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Two-Step Inverse Scattering Method for
One-Dimensional Permittivity Profiles

Valeri A. Mikhnev and Pertti VainikainerMember, IEEE

Abstract—A numerical method to invert the dielectric permit-  ill-posedness of the inverse problem, the convergence, and the
tivity profile from the Riccati equation using the Newton—Kan-  stability of solution essentially depend on the actual contrast

torovich iterative scheme is described. Instead of handling the 565 deteriorating for highly contrasted discontinuous pro-
equations in terms of usual geometrical depth, we determine

the profile as a function of the electromagnetic path length since files. To improve the rellablllty.of the ;ol_u'uon and the conver-
the convergence and the stability of the solution are found to gence rate, as much as possibleagbriori knowledge of the

be significantly better in this case. The initial profile used as a object under test should be included in the inversion procedure.
starting point for the inversion is obtained by another method However, this is not always convenient in practice.

employing successive reconstruction of dielectric interfaces and The purpose of this paper is to improve the convergence and
homogeneous layers in a step-like form. This method, though not

always accurate, is fast and well suited for the approximate re- the Stat_"“ty of the |terat|v9 optlmlzathn schemf-z f_or compli-
construction of the profile, thus creating ideal starting conditions ~cated highly contrasted dielectric profiles. Mopriori infor-
for the previous approach. As a result, the computation time is mation of the reconstructed profile is used in a lossless case,
considerably reduced without using anya priori information. The  whereas minimal additional information is needed when con-
approach is applicable to both continuous and discontinuous pro- 4, ,ctive losses are taken into account. Besides angular depen-
files of high contrast and exhibits a good stability of the solution . . ' . .
with respect to noisy input data. A lossy medium profile can also dency of the reflected signal is excluded from Con_S|derat|o_n.
be inverted provided the overall thickness of the inhomogeneous Although multiangle measurements [9], [13], [14] yield addi-
slab and the background permittivity are known. tional input data allowing to get more reliable reconstruction
Index Terms—nverse scattering, nonhomogeneous media. and to r_etrieve, e.g., material dispersion, their implementation
results in large and expensive antenna arrangements. Further-
more, the measurement routine becomes time consuming. This
. INTRODUCTION is not always appropriate for many practical applications such

ARIOUS methods have been used to reconstruct one-88 ground penetrating radar, nondestructive testing in civil engi-
mensional permittivity profiles from electromagnetic reheering, etc. Consequently, the consideration is restricted here
flection coefficient data. The first-order Born and Rytov appros© the case of normal incidence only.
imations assuming that the medium acts as a small perturbatior] he reconstruction of dielectric half-space is performed using
on the incident wave [1]-[3], can be applied to accurate imagifgneW two-step approach. The Newton—Kantorovich iterative
of the quasi-homogeneous objects and produce qualitative ifethod applied to the Riccati equation is used as the basic re-
ages in other cases. Nevertheless, the methods of this kind @@8struction algorithm. It is shown that a linear integral equa-
mostly used in practice because of their simplicity and stabilitjon to obtain the next iterate to the profile is more accurate in
A large number of investigations have been carried out usifgSe if the derivation is accomplished in terms of electromag-
the Gel'fand—Levitan—Marchenko theory [4]—[7]. UnfortuNetic path length rather than in usual spatial coordinate. This
nately, this in principle exact approach is actually very difficu!lows improving the convergence and the stability of the so-
to implement due to considerable mathematical complexiiy.t'on- The initial profile needed for the iterative procedure is
This leads sometimes to failures especially when faced widktained by another method employing discrete reconstruction.
the discontinuous profiles of high contrast [6]. A nonlineaft this step, the permittivities and the thicknesses of the layers
approximation of the Riccati equation allowing its solution ifan be determined one after another by minimizing the max-
closed form with subsequent inversion yields in some cas@im of the reflection coefficient in the frequency band of op-
very accurate reconstructions [8]. eration. The method yieldsf the exact recon_struction for sir_nple
lterative numerical methods based on the exact equations @f€- and two-layered profiles, if the reflection data are given
also widely used in microwave imaging [9]-[12]. They do noh a wide enough frequency band. Otherwise, the inversion is

principally have contrast limitations. Unfortunately, because gPProximate. Nevertheless, the difference between the recon-

structed profile and the exact one is quite small. Hence, good

starting conditions are created for the previous approach. Only

. . , a few iterations are needed now to complete the reconstruction,
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Since the solution to this nonlinear equation in closed form

incident wave with subsequent inversion is impossible, some optimiza-

—_— tion technique is to be applied. In this work, an iterative
£(x) Newton—Kantorovich procedure [15] is used. According to

reflected wave o(x) it, a forward problem is first solved for some initial profile

