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T-Matrix Determination of Effective Permittivity for
Three-Dimensional Dense Random Media
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Abstract—In this paper, we present a full wave method for de-
termining the effective permittivity for random media in three di-
mensions. The type of media addressed is composed of spherical
dielectric particles in a homogeneous dielectric background. The
particle volume fraction ranges from 0 to 40% and dielectric con-
trast may be significantly different from the background medium.
The method described relies on the T-matrix approach for solving
Maxwell’s equations using a spherical wave expansion in conjunc-
tion with a Monte-Carlo simulation for calculating the mean scat-
tered field confined within a prescribed fictitious boundary. To find
the effective permittivity, the mean scattered field is compared with
that of a homogeneous scatterer whose shape is defined by the fic-
titious boundary and its dielectric constant is varied until the scat-
tered fields are matched. A complete description of the T-matrix
approach is given along with an explanation of why the recursive
form of this technique (RATMA [3]) cannot be used for addressing
this problem. After the method development is completed, the re-
sults of our numerical technique are compared against the theo-
retical methods of the quasi-crystalline approximation and the ef-
fective field approximation to demonstrate the region of validity of
the theoretical methods. The examples contained within the paper
use between 30 and 120 included spheres (with radii ranging from
from = 0 6 to 0 8) within a larger, fictitious sphere of diam-
eter = 8 4.

Index Terms—Electromagnetic propagation in random media,
T-matrix method.

I. INTRODUCTION

A fundamental macroscopic electromagnetic characteristic
of any material is that of its permittivity. Permittivity

is the scalar constant that relates electric flux density of the
electric field and ultimately, for a large majority of media that
are nonmagnetic, is the constant that describes the phase and
group velocity as well as power loss of the field as it propagates
through the medium. When the medium under consideration
is composed of a number of discrete components, the net
permittivity of the material is termed theeffective permittivity.
The loss of power to a propagating coherent field can take on
one of two forms—that of absorption (and subsequent con-
version to thermal energy) and that of scattering, whereby the
coherent field is scattered into a generally radiating incoherent
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field. This second form of power loss is much more difficult to
characterize than absorption because of the complex nature of
scattering.

The simplest approach for determining effective permittivity
is to ignore the effect of scattering on the mean field which il-
luminates the components of the medium. In the derivation of
the Polder–Van Santen mixing formula [9], the mean field in-
duces a dipole moment within the fundamental components of
the medium, which in turn can be used to derive the effective
permittivity. Because of the assumption regarding the mean field
and ignoring the scattering, it is inherently a low-frequency ap-
proach.

When scattering is taken into account, the problem becomes
considerably more complex. Scattering is an important compo-
nent for determining effective permittivity when the scatterer
size is on the same dimensional scale as the observing wave-
length (i.e., a low-frequency estimation can no longer be ap-
plied). In this instance the interaction of the incident field with
all of the scatterers must be simultaneously taken into account.
Depending on the density of the medium, this multiple scat-
tering may be theoretically truncated so that the mean field can
be determined and the problem solved. Such is the case for
Foldy’s approximation (also called the effective field approx-
imation), for single scattering, and the quasi-crystalline approx-
imation, which accounts for all pair-wise scattering.

This paper addresses the problem of numerically determining
the permittivity of a material that contains discrete dielectric
(nontenuous) components whose dimension is on the same
order of the electromagnetic field, taking into account all orders
of multiple scattering. The approach described stems from an
extensive study that has been accomplished for addressing
the two-dimensional (2-D) version of this problem. That is,
to develop a reliable and consistent numerical technique that
can determine both real and imaginary components of effective
permittivity which is not limited in principal to the number
density of scatterers or to a high ratio of absorption to scattering
losses within the system.

We begin by first reviewing the technique and results as ap-
plied to the 2-D random media problem. While not critical to
the technique overall, the 2-D version utilized the method of
moments to solve Maxwell’s equations to determine the scat-
tered fields. Because of the additional dimension in the three-di-
mensional (3-D) problem, it has been necessary to implement
an alternative numerical approach to solve Maxwell’s equations
for the random medium. For this study we chose the T-matrix
method first proposed by Waterman [18] and later refined by
Chew [3]. This approach, along with its limitations, is discussed
in the second section of this paper. While the recursive form of
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Fig. 1. Model for numerically determining� for a random medium.

T-matrix technique did not prove to be appropriate for our appli-
cation, we were nevertheless able to use the T-matrix method in
its more traditional form. Although limiting the solution space
(in terms of number density) for determining effective permit-
tivity, we will demonstrate its application as well as provide a
comparison with theoretically derived results.

