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T-Matrix Determination of Effective Permittivity for
Three-Dimensional Dense Random Media

Paul R. SiqueiraMember, IEEEand Kamal Sarabandsenior Member, IEEE

Abstract—in this paper, we present a full wave method for de- field. This second form of power loss is much more difficult to
termining the effective permittivity for random media in three di-  characterize than absorption because of the complex nature of
mensions. The type of media addressed is composed of Spher'cagcattering.

dielectric particles in a homogeneous dielectric background. The The simplest h for det - ffecti ittivit
particle volume fraction ranges from 0 to 40% and dielectric con- € simplest approach tor determining elrective permitivity

trast may be significantly different from the background medium. IS to ignore the effect of scattering on the mean field which il-
The method described relies on the T-matrix approach for solving  luminates the components of the medium. In the derivation of
Maxwell's equations using a spherical wave expansion in conjunc- the Polder—\Van Santen mixing formula [9], the mean field in-
tion with a Monte-Carlo simulation for calculating the mean scat- duces a dipole moment within the fundamental components of

tered field confined within a prescribed fictitious boundary. To find th di hich in t b d to derive the effecti
the effective permittivity, the mean scattered field is compared with € MEeCium, Which in turl can De USEQ 10 defive the elective

that of a homogeneous scatterer whose shape is defined by the ficPermittivity. Because of the assumption regarding the mean field
titious boundary and its dielectric constant is varied until the scat- and ignoring the scattering, it is inherently a low-frequency ap-
approach s ghven aiong wih an explanation of why the recursive ' e
approacn Is given along wi : H R
foprEn of this tgchnique (SATMA [3]) (E)annot be used %lor addressing When scattering is taken into accc.)unt., the problem becomes
this problem. After the method development is completed, the re- considerably mqrg comple>§. Sca“er_'”g .'s an important compo-
sults of our numerical technique are compared against the theo- Nent for determining effective permittivity when the scatterer
retical methods of the quasi-crystalline approximation and the ef- size is on the same dimensional scale as the observing wave-
fective field approximation to demonstrate the region of validity of |ength (i.e., a low-frequency estimation can no longer be ap-
the theoretical methods. The examples contained within the paper ieqy |y this instance the interaction of the incident field with
use between 30 and 120 included spheres (with radii ranging from - .
from ka = 0.6 to 0.8) within a larger, fictitious sphere of diam- all of thg scatterers must. be S|multanec_)usly ta_ken mtp account.
eter kD = 8.4. Depending on the density of the medium, this multiple scat-
tering may be theoretically truncated so that the mean field can
be determined and the problem solved. Such is the case for
Foldy’s approximation (also called the effective field approx-
imation), for single scattering, and the quasi-crystalline approx-
. INTRODUCTION imation, which accounts for all pair-wise scattering.
fundamental macroscopic electromagnetic characteristicT his paper addresses the problem of numerically determining
of any material is that of its permittivity. Permittivity the permittivity of a material that contains discrete dielectric
is the scalar constant that relates electric flux density of tk@ontenuous) components whose dimension is on the same
electric field and ultimately, for a large majority of media tha@rder of the electromagnetic field, taking into account all orders
are nonmagnetic, is the constant that describes the phase @nultiple scattering. The approach described stems from an
group velocity as well as power loss of the field as it propagat@¥tensive study that has been accomplished for addressing
through the medium. When the medium under consideratigfi two-dimensional (2-D) version of this problem. That is,
is Composed of a number of discrete Componentsl the ﬁ@tdevelop a reliable and consistent numerical teChnique that
permittivity of the material is termed theffective permittivity Can determine both real and imaginary components of effective
The loss of power to a propagating coherent field can take BRrMIittivity which is not limited in principal to the number
one of two forms—that of absorption (and subsequent coensity of scatterers or to a high ratio of absorption to scattering
version to thermal energy) and that of scattering, whereby tlggses within the system.

coherent field is scattered into a generally radiating incoherent/Ve begin by first reviewing the technique and results as ap-
plied to the 2-D random media problem. While not critical to

, _ _ . the technique overall, the 2-D version utilized the method of
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Fig. 1. Model for numerically determining.;; for a random medium.