— q*(k, x) = £*(x) — jnoo™*(x)/k. The integration of (4) for this

profile with the boundary condition (2) yields the reflection
coefficientr*(k, 2). Itis, in general, nonzero at some depgh
which must be larger than the total electromagnetic path length
in the inhomogeneous part of half-space. To eliminate this dis-
crepancy, a small variatiog(k, z) = Az(z) — jnolAo(z)/k

is added to the initial profile function causing a corresponding

and the conductivity profiles is possible, when the overall thicighange of the reflection coefficiedtr (£, z).

ness of the inhomogeneous slab and the background permittivi%?("ut.)s't'tmIng these variations into (4), we get the following
eduation forAr(k, z)

A 4

0 X

Fig. 1. Geometry of the problem.

are known.
II. INVERSE SCATTERING THEORY dAr ¢t dgt
— P N Ar
A. Newton—Kantorovich Method dz e*  2q* dz
The geometry of the problem is shown in Fig. 1. Consider gkr* q 1 4 Ag
i inci ime- ' - + Ag— —Ae )+ —
the reflection of a normally incident time-harmonic electro Nerd e 4 dz \ ¢
magnetic wave from an inhomogeneous layered medium of (5)

unknown complex permittivityy(k, x) = e(x) — jnoo(x)/k,

wherek is the free-space wavenumbes, is the characteristic

impedance of free-space;(x) and o(z) denote medium Where higher order terms are neglected and the arguments of
permittivity and conductivity, respectively. The problem ofunctions are omitted. The solution to this linear differential
interest is to find the complex permittivity from knowledgeequation can be written in closed form, yielding foe= o

of the reflection coefficient given at a number of frequencies.

The complex reflection coefficient %, x) satisfies the Riccati ks 2k 20)
nonlinear differential equation [3] Ar(k, zo0)=Ar(k, 0)+/0 el M AT
(ks @) _ ot Jelh ) 1 —r2(k, @) dq(k, x) jhr ¢\ 1 d [Ag
— =2k k, z)r(k, . Ag—A = 2
dx ik alk, z)r(k, z) + 4q(k, x) dx " W( = E>+ 4 dz<q*) dz
which can be integrated from infinity to = 0 to yield the ©)
observed reflection coefficient. Alternatively, starting from the
given reflection datak(k) atx = 0, integration of (1) from where
x = 0 to infinity with the boundary condition
R(/{J) — 701 A(J(kv 0) 1- R(k)
(k,0) = ————— 2 vy
r(k, 0) = 7 ~R(E) 7or @) Ar(k, 0) = — V1 &, 0) L+ R(k) .
? - N 2
must yield zero reflection coefficient at some large depth, where [ 7 (k, 0) + 1_—}%}
the permittivity does not vary any more. The formula (2) de- 1+ R(k)

scribes transformation of the reflection coefficient at the pos-
sible discontinuity at: = 0, with 7o;=(1 — \/q(k, 0))/(1 + is derived from (2), and
v q(k, 0)) being the Fresnel reflection coefficient at the inter-
face. . — .
Introducing a new variable, electromagnetic path length flk, 2) = _/ zjk\/z _ " dg d. 8)
(more strictly, it coincides with the electromagnetic path length 0 e 2g¢" d¥
in a lossless case)

Integrating the last term in (6) by parts and using (2), we obtain

Z:/O Ve(z!) da’ ®3)  the following:

(1) can be rewritten in the form

Ar(h 2 )_1—7’*2(/€, 20) Aq(k, zo) /Zo jkef(k,z)—f(k,zo)
dr(k, z) 0k q(k, z) (s )+ 1—72(k, z) dq(k, 2) ) 20)= 1 7k, z0) /s NG
dz e(2) A 2 4q(k, 2) dz

) (1472 Aq — 27’*3—*A5} dz. (9)
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Finally, employing the conditiothr(k, z) = —r*(k, 29), the of reconstruction. This is entirely impossible if the problem is

desired integral equation to calculate the variation of the perminsidered with the use of spatial coordinate.

tivity and the conductivity profiles can be written in the form  The reconstruction deptly can be chosen in principle arbi-
trarily. Naturally, it must exceed the electromagnetic path length

20 of(k,2)— F(k, 20) of the inhomogeneous slab to be reconstructed. Besides, the re-
/0 W construction depth must not be too large to avoid significant spa-
. tial compressing of inhomogeneities resulting in loss of resolu-
. [1/@ <1 + % 2 7700; ) Ae(z) tion.
ke Despite of the good convergence of the solution in the pro-
+10(1 +7%)?Ac(2)] dz posed approach, quite a lot of computation time can be saved
1— %" (k, 20) Ae(20) — jnoAc(20) by a ca_reful _selection_ of an initi_al guess use_d asa sta_rtin_g point
1 7Ok, z0) fo_r the |te_rat|ve technique. In this paper, the initial p_roflle is ob-
— "k, 20). (10) tained using another approach based on a successive reconstruc-

tion of dielectric interfaces and homogeneous layers.