II. TWO-DIMENSIONAL TECHNIQUE FORCHARACTERIZING

The technique described here is a numerical method for de-
termining the effective permittivity of a random medium. This
method, based upon the coherent scattered electric field from
a bounded volume, is developed in contrast to an incoherent
method for determining the same quantity [16]. The coherent
numerical method that follows and its application have been de-
veloped by Siqueira and Sarabandi [11], [12], [14] as well as
Zurk et al. [19], [20].

The concept itself is straightforward and is explained here
as a prelude to the 3-D problem (for a more complete descrip-
tion see [13]). We begin by extracting a bounded sample of the
random medium and illuminating it with a known electric field.
The scattered field from this sample will be a superposition of
the coherent field, resulting from the boundary and the inco-
herent field due to the inhomogeneities within the boundary.
Averaging together the complex valued scattered fields for many
samples of the medium at each observation angle will yield only
the coherent field, which is directly related to the shape of the
boundary and the effective permittivity of the random medium
(see Fig. 1). Given the fact that we have control of the boundary
size and shape, a canonical shape can be chosen whose scat-
tering solution is known or may be numerically determined. By
comparing the coherent scattered field from the random medium
samples with the scattered field from the canonical shape, the
permittivity of the canonical shape can be changed until the two
sets of scattered fields are the same.

The process described above has been implemented and
tested extensively in two dimensions as well as compared to
theoretical models. For a complete comparison of the 2-D
numerical technique with the theoretical models of the mixing
formula, Foldy’s approximation, and the quasi-crystalline
approximation, the reader is referred to [14].

III. T-M ATRIX

In two dimensions the method of moments was used to solve
Maxwell’s equations because of the exact nature of the solu-
tion for canonical inclusion shapes of squares and circles. In

three dimensions, however, application of the method of mo-
ments is much more cumbersome due to the large number of
unknowns (vector volume currents) inherent to the problem and
the complexity of discretizing these currents. As a consequence,
it is unrealistic to solve any 3-D large-scale problems using the
method of moments. To circumvent this difficulty, the T-matrix
method (first proposed by Waterman [18], Peterson and Strom
[9], and later developed into a recursive technique, RATMA, by
Wang and Chew [17]) was used to solve for the scattering due
to a large number of scatterers. The recursive form of the T-ma-
trix method is particularly appealing because the computational
complexity scales as rather than of the traditional
approach, where is the total number of scatterers (this as-
sumes that the enclosing volume scales linearly with Be-
cause the development and application of the recursive T-matrix
solution technique is fairly recent, it is reviewed here for clarity,
completeness, and also to highlight its uses and limitations.

In summary, the T-matrix has the following advantages.

1) The spherical wave expansion of the T-matrix automati-
cally accounts for near-field interaction.

2) The T-matrix could potentially be used iteratively to mit-
igate the necessity for inverting large matrices.

3) The T-matrix works best for spherically shaped particles,
a good approximation for media such as sand and snow
grains; more complex geometries could be approximated
by building collections of spheres or by employing ex-
tended boundary conditions.

4) Depending on the dimension/frequency scale of the scat-
tering components, the number of terms used in the spher-
ical wave expansion can be controlled.

5) The T-matrix is exact given a sufficient number of spher-
ical wave basis functions.

A. Formulation

The formulation of the generalized recursive aggregate T-ma-
trix algorithm (RATMA) is based upon the spherical wave ex-
pansion of electromagnetic fields. These functions, composed
of the field vectors and are arranged into a vector of
varying spherical waveform expansions. In the first case, the
vectors are 3-D, one dimension for each direction in space. For

, however, the vectors have a dimension of ,
where the parameter will be explained shortly. Because
of the greater need to work with vectors of spherical wave func-
tions in this context, vector field quantities (such asand
normally specified by bold face type and an overbar will revert
to nonemphasized characters (i.e.,and with the excep-
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tion of positional vectors such asThus, a vector of spherical
wave functions can be written as

(1)

which is a column vector (the superscriptindicating a matrix
transpose) and where

and (2)

and

Rg (3)

In the above equations, and are the spherical Bessel and
Hankel functions of orderand is the associated Legendre
polynomial, defined in this paper as

(4)

where are the ordinary Legendre polynomials given
in [1]. It is necessary to exactly specify which form of the associ-
ated Legendre polynomial is being used because the convention
varies from application to application (see [3] versus [16]). A
generalized incident field may be decomposed into spher-
ical wave functions as in

Rg (5)

where is a column vector of incident field coefficients. For
plane wave incidence, the incident field coefficients are given
by

(6)

which in itself contains vector field quantities, making the ex-
pression in (5) a dyad; the leading vector field relating to the re-
ceived polarization and the trailing vector field the transmit po-
larization. The functions,and are related to the associated Le-
gendre polynomial and its derivative and can be found in [14]. In
the above expressions,refers to the order of the dipole moment
and is the dipole number such that
and , where is the truncation number
for the number of dipole moments used in the calculation. For a
given , the number of elements in is .
Similarly, the scattered electric field can be expressed in terms
of the scattered field coefficients such that

(7)

The T-matrix (or transition matrix) is then defined by the rela-
tion

(8)

For a single sphere, centered at the origin, the T-matrix reverts
to the Mie series. For the more general problem, it will be nec-
essary to sum together the effects of a number of spheres, dis-
placed from the origin by the vector . For a single sphere,
this problem can be easily addressed using the vector transla-
tion theorem as in

(9)

In the above equation, the vector translation matrixindicates
a translation of spherical wave functions centered around theth
coordinate system to theth coordinate system.