T-matrix technique did not prove to be appropriate for our applihree dimensions, however, application of the method of mo-
cation, we were nevertheless able to use the T-matrix methodients is much more cumbersome due to the large humber of
its more traditional form. Although limiting the solution spacainknowns (vector volume currents) inherent to the problem and
(in terms of number density) for determining effective permithe complexity of discretizing these currents. As a consequence,
tivity, we will demonstrate its application as well as provide # is unrealistic to solve any 3-D large-scale problems using the
comparison with theoretically derived results. method of moments. To circumvent this difficulty, the T-matrix
method (first proposed by Waterman [18], Peterson and Strom
[9], and later developed into a recursive technique, RATMA, by
Wang and Chew [17]) was used to solve for the scattering due
The technique described here is a numerical method for dg-a large number of scatterers. The recursive form of the T-ma-
termining the effective permittivity of a random medium. Thisrix method is particularly appealing because the computational
method, based upon the coherent scattered electric field fregmplexity scales as (ox rather than? . of the traditional

max

a bounded volume, is developed in contrast to an incohergﬂ,tproach’ where,,..» is the total number of scatterers (this as-
method for determining the same quantity [16]. The coheregiimes that the enclosing volume scales linearly with, ). Be-
numerical method that follows and its application have been dgguse the development and application of the recursive T-matrix
veloped by Siqueira and Sarabandi [11], [12], [14] as well ag|ution technique is fairly recent, it is reviewed here for clarity,
Zurk et al.[19], [20]. completeness, and also to highlight its uses and limitations.
The concept itself is straightforward and is explained here|n summary, the T-matrix has the following advantages.
as a prelude to the 3-D problem (for a more complete descrip-1y e spherical wave expansion of the T-matrix automati-
tion see [13]). We begin by extracting a bounded sample of the cally accounts for near-field interaction.

rahndom medgj? f:jn? |IIumr|]nat|ng |t|W|th_|?g<nown electrlc_ f_|eld. ¢ 2) The T-matrix could potentially be used iteratively to mit-
The scattered field from this sample will be a superposition of * joo0 the necessity for inverting large matrices.

the coherent field, resulting from the boundary and the inco- 3) The T-matrix works best for spherically shaped particles,
herent field due to the inhomogeneities within the boundary. a good approximation for media such as sand and snow

Averaging togethert'he complexvalued spattered fiel'dsfor many grains; more complex geometries could be approximated
samples ofthe_ medlur_n at_eaqh observation angle will yield only by building collections of spheres or by employing ex-
the coherent field, Whlch is dll’eCt[|¥ r_elated to the shape of the tended boundary conditions.
bound_ary and.the effective permittivity of the random medium 4) Depending on the dimension/frequency scale of the scat-
(;ee Fig. 1). Given the facF that we have control of the boundary tering components, the number of terms used in the spher-
size and shapg, a canonical shape can .be chosen vyhose scat- j.al wave expansion can be controlled.
tering sglutlon is known or may be pumencally determined. By 5) The T-matrix is exact given a sufficient number of spher-
comparing _the coherentscatt_ered field from the rgndom medium ical wave basis functions.
samples with the scattered field from the canonical shape, the
permittivity of the canonical shape can be changed until the n%o
sets of scattered fields are the same. ’
The process described above has been implemented anfihe formulation of the generalized recursive aggregate T-ma-
tested extensively in two dimensions as well as comparedttx algorithm (RATMA) is based upon the spherical wave ex-
theoretical models. For a complete comparison of the 24mnsion of electromagnetic fields. These functions, composed
numerical technique with the theoretical models of the mixirgf the field vectorsM and N are arranged into a vectdf of

formula, Foldy’s approximation, and the quasi-crystallingarying spherical waveform expansions. In the first case, the
approximation, the reader is referred to [14]. vectors are 3-D, one dimension for each direction in space. For

¥, however, the vectors have a dimensioR B, ( Prax +2),
where the parametdr,,., will be explained shortly. Because
of the greater need to work with vectors of spherical wave func-
In two dimensions the method of moments was used to soliens in this context, vector field quantities (suchMsand N)
Maxwell's equations because of the exact nature of the sohsrmally specified by bold face type and an overbar will revert
tion for canonical inclusion shapes of squares and circles. tmnonemphasized characters (i&f,and V) with the excep-

Il. TWO-DIMENSIONAL TECHNIQUE FORCHARACTERIZING €og
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tion of positional vectors such &s Thus, a vector of spherical For a single sphere, centered at the origin, the T-matrix reverts
wave functions can be written as to the Mie series. For the more general problem, it will be nec-
G My N, ...]t ) essary to sum toggther the effects of a numbe_r of spheres, dis-
m m placed from the origin by the vect@¥;. For a single sphere,
which is a column vector (the superscrighdicating a matrix this problem can be easily addressed using the vector transla-

transpose) and where tion theorem as in
_t: = = .
1 B = ) T - T)a"e. 9
My =V(¢) and Nen=—VxM () Y Polrr) 2 Pulrina™. O
ko In the above equation, the vector translation ma#ixindicates
Vim = hgl)(/foT)Yzm(@, ¢) and a translation of spherical wave functions centered arounitlthe
RGYim = 5t (ko) Yim (6, ¢) 3) coordinate system to thgh coordinate system.