Note that the term taking into account a possible existence®f Discrete Reconstruction Method

the discontinuity air = 0 though present in (6) disappears in The reflection of electromagnetic wave from an inhomoge-

the final equation (10). _ neous half-space can be also treated using a concept employing
The linear integral equation (10) is solved by a commonly . 5 scattering matrices [16]. Accordingly, the medium in the

used technique, including expansion of the unknawiz) and  egion, > 0 is represented as a stack of homogeneous layers.

Ao(z) by some basis functions (Fourier basis is used in thig,s scattering matrix of the stratified half-space is given by
work) and transformation of (10) into a matrix equation to find

the expansion coefficients

S = IOlL1112L2123 T (14)

A-P=Q 1D where
where P is a column of the expansion coefficients affds a I _ 1 1 Ti(it1) 15
column of reflection coefficients in the right-hand side of (10). ) T Titit1) \Ti(i+1) 1 (15)

The least square solution to (11) with a standard Tikhonov reg-

ularization [15] is given by is the matrix of interface between two adjacent layers numbered

iandi + 1
P=[AA+gl 7 AQ (12) O
n= (% 5) (16)

whereg is a regularization parameter. Onde(z) andAo(z
g 9 P (2) o(z) g'_s the matrix of homogeneous layer with the numband

are found, the next iterate to the profile is obtained as follow:

V@G~ VEtr

¢V (k, 2) = ¢*(k, 2) + Ae(z) — jnolo(z)/k (13) Ti(i41) = m, Bi = kdi\/qi;
g =€ — jnooi/k 17)

and the whole procedure is repeated until the convergence crite-
rion is satisfied. Then, a coordinate transformation (3) is applie%
. ) ) . . ; where

to obtain the final profile as a function of the physical distance.

The inversion is performed here in terms of the electromag—EZ L : .

. . . X o;  denote the conductivity of layer with the number
netic path length rather than in the real spatial coordinate be- . . i
. P denote the thickness of layer with the number

cause of a better accuracy of the resultant equations. IndeF s medium in the region < 0 is assumed to be a free-space
while taking variation of (4) to obtain (5), the second—ordertermith — 1 The refle?:tion coefficient is calculated from ?14)
2jkAr-A(4/q/e) among others is neglected. Thistermis sma\ﬂ'S 4 = =
in case of low losses and vanishes totally for a lossless profif‘e.
On the other hand, if the derivation is done in terms of a real dis- R=5(2,1)/5(1, 1). (18)
tance, a much larger ter@ykAr - A(,/q), as seen from (1), is
to be neglected. A comparison of the reconstructions performedrhis formulation of the problem is entirely equivalent to that
using the described approach and its counterpart derived usiiggcribed in preceding section, because any continuous profile
the spatial coordinate showed apparent advantage of the mana be represented with the desired accuracy by a large enough
sented formulation with respect to the convergence and the stamber of homogeneous layers.
bility of solution. Moreover, the effect of ill-posedness of the The inversion principle valid for the lossless step-like pro-
problem is reduced so that the regularization term in (12) files is based on the behavior of the maximum of modulus of
most cases can be omitted without a remarkable deterioratibe reflection coefficient. In case the profile contains only one

denote the permittivity of layer with the numbgr
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interface [i.e., onlyly; term is left in (14)], the modulus of the ' ' ' ' ' T
reflection coefficient igro; | and does not depend on frequency. L A
If another interface is added to the profile, the matrix (14) be-
comesS = Iy LI and the maximum of modulus of the re-

exact profile

reconstructed profile

flection coefficient can be easily derived from (14)—(18) as 2
=]

> o |

max — _rouf +Jraf > [roq] (19) = '