In (9) it can be seen that the incident field vector in global
coordinates is transformed to the local coordinates of the scat-
terer, multiplied by the T-matrix, transformed back to the global
coordinate system, and finally multiplied by the spherical wave
basis functions in global coordinates. Use of the vector transla-
tion theorem is dependent on the point of observation with re-
spect to the vector that describes the translation of coordinates
(this will be discussed shortly).

The fundamental equation for the direct T-matrix algorithm
relies on the continued application of this transformation via the
application of the different forms of the vector addition theorem.
Fig. 2 illustrates the multiple scattering equation given by [9]
[14]

(10)

In (10), is the vector of exciting field coefficients which
describe the field on the surfaceencompassing theth particle
and is a vector translation matrix similar towith the excep-
tion that spherical Hankel functions are used instead of spher-
ical Bessel functions. In (10), refers to the single scattering
matrix of the th particle in the absence of other particles. The
fields on this surface are the sum of the scattered fields from the
remaining particles plus the incident field. The ex-
citing field coefficients, are unknown and must be solved
for by the matrix equation implied by (10). Once the exciting
fields are known for each particle, the scattered field can be de-
termined by summing up all of the contributions from all of the
particles together.

The mathematical rules for the application of the vector addi-
tion theorem for spherical waves are often not well illustrated in
the literature. In reference to Fig. 2, for an observation point on
the surface and the translation of spherical wave functions cen-
tered on theth coordinate system to theth coordinate system,
the vector translation theorem is given by

Rg (11)

(12)

Rg Rg (13)

The incident field in (10) is expanded in terms of regular spher-
ical wave functions, Rg centered at the global origin. Thus,
(13) is used in (10) to translate these functions to a coordinate
system centered at theth particle. Similarly, the product of

represents outgoing spherical waves, whose origin
is the center of theth particle and, in turn, (11) is used to trans-
late the spherical wave functions to a coordinate system whose
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Fig. 2. Illustration of spherical wave vector translation in the multiple
scattering T-matrix equation.

origin is the center of theth particle. Note that for nontouching
spheres, the observation point will always be less than the
distance between the origins of the two coordinate systems.
To develop the concept of a recursive algorithm, the T-matrix of
a collection of spheres can be written in terms of the T-matrices
of the individual components. This new T-matrix is often re-
ferred to as the aggregate T-matrix, designated as. Extensive
work on the recursive technique for determining this quantity
has been performed at the University of Illinois [3]–[5], [16].

The theory behind the recursive algorithm is as follows (see
Fig. 3). We begin by assuming that the aggregate scattering ma-
trix from spheres has been determined (at the beginning
of the recursion, when , the aggregate T-matrix .
The aggregate T-matrix of thesespheres in the presence of an
additional spheres can be written as

(14)

where is the T-matrix for the th particle in the
presence of particles (including theth particle itself),

and are vector translation matrices as described above.
Fig. 3(a) illustrates the different component terms of (14).
Similarly, the T-matrix of the th sphere referenced to the
origin may be written as

(15)

The components of (15) are illustrated in Fig. 3(b). In (14) and
(15) the principle unknown is the scattering matrix of theth
particle in the presence of scatterers (i.e., .
By substituting (14) into (15), an algebraic expression can be
written for these unknowns

(16)

Fig. 3. (a) Scattering fromn spheres in the presence ofn + n spheres. (b)
Scattering from spherej in the presence ofn+ n spheres.

Fig. 4. Illustration of (18).

where

(17)

Given a solution for the aggregate T-matrix of
scatterers is written as (see Fig. 4)

(18)
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After substituting (14) into (18), an expression can be written
for the aggregate T-matrix in terms of known quantities,

and

(19)
The critical components of the recursive algorithm are (16),
(17), and (19). The first of these, (16) may be written as a matrix
of matrices, as in

...
...

. . .
...

...

...

(20)

which can be more concisely written as

(21)

Furthermore, (19) can be written in matrix form as

... (22)

or

(23)

From the above, (21) can be used to solve forwhich can then
be substituted into (23) to determine the aggregate T-matrix.