In (9) it can be seen that the incident field vector in global
In the above equationg; andhgl) are the spherical Bessel andcoordinates is transformed to the local coordinates of the scat-
Hankel functions of orderandy;,, is the associated Legendreterer, multiplied by the T-matrix, transformed back to the global
polynomial, defined in this paper as coordinate system, and finally multiplied by the spherical wave
basis functions in global coordinates. Use of the vector transla-
Vi (6, ) = (_1)771\/(21 +1) (- m)i P (cos0)ci™ (4) tion theorem is dependent on the point of observation with re-

4 (I4+m)! spect to the vector that describes the translation of coordinates

m . . . (this will be discussed shortly).
where/" (cos ) are the ordinary Legendre polynomials g|ver§ The fundamental equation for the direct T-matrix algorithm

in [1]. Itis necessary to exactly specify which form of the associ- . ) o . . .
[4] y y specify lies on the continued application of this transformation via the

ated Legendre polynomial is being used because the conventigiy> O" : .
varies from application to application (see [3] versus [16]). pplication of the different forms of the vector addition theorem.

generalized incident fieli™ may be decomposed into spher! ig. 2 illustrates the multiple scattering equation given by [9]

ical wave functions as in [14]
inc Ft—inc - s — = . = .
wherea™ is a column vector of incident field coefficients. For ;3;}
plane wave incidence, the incident field coefficients are given o o o )
by In (10), w" is the vector of exciting field coefficients which

describe the field on the surfasencompassing thih particle
anda is a vector translation matrix similar @with the excep-
{7 tion that spherical Hankel functions are used instead of spher-
ical Bessel functions. In (10}, 1) refers to the single scattering

e — [61\4 aN]t

aM — (—1)(117’6_"”5

e plp+1) : : e :
A A matrix of theith particle in the absence of other particles. The
. [mt;q(cos(e)) - d)s;’l(cos(ﬁ))} fields on this surface are the sum of the scattered fields from the
remainingn.,,.x — 1 particles plus the incident field. The ex-
al = (1)1 Leie? 8 citing field coef_ficients,m_(j) are _unknown and must be soly_ed
e p(p+1) for by the matrix equation implied by (10). Once the exciting
A ao_ fields are known for each particle, the scattered field can be de-
’ [931’ Heos(9)) — ¢it, q(cos(e))} ©6) termined by summing up all of the contributions from all of the

which in itself contains vector field quantities, making the exparticles together.

pression in (5) a dyad; the leading vector field relating to the re- The mathematical rules for the application of the vector addi-
ceived polarization and the trailing vector field the transmit pdion theorem for spherical waves are often not well illustrated in
larization. The functions; andt are related to the associated Lethe literature. In reference to Fig. 2, for an observation point on

gendre polynomial and its derivative and can be found in [14]. the surface and the translation of spherical wave functions cen-

the above expressionstefers to the order of the dipole momenf€réd on theth coordinate system to tjéh coordinate system,
andq is the dipole number such that= {—p, —p + 1,- -+, p} the vectoLtransIatloniheorem |_s given by
andp = 1,---, Puax, Where Py is the truncation number Y(k7.;) =Ra¥(k75;) - @i [7oil < 75l (1)
fqr the number of dipole moments u__s.ed_in the calculation. For a (k) =0 (k7,j) ﬁ” [7oil > [Fil (12)
given P,.x, the number of elements@™® is 2P,y (Prax +2). _ _ =
Similarly, the scattered electric field can be expressed in terms RQW(A7si) =R (KTs;) - By, V[T (13)
of the scattered field coefficient“® such that The incident field in (10) is expanded in terms of regular spher-
cen =t sen ical wave functions, Rg centered at the global origin. Thus,
B =v y ) (13) is used in (10) to translate these functions to a coordinate
The T-matrix (or transition matrix) is then defined by the relaSystem centered at thah particle. Similarly, the product of
tion T;1y-w™ represents outgoing spherical wa¥gsvhose origin
_ is the center of théth particle and, in turn, (11) is used to trans-
@ =Ta™ . (8) late the spherical wave functions to a coordinate system whose
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_H_>

