction,
saving the computation time.

The numerical simulations demonstrate good accuracy, fast
convergence, and robustness of the algorithm for complicated
continuous and discontinuous profiles of high contrast. For a
lossy medium, simultaneous determination of the permittivity
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Fig. 1. Geometry of the problem.

and the conductivity profiles is possible, when the overall thick-
ness of the inhomogeneous slab and the background permittivity
are known.

II. I NVERSESCATTERING THEORY

A. Newton–Kantorovich Method

The geometry of the problem is shown in Fig. 1. Consider
the reflection of a normally incident time-harmonic electro-
magnetic wave from an inhomogeneous layered medium of
unknown complex permittivity ,
where is the free-space wavenumber, is the characteristic
impedance of free-space, and denote medium
permittivity and conductivity, respectively. The problem of
interest is to find the complex permittivity from knowledge
of the reflection coefficient given at a number of frequencies.
The complex reflection coefficient satisfies the Riccati
nonlinear differential equation [3]

(1)
which can be integrated from infinity to to yield the
observed reflection coefficient. Alternatively, starting from the
given reflection data at , integration of (1) from

to infinity with the boundary condition

(2)

must yield zero reflection coefficient at some large depth, where
the permittivity does not vary any more. The formula (2) de-
scribes transformation of the reflection coefficient at the pos-
sible discontinuity at , with =( )

being the Fresnel reflection coefficient at the inter-
face.

Introducing a new variable, electromagnetic path length
(more strictly, it coincides with the electromagnetic path length
in a lossless case)

(3)

(1) can be rewritten in the form

(4)

Since the solution to this nonlinear equation in closed form
with subsequent inversion is impossible, some optimiza-
tion technique is to be applied. In this work, an iterative
Newton–Kantorovich procedure [15] is used. According to
it, a forward problem is first solved for some initial profile

. The integration of (4) for this
profile with the boundary condition (2) yields the reflection
coefficient . It is, in general, nonzero at some depth,
which must be larger than the total electromagnetic path length
in the inhomogeneous part of half-space. To eliminate this dis-
crepancy, a small variation
is added to the initial profile function causing a corresponding
change of the reflection coefficient .

Substituting these variations into (4), we get the following
equation for

(5)

where higher order terms are neglected and the arguments of
functions are omitted. The solution to this linear differential
equation can be written in closed form, yielding for

(6)

where

(7)

is derived from (2), and

(8)

Integrating the last term in (6) by parts and using (2), we obtain
the following:

(9)
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Finally, employing the condition , the
desired integral equation to calculate the variation of the permit-
tivity and the conductivity profiles can be written in the form

(10)

Note that the term taking into account a possible existence of
the discontinuity at though present in (6) disappears in
the final equation (10).

The linear integral equation (10) is solved by a commonly
used technique, including expansion of the unknown and

by some basis functions (Fourier basis is used in this
work) and transformation of (10) into a matrix equation to find
the expansion coefficients

(11)

where is a column of the expansion coefficients andis a
column of reflection coefficients in the right-hand side of (10).
The least square solution to (11) with a standard Tikhonov reg-
ularization [15] is given by

(12)

where is a regularization parameter. Once and
are found, the next iterate to the profile is obtained as follows:

(13)

and the whole procedure is repeated until the convergence crite-
rion is satisfied. Then, a coordinate transformation (3) is applied
to obtain the final profile as a function of the physical distance.

The inversion is performed here in terms of the electromag-
netic path length rather than in the real spatial coordinate be-
cause of a better accuracy of the resultant equations. Indeed,
while taking variation of (4) to obtain (5), the second-order term

among others is neglected. This term is small
in case of low losses and vanishes totally for a lossless profile.
On the other hand, if the derivation is done in terms of a real dis-
tance, a much larger term , as seen from (1), is
to be neglected. A comparison of the reconstructions performed
using the described approach and its counterpart derived using
the spatial coordinate showed apparent advantage of the pre-
sented formulation with respect to the convergence and the sta-
bility of solution. Moreover, the effect of ill-posedness of the
problem is reduced so that the regularization term in (12) in
most cases can be omitted without a remarkable deterioration

of reconstruction. This is entirely impossible if the problem is
considered with the use of spatial coordinate.

The reconstruction depth can be chosen in principle arbi-
trarily. Naturally, it must exceed the electromagnetic path length
of the inhomogeneous slab to be reconstructed. Besides, the re-
construction depth must not be too large to avoid significant spa-
tial compressing of inhomogeneities resulting in loss of resolu-
tion.