The recursive form of the T-matrix just derived is a superset of
direct T-matrix method described in [9], [14], [17]. If at the be-
ginning of the algorithm , the total number of spheres
to be added (16), (18), and (19) reduce to a single matrix in-
version, which is equivalent to the direct T-matrix method. The
equivalence between the multiple scattering equation for the di-
rect T-matrix described by (10) and the T-matrix algorithm de-
veloped in this paper, given by (15), can be seen by right multi-
plying (15) by and making the substitution

(24)

which would make the initial starting point of the two methods
identical.

TABLE I
MATRIX DIMENSIONS FOR THERECURSIVET-MATRIX

The dimension of the arrays utilized in the recursive T-matrix
method is an important parameter. Array dimensions are gov-
erned by the order of the dipole moment used in calculating the
T-matrices of individual scatterers, denoted as the order
of the dipole moment used for the aggregate T-matrix, denoted
as , and the number of new scatterers added at each itera-
tion . For a given value of (or , there are a total
number of (or
components of the electric field (the factor of two coming from a
combination of and vector fields). Table I lists the dimen-
sions of the matrices utilized by the recursive T-matrix method
in terms of these components (see Table I). Note that the one
matrix inversion that must be performed for each iteration, is
on , which has dimensions of For Rayleigh sized
spheres and, therefore, a matrix must be in-
verted. Values of on the order of 30 spheres per iteration will
maintain the matrix inversion within reasonable limits, but this
will be at the sacrifice of some accuracy (which will be demon-
strated in the next section).

The number of dipole moments required for the aggregate
T-matrix is best determined by the formula given by Bohren
and Huffman [2] as

(25)

where is the free-space wave number andis the radius of
the sphere enclosing the total of particles comprising the
medium under analysis.

B. Limitations of the Recursive T-Matrix Algorithm

The T-matrix algorithm and RATMA are numerically exact
in that if a sufficient number of terms of the spherical wave ex-
pansion are retained and, if the machine precision is sufficient,
an exact solution to Maxwell’s equations will result. Computa-
tional limits, however, require a more practical solution to these
equations and limits must be put on and as was al-
luded to above.

Experience has shown that the direct T-matrix method con-
verges to a unique solution by implementing (25) from above for
the value of and to for the component spheres
(assuming they are less than one wavelength). Reducing
below the value specified in (25) will have the effect of giving
erroneous results, while using an insufficient will consti-
tute a loss of power in the system (i.e., some energy is lost in the
higher order terms of the spherical wave expansion).

The recursive T-matrix approach (RATMA), however, has an-
other set of limitations with respect to the choice of This
limitation is not governed by (25) and thus requires special con-
sideration. This limitation is best illustrated by comparing (16)
and (17) derived using the traditional and recursive T-matrix al-
gorithms for the two-sphere problem. Using these equations, it
can be shown that total scattered field from the second (outer)
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sphere, calculated using the direct T-matrix approach, can be
expressed by

(26)

Similarly, for the same quantity, the recursive algorithm gives

(27)

The difference between these two equations lies in the vector
translation relationships given by

(28)

(29)

in matrix notation or

Rg

Rg (30)

Rg

Rg (31)

in summation notation. In the above where
(30) and (31) are the expanded form of (28) in terms of the
vector addition theorem coefficients given by [3]. This form of
the addition theorem is shown explicitly in summation form here
to highlight the fact that the summation is truncated after
terms instead of the infinite bounds given in (30) and (31).

Returning to matrix notation of (28) and (29), we see that
the right-hand side performs the operation of transferring vector
spherical wave functions centered upon one of the spheres to
the origin and then translating to the remaining sphere. Given
an infinite number of spherical harmonics (i.e. this
would be equivalent to directly transforming the vector spher-
ical wave functions from one sphere center to the other (i.e., the
left-hand side of (28)). When is finite, however, the rela-
tions given by (28) through (31) are approximate and the con-
vergence of this relation with respect to is a function of
both the distance of the spheres from the origin and the prox-
imity of the spheres to one another. This is due to the singular
nature of Hankel functions at or near the origin.

The effect of this limitation can be observed by calculating
the diagonal elements of directly and comparing them with
the matrix product as in (28). This is done in Fig. 5
for three different values of (λ/10, 2λ/10, and 3λ/10) and
three different limits for the number of dipole moments used
in the spherical wave expansion , , ,
where the reference is determined by (25) and is related
to the magnitude of , which is fixed at in this example.
As gets smaller, the imaginary component of increases
due to the singularity of Hankel functions when the argument is
nearly zero. This is shown for the first three dipole moments in

Fig. 5. Limitations of RATMA. (a) Imaginary component of the diagonal
elements of��� computed using the matrix product��� � ��� as in (28) for
three different values ofjr j: For eachjr j (�/10, 2�/10, and 3�/10), the
exact value of��� (—) is given alongside the approximate values obtained by
the matrix product with different values for the maximum number of dipole
moments used (see legend).P is given by (25). (b) Physical geometry used
in the analysis. Shown are the three different particle positions (open circles) in
relation to the fixed particle (shaded circle) and the distanceA for calculating
P . Particle diameter is�/10 andA = �=2.