Rg P(k,Tp)aine

Fig. 2. lllustration of spherical wave vector translation in the multiple
scattering T-matrix equation. @

?j(n+n’)
origin is the center of thgth particle. Note that for nontouching @ J— & ,%
@

spheres, the observation poiny will always be less than the /—'
distance between the origins of the two coordinate systgimns inc g h
To develop the concept of a recursive algorithm, the T-matrix of ;
a collection of spheres can be written in terms of the T-matrices ~H_> @
of the individual components. This new T-matrix is often re- \ /
ferred to as the aggregate T-matrix, designateg. &xtensive Q @ @
work on the recursive technique for determining this quantity
has been performed at the University of Illinois [3]—[5], [16]. Q Tt ’

The theory behind the recursive algorithm is as follows (see
Fig. 3). We begin by assuming that the aggregate scattering ma- ®
trix from » sphereg,,) has been determined (at the beginning _ '
of the recursion, when = 0, the aggregate T—matr%gn) — 0)_ Fig. 3. _ (a) Scatterlng from spheres in the pr,esencemH— n’ spheres. (b)
The aggregate T-matrix of theaespheres in the presence of ary c2tering ffom spheigin the presence of 4 n” spheres.
additionaln’ spheres can be written as

n+n’ @ =
= = = = o = T; ’
Tatnan) =T) T Ty - P 00j  Titngnry - Bjo  (14) i(n+n’)

j=n+l @ e - @—» @

where T, is the T-matrix for thejth particle in the ginc @ Q
presence of + n’ particles (including thgth particle itself), — v

@ and B are vector translation matrices as described above. H—» Q Tn(n+n’) —0
Fig. 3(a) illustrates the different component terms of (14).
Similarly, the T-matrix of thejth sphere referenced to the @ ‘ Q
origin may be written as N

Tjtntn) - Bjo =Tjw) - Bio + Ti) - @jo  Tugntn) + Tj)

o _ Fig. 4. lllustration of (18).
‘ Z i - Titnynry - Bio- (15)
i=n+1
7] where
The components of (15) are illustrated in Fig. 3(b). In (14) and 3T - - = L
(15) the principle unknown is the scattering matrix of thk ﬁAﬂ . [ﬂ — (1) - %o 'T(n)_' aoj:| =7
particle in the presence ef+ n’ scatterers (i.eTj(nJrn,)ﬁjo). Ty Qo T(ny-0oj + Tj1y - i #
By substituting (14) into (15), an algebraic expression can be (17)
written for these unknowns
ntn’ . _ Given a solution for_‘i(n%,) . ﬁjo, the aggregate T-matrix of
Z BAji - Titniny - Bio n + n' scatterers is written as (see Fig. 4)
t=n-+1
=-T;u- [ﬁjo + @jo '?(n):| ) "

%Tl-l—n’ :%n n+n’ —+ EO? ntn’ EO (18)
j=n+1- n4n (16) () (ntn’) j:zn;—l i Litnn) P
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After substituting (14) into (18), an expression can be written TABLE |
for the aggregate T-matrix in terms of known quantitigs,) MATRIX DIMENSIONS FOR THERECURSIVE T-MATRIX
andT’j(n+n1) - Bjo variable: | Ay | T gm | BB | BooOin | Bonios | 7| A | B | C | D
, rows: | K K K K P P |[nK|nK|nK| P
_ _ ntn L — — colss | K| K | K P K |[P|"K[ P[P [7K
j=n+1

(19) The dimension of the arrays utilized in the recursive T-matrix
The critical components of the recursive algorithm are (1Ghethod is an important parameter. Array dimensions are gov-
(17), and (19). The first of these, (16) may be written as a maténed by the order of the dipole moment used in calculating the
of matrices, as in T-matrices of individual scatterers, denotedigs,, the order

Avpings Angingz o Angigw of the dipole moment used for the aggregate T-matrix, den_oted

3 jﬂ jﬂ asP..x, and the number of new scatterers added at each itera-
nt2ntl t2nt2 T2t tion »’. For a given value of,,..x (O Pax), there are a total

_ _ _ . number of = 2Kmax(Kmax+2) (OrP = 2-Pmax(-Pmax+2))

Apin nt1 Angnng2 0 Apgn g components of the electric field (the factor of two coming from a