Despite of the good convergence of the solution in the pro-
posed approach, quite a lot of computation time can be saved
by a careful selection of an initial guess used as a starting point
for the iterative technique. In this paper, the initial profile is ob-
tained using another approach based on a successive reconstruc-
tion of dielectric interfaces and homogeneous layers.

B. Discrete Reconstruction Method

The reflection of electromagnetic wave from an inhomoge-
neous half-space can be also treated using a concept employing

scattering matrices [16]. Accordingly, the medium in the
region is represented as a stack of homogeneous layers.
The scattering matrix of the stratified half-space is given by

(14)

where

(15)

is the matrix of interface between two adjacent layers numbered
and

(16)

is the matrix of homogeneous layer with the numberand

(17)

where
denote the permittivity of layer with the number;
denote the conductivity of layer with the number;
denote the thickness of layer with the number.

The medium in the region is assumed to be a free-space
with . The reflection coefficient is calculated from (14)
as

(18)

This formulation of the problem is entirely equivalent to that
described in preceding section, because any continuous profile
can be represented with the desired accuracy by a large enough
number of homogeneous layers.

The inversion principle valid for the lossless step-like pro-
files is based on the behavior of the maximum of modulus of
the reflection coefficient. In case the profile contains only one
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interface [i.e., only term is left in (14)], the modulus of the
reflection coefficient is and does not depend on frequency.
If another interface is added to the profile, the matrix (14) be-
comes and the maximum of modulus of the re-
flection coefficient can be easily derived from (14)–(18) as

(19)

the equality being reached when or when the second
interface is absent. For a three-step profile (i.e., the profile con-
taining two layers on substrate) the expression (19) can be ex-
tended to

(20)

and the equality is reached again if . In the general
case, an addition of one more step to the step-like profile results
in increasing the maximum of modulus of the reflection coeffi-
cient and the increase is the larger, the higher is the step. Hence,
the principle of reconstruction can be formulated by inverting
this statement: the parameters of the layers are to be chosen suc-
cessively so that to minimize the maximum of modulus of the
reflection coefficient for the remaining region in the frequency
band of operation. Starting from the matrix , we obtain from
(14), (15) the expression to find the permittivity

(21)

where is the reflection coefficient for the profile with the first
interface being excluded. At the next step, matricesand
are reconstructed simultaneously using the minimax criterion

(22)
where is the reflection coefficient for the profile without
the first layer and the second interface. This is an optimization
problem for two variables and . If the cost function (22) has
several minima, the one corresponding to the smallest thickness

is to be chosen. Consequently, the unknownand are
determined at the next step of reconstruction, etc. The procedure
is stopped when the reflection coefficient becomes zero at all
frequencies or when its maximum does not go down any more.

The method yields exact reconstruction for lossless layered
profiles, if the reflection data are given in a wide enough fre-
quency band. In other cases, the reconstruction is approximate
because the frequency of maximal reflection can be outside
the given frequency band. However, a discrepancy between
the given profile and the reconstructed one is usually small.
Besides, this approach is very fast. Though it requires a set
of optimization problems to be solved, the cost function (22)
is simple. Thus, the whole reconstruction is performed in a

Fig. 2. Profile reconstruction using the Newton–Kantorovich method.

time considerably shorter than needed for one iteration of the
Newton–Kantorovich method. Therefore, this approach if does
not cope with the reconstruction by itself, creates ideal starting
conditions for the previous method. Thus, the methods are
complementary and allow to save a lot of computation time
when used one after another.

III. N UMERICAL EXAMPLES

This section is devoted to some numerical results, obtained
by means of the described reconstruction algorithms. Only
highly contrasted profiles are considered. The reflection
coefficient data are simulated by numerical integration of
the Riccati equation (1) for a continuous profile and by the
matrix calculations using formulas (14)–(18) for discontinuous
profiles. All the synthetic data are calculated here for the
frequencies in the range of 0.5–15 GHz in steps of 0.5 GHz. As
usual in the frequency domain techniques, the signal bandwidth
determines the spatial resolution, whereas the largest possible
depth of reconstruction depends on the frequency step [17].
Therefore, necessary corrections can be done easily if needed.
The Newton–Kantorovich iterative reconstruction algorithm
is stopped when the mean value of the modulus of reflection
coefficient at the reconstruction depth over all frequencies is
less than 0.01.