Fig. 5 for the three different distances of . As the distance
decreases, more terms in the global coordinate dipole ex-

pansion are required to reconstruct the large imaginary compo-
nent of from the matrix multiplication between and

When the value of is relatively large (3/10), there
are a sufficient number of terms in the global dipole expansion
to reconstruct . This can be seen in the lower set of three
plots of Fig. 5. As the scattering centers get closer, however,
and gets smaller, the imaginary component of increases
and a larger number of dipole moments in the global expan-
sion are required to maintain accuracy of the dipole expansion.
Thus, for Rayleigh-sized scatterers and smaller-sized scatterers
spaced closely together, the recursive T-matrix algorithm re-
quires an unrealistically large number of dipole moments to ac-
curately account for the interaction between scatterer centers.

The consequence of this limitation is that the accuracy of
the recursive form of the T-matrix algorithm in accounting for
strong interactions between neighboring spheres depends not
only upon the value of specified in (25), but also on how
closely together the spheres are packed together and how much
they are expected to interact. For the two-sphere problem, this
error can be on the order of a 1-dB uniform loss (i.e., offset of
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power over all observation angles, as will be shown). For mul-
tiple spheres or random media the error is less predictable, but
overall it should be noted that the error reduces with increasing

and decreasing electromagnetic interaction between par-
ticles. Thus, the computational advantage that the recursive ver-
sion of the T-matrix method promises comes at the expense of
solution accuracy.

C. Two Interacting Sphere Example

The following section utilizes the recursive aggregate T-ma-
trix (RATMA) described in the previous section to demonstrate
the limitation of RATMA in recursively determining the scat-
tered field from two strongly interacting spheres. The electric
field quantities that will be shown are elements of the scattering
matrix in the far field such that

(32)

where and from above refer to the transmit and receive
polarizations. The far-field components of the electric field
and comprising the spherical basis functionsin the far-field
region are approximated by

(33)

(34)

Two scenarios are considered for a pair of spheres aligned along
the -axis (see Fig. 6). In the first scenario, the spheres are ad-
jacent to one another so that their interaction is maximal. In the
second scenario, the position of one of the spheres is changed
so that its radial distance from the origin remains the same, but
it is now on the opposite side of the plane. This setup
guarantees that the magnitude of the translation formulas used
in both scenarios is the same and, therefore, the accuracy of the
translation formulas will be the same between the two exam-
ples (the only difference between the examples is the degree of
interaction between the two spheres). The solution for each con-
figuration is performed using the recursive algorithm and the di-
rect T-matrix inversion techniques. The radii of the spheres are

and the distance of the outer sphere to the origin is
(thus, , , and ;

the value of was calculated by (25)).
As shown in the lower plot of Fig. 7, the two noninteracting

sphere simulation gives equivalent results for both the recursive
and traditional T-matrix approaches. These results have also
been shown to agree with theoretical results for noninteracting
spheres. When the interaction between spheres becomes signif-
icant however, we see a shift between the result obtained from
the direct and recursive T-matrix algorithms. Furthermore, the
recursive method more closely approximates the result given by
the traditional method as the value of is increased even
though the minimal value of specified by (25) has been
surpassed. A form of this limitation is mentioned by [6] as being
due to a violation of the conditions for the vector addition the-
orem [specified in (11) through (13)]. A violation of the vector
addition theorem occurs when a source is located within the

Fig. 6. Two spheres aligned along thez-axis. The position of the inner sphere
may be adjacent to the outer sphere, or opposite of it (as shown). In the example
that follows, the angle of observation is in thez = 0 plane as measured from
the incident field whose direction of propagation is defined by thex-axis.

Fig. 7. Scattered field (vv-pol) from two offset spheres centered along the
z-axis. Both plots show results for both the traditional T-matrix approach
(labeled “exact”) and the recursive algorithm, whereP is given.

boundary of the aggregated T-matrix. The geometry used in this
study precludes the possibility of this error being due to a vio-
lation of the vector addition theorem and illustrates the impact
of the approximation described by (28) through (31).

The results shown by the two-sphere example illustrated by
Fig. 7 indicates a loss of energy in the system when using the
recursive T-matrix algorithm. This power loss can be directly be
attributed to truncation of the slowly convergent infinite series
expansion implied by (30) and (31).