2 T4ron] - rel E ;
&

the equality being reached whén:| = 0 or when the second
interface is absent. For a three-step profile (i.e., the profile con-  ,|
taining two layers on substrate) the expression (19) can be ex

tended to
(I) 1‘0 2IO 3:0 4IO 5‘0 60
[To1| + |712] ) x-axis [mm)]
————— + [r23] ) )
_ _1+|rou|-|ria| rou + 1zl 59
max = ) ) = 1. (20) Fig. 2. Profile reconstruction using the Newton—Kantorovich method.
3 14 [7o1| + [712] 72| L+ |ro1| - [r12]

L+ |ro1] - [ri2]
time considerably shorter than needed for one iteration of the

and the equality is reached againifs| = 0. In the general Newton—Kantorovich method. Therefore, this approach if does

case, an addition of one more step to the step-like profile resut@t cope with the reconstruction by itself, creates ideal starting

in increasing the maximum of modulus of the reflection coefficonditions for the previous method. Thus, the methods are

cient and the increase is the larger, the higher is the step. Heriggnplementary and allow to save a lot of computation time

the principle of reconstruction can be formulated by invertinghen used one after another.

this statement: the parameters of the layers are to be chosen suc-

cessively so that to minimize the maximum of modulus of the lll. NUMERICAL EXAMPLES

reflection coefﬁment for.the remaining region in the frequency This section is devoted to some numerical results, obtained

band of operation. Starting from the matfiy , we obtain from

(14), (15) the expression to find the permittivity by means of the described reconstruction algorithms. Only

highly contrasted profiles are considered. The reflection
coefficient data are simulated by numerical integration of
s min (21) the Riccati equation (1) for a continuous profile and by the
matrix calculations using formulas (14)—(18) for discontinuous
profiles. All the synthetic data are calculated here for the
whereR; is the reflection coefficient for the profile with the firstfrequencies in the range of 0.5-15 GHz in steps of 0.5 GHz. As
interface being excluded. At the next step, matriEgegndI,» usual in the frequency domain techniques, the signal bandwidth
are reconstructed simultaneously using the minimax criteriorietermines the spatial resolution, whereas the largest possible
depth of reconstruction depends on the frequency step [17].
Therefore, necessary corrections can be done easily if needed.
The Newton—Kantorovich iterative reconstruction algorithm
(22) is stopped when the mean value of the modulus of reflection
where R; is the reflection coefficient for the profile without coefficient at the reconstruction depth over all frequencies is
the first layer and the second interface. This is an optimizatidess than 0.01.
problem for two variabled; ande-. If the cost function (22) has  Fig. 2 represents a two-layered lossless profile on a substrate.
several minima, the one corresponding to the smallest thickn@$e Newton—Kantorovich procedure converges to the final
dy is to be chosen. Consequently, the unknalyrand=3 are reconstructed profile shown in Fig. 2 in five iterations when
determined at the next step of reconstruction, etc. The procedstated from a constant initial guess with = 9. Another
is stopped when the reflection coefficient becomes zero at elioice of the constant initial guess results in the increase
frequencies or when its maximum does not go down any mou. the required number of iterations. By using the discrete
The method yields exact reconstruction for lossless layeregtonstruction method, the profile is inverted exactly in a few
profiles, if the reflection data are given in a wide enough freseconds of microcomputer time.
guency band. In other cases, the reconstruction is approximaté more complicated highly contrasted four-layered profile on
because the frequency of maximal reflection can be outsidsubstrate is shown in Fig. 3. An approximate reconstruction is
the given frequency band. However, a discrepancy betwealntained in this case by the discrete reconstruction method. Nev-
the given profile and the reconstructed one is usually smaditheless, all the four layers are reconstructed quite correctly.
Besides, this approach is very fast. Though it requires a &éging this profile as the starting point, the Newton- Kantorovich
of optimization problems to be solved, the cost function (22hethod completes the reconstruction in six iterations. It is worth
is simple. Thus, the whole reconstruction is performed in reoting that the third layer (air gap) is reconstructed quite well

R—T()l
1-R- To1

max | Ry | = max

R1 exp(2jkd1 \/a) — T12
1 — Ryexp(2jkdi\/e1) - 712

— min

max |Ry| = max
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Fig. 3. Reconstruction of a discontinuous profile using the two-step approact
for exact and noisy simulated data. 0 10 20 30 i 40 30 60 70 80
x-axis [mm]

15 . : T T T ;

. Fig. 5. Reconstruction of the lossy medium profile using the
---------- —~-—— exact profile

Newton—Kantorovich method, when the slab thickness and the background
----- discrete reconstruction permittivity are known.