Fig. 2 represents a two-layered lossless profile on a substrate.
The Newton–Kantorovich procedure converges to the final
reconstructed profile shown in Fig. 2 in five iterations when
started from a constant initial guess with . Another
choice of the constant initial guess results in the increase
of the required number of iterations. By using the discrete
reconstruction method, the profile is inverted exactly in a few
seconds of microcomputer time.

A more complicated highly contrasted four-layered profile on
a substrate is shown in Fig. 3. An approximate reconstruction is
obtained in this case by the discrete reconstruction method. Nev-
ertheless, all the four layers are reconstructed quite correctly.
Using this profile as the starting point, the Newton- Kantorovich
method completes the reconstruction in six iterations. It is worth
noting that the third layer (air gap) is reconstructed quite well
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Fig. 3. Reconstruction of a discontinuous profile using the two-step approach
for exact and noisy simulated data.

Fig. 4. Reconstruction of a continuous profile using the two-step approach for
exact and noisy simulated data.

though its thickness is about seven times less than the shortest
wavelength in the input data. The effect of measurement errors
is estimated by adding to the real and imaginary parts of the re-
flection coefficients a random signal distributed uniformly over
the interval [ 0.02 0.02]. The solution retains good stability
as seen from Fig. 3.

Although the discrete reconstruction method is developed for
the step-like profiles, it can be applied to the continuous ones as
shown in Fig. 4. It can be seen that the quality of the reconstruc-
tion is not good. However, starting from this profile, only ten
iterations of the continuous method are needed, still saving a lot
of computation time compared to an unsuccessful choice of ini-
tial guess. The robustness of the approach is also demonstrated
here with the magnitude of the random signal being increased
to 0.05.

Lossless profiles have been considered to this point. Finally,
let’s consider a two-layered profile on a substrate, while the
second layer is lossy as shown in Fig. 5. First, a lossless profile is
attempted to be reconstructed using the input data without any
knowledge of the thickness of the layers. Indeed, the lossless

Fig. 5. Reconstruction of the lossy medium profile using the
Newton–Kantorovich method, when the slab thickness and the background
permittivity are known.

profile shown in Fig. 5 has almost precisely the same reflec-
tion coefficient at all given frequencies as the real lossy profile
(moduli of discrepancies are less than 0.005). Hence, at least if
a reasonable measurement error is assumed, the reconstruction
of both the permittivity and the conductivity using the reflec-
tion data for a normally incident wave is impossible because
of lack of information. That is why the scanning of the angle
of incidence together with the frequency sweep are used when
the lossy profiles are to be reconstructed [9], [13], [14]. Un-
fortunately, the measurement apparatus when an angle of inci-
dence is varied is quite complicated. However, the reconstruc-
tion of lossy profiles is possible in case of normal incidence, if a
total thickness of the inhomogeneous layer and the background
permittivity are known. Under these additional constraints im-
posed on the solution of the integral equation (10), the proposed
method yields an accurate reconstruction of the permittivity pro-
file and a qualitative reconstruction of the conductivity profile
as shown in Fig. 5.

IV. CONCLUSIONS

A new two-step approach to the one-dimensional inverse scat-
tering is proposed. At the first step, the unknown profile is re-
constructed in a step-like form using minimax criterion for the
modulus of reflection coefficient in the frequency band of oper-
ation. The method is valid for accurate reconstruction of simple
stratified profiles. In other cases, it provides good starting con-
ditions for the Newton–Kantorovich approach applied to the nu-
merical inversion of the Riccati equation. Thus, a lot of compu-
tation time is saved. Besides,a priori information is not needed
when lossless profiles are reconstructed.

The convergence and the stability of the solution are im-
proved considerably by handling the Riccati equation in terms
of the electromagnetic path length instead of the usual spatial
coordinate. This is explained by a better accuracy of the linear
integral equation used for the calculation of the next iterate to
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the profile. The approach is well suited for the reconstruction
of highly contrasted and discontinuous profiles and exhibits a
good stability with respect to the noisy input data.

The reflection coefficient data obtained for the case of a
normal incidence only are shown to be insufficient to recon-
struct both the permittivity and the conductivity profiles. When
the thickness of the inhomogeneous layer and the background
permittivity are assumed to be known, the permittivity profile
is reconstructed accurately whereas for the conductivity profile
the method yields qualitative reconstruction.
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