IV. THREE-DIMENSIONAL TECHNIQUE FOR

CHARACTERIZING

The 3-D technique parallels very closely the 2-D version
already discussed. In this treatment, a fictitious spherical
boundary is used for its ease of implementation and the ability
to use the exact Mie series scattering solution for a uniform
dielectric sphere. Independent Monte-Carlo realizations of the
random media are created by randomly introducing smaller
spheres within the fictitious boundary until the desired volume
fraction is achieved. Once the aggregate T-matrix is determined,
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Fig. 8. Scattered field magnitude from 50 realizations of a 20% volume
fraction random medium calculated using different values ofn (number
of spheres added at each iteration) using the recursive aggregate T-matrix
algorithm. Whenn = n , RATMA is the equivalent of the direct T-matrix
algorithm (in this casen = 115).

an incident field direction is chosen and the bistatic scattering
pattern for both polarizations is calculated and averaged with
previously calculated fields. A single realization of particle
positions (and T-matrix calculation) can be used to calculate
multiple bistatic scattering patterns by slightly altering the
viewing geometry. Some 300 separate scattered fields were
calculated for each realization in this manner. The resulting
average field is then matched with the Mie series solution
for a uniform dielectric sphere with the same diameter as the
fictional boundary to determine the effective permittivity.

When the approach to the 3-D problem was first being de-
signed, it was thought that the recursive aggregate T-matrix al-
gorithm (RATMA) developed in the previous section would be
an ideal tool for the analysis of effective permittivity due to its
apparent computational efficiency. As was discussed, however,
RATMA is limited in its ability to efficiently calculate the mul-
tiple interactions between two neighboring spheres. This limita-
tion has the effect of increasing the scattering loss because terms
in the spherical wave expansion (i.e., energy) are eliminated in
the vector translation formulas. This problem is exacerbated as
the volume fraction increases because multiple particle interac-
tions also increase with volume fraction. Fig. 8 demonstrates
this effect by showing the average bistatic scattered field from
a 20% volume fraction medium confined to a fictitious spher-
ical boundary with a diameter of 1.3using different quantities
of spheres that are added by RATMA at each iteration. The di-
rect T-matrix solution occurs when all of the spheres are added
during the first iteration (i.e., and is assumed to
be numerically exact. The differences seen in the scattered field
patterns calculated by RATMA compared to the direct T-ma-
trix approach, illustrated in Fig. 8, are large enough to eliminate
the possibility of using RATMA for the purpose of determining
effective permittivity. Basically, the apparently small errors in
the bistatic pattern cause a significant error in determining the
imaginary part of the effective permittivity.

The consequence of this limitation is that only the direct
T-matrix algorithm can be used for solving for the scattered
field from a collection of spheres. The direct T-matrix, however,
is computationally limited because it requires the inversion
of a large matrix whose dimension is directly proportional to
the number of spheres that compose the composite scatterer.

In general, it is not feasible to accommodate a large number
of spheres into the direct T-matrix algorithm; thus, an upper
limit is placed on the diameter of the fictitious spherical
boundary. This limit is proportional to: 1) the volume fraction
of the scatterers and 2) the diameter of the subscatterers.
Because of these limitations it was necessary to perform
an in-depth sensitivity analysis to determine if the coherent
scattered field is sufficiently sensitive to accurately determine
the effective permittivity. This was done using an analytic
Mie series solution for the scattering from a dielectric sphere
with complex permittivity. To detect a 0.01 change in the
imaginary componenet of permittivity, it was determined that
approximately 8000 scattered field calculations would be
necessary for a bounding sphere with a diameter of .
For the simulations that follow, 10 000 scattered fields were
averaged together to determine the mean scattered field.

A. Examples For Calculation of in Three Dimensions

For the example that is about to be developed, glass spheres
( ) with a radius of /10 are used as inclusions.
Glass beads are chosen for this demonstration for several rea-
sons: 1) this material has been measured experimentally by [7]
and 2) the dielectric contrast between the glass and the back-
ground (free-space) is sufficient to ensure that the beads interact
strongly with the incident field. The imaginary component of the
sphere permittivity serves to attenuate the scattered field, thus
allowing the number of included spheres necessary to achieve
large number statistics to be less than if the inclusions were loss-
less.

In the first set of examples, the beads are placed randomly
within a fictitious spherical boundary, without overlapping, until
the desired volume fraction is obtained (volume fractions up to
40% may be obtained in this manner). This method of arranging
particles within a space is equivalent to the ideal fluid numer-
ical solution given by [9] and is spherically symmetric. The av-
erage scattered field patterns obtained from 50 independent re-
alizations and the best fit dielectric sphere (diameter )
solutions for 10%, 20%, 30%, and 40% volume fractions were
calculated. Fig. 9 gives a sample of these results for the large
volume fraction case where it can be seen that there is a good
fit between the dielectric sphere solution and the averaged scat-
tered fields obtained from the Monte-Carlo simulations. A plot
of the differences between the Mie scattering solution and the
averaged scattered fields from the random medium as a function
of both the real and imaginary components of the homogeneous
sphere’s permittivity is given in Fig. 10. It can be seen from this
plot that there is a local minimum within the realistic range of
real and imaginary permittivity for the volume fraction of 20%.
Similar behavior is observed at the 10%, 30%, and 40% volume
fractions studied in this section.