Tt nany Bosio c_ombination ofM_andN_\(ector fields). Tablt_a I lists the_dimen-

= T sions of the matrices utilized by the recursive T-matrix method

Trg2,(n4n) * Brsa,0 in terms of these components (see Table I). Note that the one
: matrix inversion that must be performed for each iteration, is

on A, which has dimensions ef K x »’ K. For Rayleigh sized

Tn—l—n’,(n—l—n’) : ﬂn—l—n’,o

= = : - sphereds,,.. = 1 and, therefore, én’ x 6n’ matrix must be in-
~Tot1) (Brtro+ @0 TW) verted. Values of’ on the order of 30 spheres per iteration will
_:n+2(1) (ﬁnw o+ Bnga0 .%(n)) maintain the matrix inversion within reasonable limits, but this
= ’ (20)  will be at the sacrifice of some accuracy (which will be demon-

- : strated in the next section).

ﬁn%,’o + @pgnr0 -?(n)) The number of dipole moments required for the aggregate
T-matrix is best determined by the formula given by Bohren

and Huffman [2] as

Tn+n’(l)

TN

which can be more concisely written as
AC=B. (21)

Furthermore, (19) can be written in matrix form as

Praax = koA + 4(kgA)L/3 + 2 (25)

_ B _ L wherek is the free-space wave number adds the radius of
T(ntn’) =T(n) T [(ﬂo,n-f—l +Tn) ~50,n+1) the sphere enclosing the totalof,.x particles comprising the

= - _ medium under analysis.
(o 700 o)

= > = = B. Limitations of the Recursive T-Matrix Algorithm
- n+4u>(ﬂn+Lo*-an+L0'Too) . . .
The T-matrix algorithm and RATMA are numerically exact
. . : (22) in that if a sufficient number of terms of the spherical wave ex-
—_,,,+,,,f(1) (ﬁn%,,o + @pin 0 -?(n)) pansion are retained and, if the machine precision is sufficient,
or an exact solution to Maxwell's equations will result. Computa-
o tional limits, however, require a more practical solution to these
T(n4n) =T(n) +D-C. (23) equations and limits must be put #h,.,. and K. as was al-
_ luded to above.

From the above, (21) can be used to solvedavhich canthen  Experience has shown that the direct T-matrix method con-
be substituted into (23) to determine the aggregate T-matriX.verges to a unique solution by implementing (25) from above for
The recursive form of the T-matrix just derived is a superset e value ofP,,,. andK . = 1103 forthe component spheres

direct T-matrix method described in [9], [14], [17]. If at the be{assuming they are less than one wavelength). Reduging
ginning of the algorithm’ = n.,.x, the total number of spherespelow the value specified in (25) will have the effect of giving
to be added (16), (18), and (19) reduce to a single matrix igrroneous results, while using an insufficiéfit,.... will consti-
version, which is equivalent to the direct T-matrix method. Thgte a loss of power in the system (i.e., some energy is lost in the
equivalence between the multiple scattering equation for the gigher order terms of the spherical wave expansion).
rect T-matrix described by (10) and the T-matrix algorithm de- The recursive T-matrix approach (RATMA), however, has an-
veloped in this paper, given by (15), can be seen by right mulither set of limitations with respect to the choicelf,. This
plying (15) bya™“ and making the substitution limitation is not governed by (25) and thus requires special con-
= ) = = _inc sideration. This limitation is best illustrated by comparing (16)
Tjqy @ =Tjx)-Bjo-@ (24) " and (17) derived using the traditional and recursive T-matrix al-
which would make the initial starting point of the two methodgorithms for the two-sphere problem. Using these equations, it
identical. can be shown that total scattered field from the second (outer)
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sphere, calculated using the direct T-matrix approach, can br 1¢® — , .

expressed by ) | exact
= = = __ e _ e = 10" F © |= -Pmax+4 E
Ta2) - Bao =T21) - [521 “T1(1y - 012 - To2)Bao Dl llzma’“‘z
4 © |- Pmax
_ = = = 10 :
+ a1 - Ty - Pro +520} - (26) -
San3
Similarly, for the same quantity, the recursive algorithm gives & '°
(1]
= = = _ = = = — k<] 2
T2y - Bao =To1) - [520 “Bo1 - T11) - Pro - o2 V¥
- Ta(2)Ba0 + @21 - T1(1) - Pro +320} . 10
@) el
The difference between these two equations lies in the vecto | : .
translation relationships given by 10— > 3
— _ = Dipole moment, n
?21 2220 '501 (28) (a)
a2 =Py - o2 (29) I T
in matrix notation or pt
o i a1 T
Auu,nnl(kFIQ) = z; Z pr,ij(kFQO) Rg‘Aij,nrn(kFOI) A —r_20 FOI
=1 j=—1
+ B0, (k720)RUB; j om (KT01) (30)
B (a9} 7 B B + 1
Bpw,nrn(leQ) = z; Z Buu,ij(kTQO) Rg‘Aij,nrn(kTOI) origin
=1 j=—1
+ A, (kT20) ROB;j nm (ETo1) (31) (b)

in summation notation. In the abo\}'el0| < |720| where Fig. 5. Limitations of RATMA. (a) Imaginary component of the diagonal