reconstructed profile

profile shown in Fig. 5 has almost precisely the same reflec-
tion coefficient at all given frequencies as the real lossy profile
(moduli of discrepancies are less than 0.005). Hence, at least if
a reasonable measurement error is assumed, the reconstruction
of both the permittivity and the conductivity using the reflec-
4 tion data for a normally incident wave is impossible because
oo of lack of information. That is why the scanning of the angle
of incidence together with the frequency sweep are used when
the lossy profiles are to be reconstructed [9], [13], [14]. Un-
fortunately, the measurement apparatus when an angle of inci-
o 20 20 o 30 100 120 dence is varied is quite complicated. However, the reconstruc-
x-axis [mm] tion of lossy profiles is possible in case of normal incidence, if a
] ) ) o total thickness of the inhomogeneous layer and the background
Z;%C‘:angi%?;‘;tsrf;ﬂfaq:é zgg;t'nuous profile using the two-step approach {9f . nitivity are known. Under these additional constraints im-
posed on the solution of the integral equation (10), the proposed

though its thickness is about seven times less than the shor; g{hod yields an ?‘Ccurate recon_struction ofthe perm_ittivity pro-
wavelength in the input data. The effect of measurement err e and a qual_ltanve reconstruction of the conductivity profile
is estimated by adding to the real and imaginary parts of the e shown in Fig. 5.

flection coefficients a random signal distributed uniformly over

the interval 0.02 +0.02]. The solution retains good stability IV. CONCLUSIONS

as seen from Fig. 3. A new two-step approach to the one-dimensional inverse scat-

Although the discrete reconstruction method is developed figring is proposed. At the first step, the unknown profile is re-
the step-like profiles, it can be applied to the continuous ones@mstructed in a step-like form using minimax criterion for the
shown in Fig. 4. It can be seen that the quality of the reconstrunodulus of reflection coefficient in the frequency band of oper-
tion is not good. However, starting from this profile, only teration. The method is valid for accurate reconstruction of simple
iterations of the continuous method are needed, still saving a $ttatified profiles. In other cases, it provides good starting con-
of computation time compared to an unsuccessful choice of iiitions for the Newton—Kantorovich approach applied to the nu-
tial guess. The robustness of the approach is also demonstratedical inversion of the Riccati equation. Thus, a lot of compu-
here with the magnitude of the random signal being increastdion time is saved. Besides priori information is not needed
to +0.05. when lossless profiles are reconstructed.

Lossless profiles have been considered to this point. Finally,The convergence and the stability of the solution are im-
let's consider a two-layered profile on a substrate, while thproved considerably by handling the Riccati equation in terms
second layer is lossy as shown in Fig. 5. First, alossless profiloisthe electromagnetic path length instead of the usual spatial
attempted to be reconstructed using the input data without asgordinate. This is explained by a better accuracy of the linear
knowledge of the thickness of the layers. Indeed, the lossléstegral equation used for the calculation of the next iterate to

-—-- reconstruction for noisy data|

—
(=)
T

permittivity profile

N
T
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the profile. The approach is well suited for the reconstructior13] S.He, P. Fuks, and G. W. Larson, “An optimization approach to time-do-

of highly contrasted and discontinuous profiles and exhibits a main electromagnetic inverse problem for a stratified dispersive and dis-
. . . sipative slab,|EEE Trans. Antennas Propagatol. 44, pp. 1277-1282,
good stability with respect to the noisy input data. Sept. 1996.

The reflection coefficient data obtained for the case of g14] T. J. Cui and C. H. Liang, “Inverse scattering method for one-di-

normal incidence only are shown to be insufficient to recon- nmeet\rl‘vso'?kf:ﬁg ;QQE;?&’E:?EEESTJ;’g:yMﬂfgwge ?rlﬁeléf;”ge ;WOT%OWG‘VE
struct both the permittivity and the conductivity profiles. When ;1 "1773 1781, Aug. 1995.

the thickness of the inhomogeneous layer and the backgrountbs] A. Roger, “Newton—Kantorovich algorithm applied to an electromag-
permittivity are assumed to be known, the permittivity profile ~ netic inverse problem,[EEE Trans. Antennas Propagatol. AP-29,

! 2 N pp. 232-238, Mar. 1981.
is reconstructed accurately whereas for the conductivity profllehs] R. M. Azzam and N. M. BasharaEllipsometry and Polarized

the method yields qualitative reconstruction. Light. New York: North Holland, 1977.
[17] K. lizuka, A. P. Freundorfer, K. H. Wu, H. Mori, H. Ogura, and V.-K.
Nguyen, “Step-frequency radarJ. Appl. Phys. vol. 56, no. 9, pp.
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