B. Dependence on Volume Fraction and Particle Size

The results of fitting the Mie solution for the homogeneous
dielectric sphere to the coherent observed fields from the
random medium sample at different volume fractions and
particle sizes can be compiled into a single plot (similar to the
2-D treatment in [13]) and the results compared to theoretical
methods. For the 3-D treatment discussed here, the scope of this
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Fig. 9. Comparison between the average scattered fields for a random
medium with 40% volume fraction (solid line) and the best fit Mie solution for
a homogeneous dielectric sphere (dashed line) with� = 1:90 + i0:048.

Fig. 10. Contour and gray-scale plot of the differences between the Mie
solution for a dielectric sphere and the averaged scattered field obtained from
the random medium as a function of real and imaginary effective permittivity.
In this example, the volume fraction is 20% and the permittivity of the
inclusions is� = 6:93 + i0:1. Dark areas represent areas where the difference
is the least between the two solutions.

comparison is currently limited to a narrow range of particle
sizes and volume fractions due to computational considerations,
the origins of which are discussed in the following section. In
this context, it is possible to explore volume fractions ranging
from 10% to 40% and particle sizes whose radius at 10 GHz
varies from 3 to 3.5 mm (i.e., diameter varies from/5 to

/4.3). This range is sufficient enough to explore the effects
of increased scattering losses due to larger particle sizes and
the behavior of both the real and imaginary components of
effective permittivity as a function of particle density.

Fundamental quantities of interest over which to compare to
theoretical methods are the effective refractive index

and the normalized extinction coefficient given by

(35)

The real part of is directly proportional to the phase delay
of an electromagnetic field as it passes through the random
medium and is a measure of the power lost into the
incoherent field. Fig. 11 illustrates the numerically calculated
results and provides a comparison to the theoretical models
of the quasi-crystalline approximation with coherent potential

Fig. 11. Real refractive index and normalized extinction coefficient
comparison between the numerical method (symbols) and the theoretical
techniques of quasi-crystalline approximation with coherent potential (solid
lines) and the effective field approximation (dashed lines) for three particle
radii ranging fromka = 0:63 to 0:73. Normalized extinction (shown in
the lower plot) consistently increases with particle size for all three methods
shown. In this series of numerical experiments,P = 17.

(QCA, solid lines), the effective field approximation (EFA,
dashed lines), and the Polder–Van Santen mixing formula
(PVS, dotted line).

The first plot of Fig. 11 compares the real component of
, which is not expected to vary strongly as a function of

particle size. This is a characteristic that is common between
the theoretical and numerical method results. The three sepa-
rate dashed lines in this plot indicate theoretical results from
the effective field approximation for the three different particle
sizes with the effect of increasing particle size causing an in-
crease in real refractive index. The numerical results obtained
fall closely between the effective field approximation and the
Polder–Van Santen mixing formula using a background dielec-
tric of free-space. The numerical calculations seem to indicate
that the behavior of the fields near the inclusions at these volume
fractions experience the full dielectric contrast between the in-
clusions and the host material rather than the dielectric con-
trast between the included material and the effective permit-
tivity of the random medium. At some point not modeled here
it is expected that this behavior should change as volume frac-
tion increases and the medium becomes one dominated by in-
clusions rather than the spaces between inclusions. In this case,
the background dielectric would no longer be similar to that of
free-space (as the numerical technique in this example would
indicate) rather it would be closer to that of the effective permit-
tivity . The manner in which particles are arranged within the
volume may have an effect on this behavior as in this example,
where the method of particle arrangement maximizes the av-
erage distance between inclusions.

The second plot of Fig. 11 displays the normalized extinc-
tion coefficient given by (35), which reflects the power lost to
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the incoherent field. The numerical method is compared with
the theoretical methods of the quasicrystalline approximation
with coherent potential and the effective field approximation
(the supposed upper limit). Each of the method results is given
in sets of three for each of the three particle sizes used (radius,

mm at 10 GHz or and ),
with the larger particle sizes having the effect of increasing
for all three methods. It is evident from this illustration that at
10% volume fraction, that the numerical method and QCA-CP
agree closely for the three particle sizes, while as particle density
increases, the two methods diverge with QCA-CP predicting
lower scattering losses than the numerical method. This likely
reflects the natural limitation of QCA-CP to address particle in-
teractions that occur in groups larger than two (i.e., QCA models
multiple interactions between pairs of particles and excludes the
effect three or greater particle interactions). This change occurs
most predominantly for volume fractions of 25% and greater
and is more pronounced for larger particle sizes, an unsurprising
result given that the general accepted limitation for QCA is for

less than 0.2 or 0.3.