(30) and (31) are the expanded form of (28) in terms of tfgements o>, computed using the matrix produgto - By, as in (28) for
ree different values dff21|. For each|721| (A/10, 21/10, and 3/10), the

vector qqdition theor_em coefficienfts_ gi\{en by [3] _This form Og:(act value ofr,; (—) is given alongside the approximate values obtained by
the addition theorem is shown explicitly in summation form henge matrix product with different values for the maximum number of dipole

to highlight the fact that the summation is truncated aRgg. moments used (see legend)..x is given by (25). (b) Physical geometry used
in the analysis. Shown are the three different particle positions (open circles) in

terms insFead of the .inﬁnite pounds given in (30) and (31)' relation to the fixed particle (shaded circle) and the distatider calculating
Returning to matrix notation of (28) and (29), we see that,.... Particle diameter i$/10 andA = A/2.

the right-hand side performs the operation of transferring vector
spherical wave functions centered upon one of the sphered-tg. 5 for the three different distances ©f;. As the distance
the origin and then translating to the remaining sphere. Givesy, decreases, more terms in the global coordinate dipole ex-
an infinite number of spherical harmonics (if,,> = oo) this pansion are required to reconstruct the large imaginary compo-
would be equivalent to directly transforming the vector sphenent of@,; from the matrix multiplication betweet,, and
ical wave functions from one sphere center to the other (i.e., tBg,. When the value of,; is relatively large (3/10), there
left-hand side of (28)). Whe,... is finite, however, the rela- are a sufficient number of terms in the global dipole expansion
tions given by (28) through (31) are approximate and the com- reconstrucix,;. This can be seen in the lower set of three
vergence of this relation with respect B,. is a function of plots of Fig. 5. As the scattering centers get closer, however,
both the distance of the spheres from the origin and the pradr,; gets smaller, the imaginary componenagf increases
imity of the spheres to one another. This is due to the singulatd a larger number of dipole moments in the global expan-
nature of Hankel functions at or near the origin. sion are required to maintain accuracy of the dipole expansion.
The effect of this limitation can be observed by calculatinghus, for Rayleigh-sized scatterers and smaller-sized scatterers
the diagonal elements @k directly and comparing them with spaced closely together, the recursive T-matrix algorithm re-
the matrix producisy - By, as in (28). This is done in Fig. 5 quires an unrealistically large number of dipole moments to ac-
for three different values ofs; (A/10, 2\/10, and 3/10) and curately account for the interaction between scatterer centers.
three different limits for the number of dipole moments used The consequence of this limitation is that the accuracy of
in the spherical wave expansiOPyax, Puax + 2, Pmax + 4),  the recursive form of the T-matrix algorithm in accounting for
where the referencg,,.. is determined by (25) and is relatedstrong interactions between neighboring spheres depends not
to the magnitude of o, which is fixed at\/2 in this example. only upon the value of,,,, specified in (25), but also on how
As |7o1 | gets smaller, the imaginary componentgf increases closely together the spheres are packed together and how much
due to the singularity of Hankel functions when the argumenttisey are expected to interact. For the two-sphere problem, this
nearly zero. This is shown for the first three dipole moments &rror can be on the order of a 1-dB uniform loss (i.e., offset of



SIQUEIRA AND SARABANDI: T-MATRIX DETERMINATION OF PERMITTIVITY FOR 3-D DENSE RANDOM MEDIA 323

power over all observation angles, as will be shown). For mul- z-axis

tiple spheres or random media the error is less predictable, but T

overall it should be noted that the error reduces with increasing

P« and decreasing electromagnetic interaction between par- ®

ticles. Thus, the computational advantage that the recursive ver- N )

sion of the T-matrix method promises comes at the expense of /7 @ Interacting

solution accuracy. /

i
C. Two Interacting Sphere Example \\
The following section utilizes the recursive aggregate T-ma- \\ ® . non-interacting

trix (RATMA) described in the previous section to demonstrate S~ —-7

the limitation of RATMA in recursively determining the scat-

tered field from two strongly interacting spheres. The electric Y

field quantities that will be shown are elements of the scattering

matrix S, in the far field such that Fig. 6. Two spheres aligned along thexis. The position of the inner sphere

may be adjacent to the outer sphere, or opposite of it (as shown). In the example

¢hor . o that follows, the angle of observation is in the= 0 plane as measured from
W Spt = P - B -y (32) the incident field whose direction of propagation is defined byattexis.

wherep,. andp; from above refer to the transmit and receive 4 : —

polarizations. The far-field components of the electric figid
andN comprising the spherical basis functidhn the far-field
region are approximated by

ikor [étg(cos 6) + J)isg(cos 9)}

Scattered Field (dB)

MFEF _;—piad 33
pg —*¢ € Feor Von (33)
o ikor [ésq (cos 0) + $itd(cos 9)} _
A T ey g
kor V2 S -8f
Two scenarios are considered for a pair of spheres aligned alon § ol
the z-axis (see Fig. 6). In the first scenario, the spheres are ad 2
2 10t

jacent to one another so that their interaction is maximal. In the g
second scenario, the position of one of the spheres is change © -11 : . : :
. o L : , 30 60 90 120 150 180
so that its radial distance from the origin remains the same, bu Observation Angle (deg)
it is now on the opposite side of the = 0 plane. This setup
guarantees that the magnitude of the translation formulas us@d 7. Scattered field (vv-pol) from two offset spheres centered along the
in both scenarios is the same and, therefore, the accuracy Of_liéis' Both plots show results for both the traditional T-matrix approach
. . ' ' Iﬁ}a eled “exact”) and the recursive algorithm, whétg. . is given.
translation formulas will be the same between the two exam-

ples (the only difference between the examples is the degree of . L
interaction between the two spheres). The solution for each c%) undary of the aggregated T-matrix. The geometry used in this

figuration is performed using the recursive algorithm and the cﬁp'.'dy pﬁﬁludestthe Egi.S'b”t'Ly of this er&q:l betlngtj duti to. a V'O't
rect T-matrix inversion techniques. The radii of the spheres a?é'on ot ne vector addition theorem and [fustrates the impac

ka = 0.63 and the distance of the outer sphere to the origin I _trhhe apprcl)t><|mst|on dbeSt(;]rlthd by (58) throughl(S%l). trated b
kdso = 6.3 (thus, kds, = 1.3, kdsy = 11.3, and Py, = 16: e results shown by the two-sphere example illustrated by

the value ofP,., was calculated by (25)). Fig. 7 indicates a loss of energy in the system when using the

As shown in the lower plot of Fig. 7, the two noninteractin%‘jcurswe T-matrix algorithm. This power loss can be directly be
sphere simulation gives equivalent results for both the recurs térlbuted to truncation of the slowly convergent infinite series

and traditional T-matrix approaches. These results have afgpansion implied by (30) and (31).
been shown to agree with theoretical results for noninteracting
spheres. When the interaction between spheres becomes signif-
icant however, we see a shift between the result obtained from
the direct and recursive T-matrix algorithms. Furthermore, theThe 3-D technique parallels very closely the 2-D version
recursive method more closely approximates the result givendlyeady discussed. In this treatment, a fictitious spherical
the traditional method as the value Bf,. is increased even boundary is used for its ease of implementation and the ability
though the minimal value oF,,,, specified by (25) has beento use the exact Mie series scattering solution for a uniform
surpassed. A form of this limitation is mentioned by [6] as beindielectric sphere. Independent Monte-Carlo realizations of the
due to a violation of the conditions for the vector addition theandom media are created by randomly introducing smaller
orem [specified in (11) through (13)]. A violation of the vectospheres within the fictitious boundary until the desired volume
addition theorem occurs when a source is located within thaction is achieved. Once the aggregate T-matrix is determined,

IV. THREE-DIMENSIONAL TECHNIQUE FOR
CHARACTERIZING €cg
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[
[=3

In general, it is not feasible to accommodate a large number
of spheres into the direct T-matrix algorithm; thus, an upper
limit is placed on the diameter of the fictitious spherical
boundary. This limit is proportional to: 1) the volume fraction
of the scatterers and 2) the diameter of the subscatterers.
Because of these limitations it was necessary to perform
an in-depth sensitivity analysis to determine if the coherent
scattered field is sufficiently sensitive to accurately determine
' v the effective permittivity. This was done using an analytic
30 0 9 120 150 180 Mie series solution for the scattering from a dielectric sphere
Observing angie (deg) with complex permittivity. To detect &0.01 change in the

imaginary componenet of permittivity, it was determined that

Fig. 8. Scattered field magnitude from 50 realizations of a 20% V°|um§pproximate|y 8000 scattered field calculations would be
fraction random medium calculated using different valuesr6f(number . . .
of spheres added at each iteration) using the recursive aggregate T-md¥@cessary for a bounding sphere with a diametériof= 4.2.