C. Limitations of the 3-D Technique

In the previous subsection, the coherent numerical method
presented in this chapter was used to compare with similar re-
sults obtained using theoretical methods for determining the ex-
tinction coefficient. In this manner, the numerical technique was
used to explore the limitations of the other methods. The 3-D
determination of effective permittivity, however, has its own set
of limitations that are imposed due to computational concerns.
Fig. 12 attempts to graphically display these limits as they have
been explored thus far and to illustrate those points that have
been demonstrated in the previous subsection (indicated by x’s).

The lower limit of the bounded region is labeled as
in reference to the fact that the direct T-matrix cannot simul-
taneously solve for more than 150 Rayleigh-sized spheres on
a convex MPP-1000 parallel computer with approximately 500
Mb of random access memory. Using less spheres would require
the use of a smaller bounding sphere, thus decreasing the sen-
sitivity of the coherent method to the imaginary component of
effective permittivity.

The volume fraction limit, labeled “Packing Method” refers
to an upper limit on the volume fraction that can be obtained
using the random introduction of spheres into an empty space
(i.e., simulation of the Percus–Yevick pair distribution function
for an ideal fluid). While other packing algorithms may be used
to surpass this limit, the isotropy of the medium can no longer
be guaranteed [12] and, in turn, it may no longer be acceptable
to alter the geometry of the incident field and the plane of ob-
servation to obtain a sufficient number of independent samples.
This would have the effect of increasing the number of indepen-
dent realizations to an impractical number and, thus, the average
scattered field may not be representative of a homogeneous di-
electric.

The upper limit which dictates the maximum radius allowed
for the inclusions is imposed because larger inclusions require
more terms in the spherical wave expansion in addition
to the fact that a large boundary dimension may be required to
enclose a sufficient number of inclusions to accurately repre-

Fig. 12. Illustration of the volume fraction and particle radius limits for the
determination of effective permittivity using the coherent method in three
dimensions.X ’s illustrate those points that have been calculated in the previous
subsections (i.e., radius= 3 mm to 3.5 mm and volume fraction ranging from
10% to 40%). The observing frequency is 10 GHz (� = 3 cm).

sent the random medium. This large boundary is limited by the
maximum number of spherical waves computationally
allowed to represent the aggregated T-matrix (for our facilities,
this was approximately 20).

V. CONCLUSIONS ANDRECOMMENDATIONS

In this paper, a 3-D coherent field technique for determining
effective permittivity for random media was developed. We
began by illustrating the success of this method for addressing a
2-D problem and then discussed in-depth the 3-D T-matrix nu-
merical technique that was to be applied for solving Maxwell’s
equations. One possible version of this RATMA technique was
demonstrated to be insufficient for addressing this problem.

For the numerical technique itself, between 30 and 50 inde-
pendent realizations of the random medium were required to
converge on a representative coherent field. This coherent field
can be used to determine effective permittivity. A complete ex-
ample was illustrated using a particle diameter of/5 (radius,

mm at 10 GHz) for volume fractions ranging from 10
to 40% where it was shown that the average scattered field ob-
tained from the Monte-Carlo simulations agreed well with a Mie
series solution for a homogeneous dielectric sphere. Addition-
ally, the differences between the Mie series solution and the
averaged scattered field were shown to have an isolated local
minimum within the physical range of for a representative
volume fraction of 20%. This example was then expanded to in-
clude two other particle diameters of/4.6 ( mm) and

/4.3 ( mm) where a comparison was made between the
numerical method and the theoretical methods of the quasi-crys-
talline approximation with coherent potential and the effective
field approximation. It was shown that the numerical method
predicted a lower real component of the index of refraction than
these theoretical models and predicted an extinction coefficient
that agreed well with QCA-CP at low-volume fractions and the
smaller of the particle diameters. At higher volume fractions
and large particle diameters, the numerical technique indicates
larger scattering losses, with a higher order of particle interac-
tion than QCA-CP theoretically accounts for (i.e., two-particle
interactions).

A discussion was then provided regarding the current
limitations of the coherent technique in three dimensions.
These limitations are imposed by the computational technique
that has been implemented (direct T-matrix approach) and
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may be broadened as the technique is used to explore a wider
range of problems. It is recommended that the technique is
expanded/verified in the future by: 1) exploring a variety of
different boundary shapes and sizes to maximize the sensitivity
of the coherent field technique to the imaginary component of
effective permittivity (the dielectric slab used in two dimen-
sions seems to be one such possibility); 2) implementing and
comparing alternative numerical techniques for solving scat-
tered fields; and 3) using the results that have been obtained in
this paper to explore theoretical/numerical methods of reducing
the computational burden that a full Monte-Carlo simulation
that the problem entails.
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