algorithm. Whem’ = n,..., RATMA is the equivalent of the direct T-matrix For the simulations that follow, 10000 scattered fields were
algorithm (in this casetmax = 115). averaged together to determine the mean scattered field.

n
(=
T

—
(=]
T

(=
T

-
o
T

Electric field magnitude (dB)

N
o
o

an incident field direction is chosen and the bistatic scatterihog Examples For Calculation agg in Three Dimensions
pattern for both polarizations is calculated and averaged withFor the example that is about to be developed, glass spheres
previously calculated fields. A single realization of particléc = 6.93 + 40.1) with a radius ofA/10 are used as inclusions.
positions (and T-matrix calculation) can be used to calculafdass beads are chosen for this demonstration for several rea-
multiple bistatic scattering patterns by slightly altering theons: 1) this material has been measured experimentally by [7]
viewing geometry. Some 300 separate scattered fields wewrd 2) the dielectric contrast between the glass and the back-
calculated for each realization in this manner. The resultiggound (free-space) is sufficient to ensure that the beads interact
average field is then matched with the Mie series solutigirongly with the incidentfield. The imaginary component of the
for a uniform dielectric sphere with the same diameter as tephere permittivity serves to attenuate the scattered field, thus
fictional boundary to determine the effective permittivity. allowing the number of included spheres necessary to achieve

When the approach to the 3-D problem was first being d&rge number statistics to be less than if the inclusions were loss-
signed, it was thought that the recursive aggregate T-matrix kss.
gorithm (RATMA) developed in the previous section would be In the first set of examples, the beads are placed randomly
an ideal tool for the analysis of effective permittivity due to itgvithin a fictitious spherical boundary, without overlapping, until
apparent computational efficiency. As was discussed, howevigg desired volume fraction is obtained (volume fractions up to
RATMA is limited in its ability to efficiently calculate the mul- 40% may be obtained in this manner). This method of arranging
tiple interactions between two neighboring spheres. This limitparticles within a space is equivalent to the ideal fluid numer-
tion has the effect of increasing the scattering loss because tei@ag solution given by [9] and is spherically symmetric. The av-
in the spherical wave expansion (i.e., energy) are eliminateddrage scattered field patterns obtained from 50 independent re-
the vector translation formulas. This problem is exacerbatedaligations and the best fit dielectric sphere (diametet.3))
the volume fraction increases because multiple particle interg&e!utions for 10%, 20%, 30%, and 40% volume fractions were
tions also increase with volume fraction. Fig. 8 demonstrateslculated. Fig. 9 gives a sample of these results for the large
this effect by showing the average bistatic scattered field frovelume fraction case where it can be seen that there is a good
a 20% volume fraction medium confined to a fictitious sphefit between the dielectric sphere solution and the averaged scat-
ical boundary with a diameter of 1A3using different quantities tered fields obtained from the Monte-Carlo simulations. A plot
of spheres that are added by RATMA at each iteration. The @i the differences between the Mie scattering solution and the
rect T-matrix solution occurs when all of the spheres are add@¢eraged scattered fields from the random medium as a function
during the first iteration (i.e’ = n.,.x) and is assumed to of both the real and imaginary components of the homogeneous
be numerically exact. The differences seen in the scattered figfghere’s permittivity is given in Fig. 10. It can be seen from this
patterns calculated by RATMA compared to the direct T-madlot that there is a local minimum within the realistic range of
trix approach, illustrated in Fig. 8, are large enough to eliminateal and imaginary permittivity for the volume fraction of 20%.
the possibility of using RATMA for the purpose of determiningSimilar behavior is observed at the 10%, 30%, and 40% volume
effective permittivity. Basically, the apparently small errors iifractions studied in this section.
the bistatic pattern cause a significant error in determining the ) ) .
imaginary part of the effective permittivity. B. Dependence on Volume Fraction and Particle Size

The consequence of this limitation is that only the direct The results of fitting the Mie solution for the homogeneous
T-matrix algorithm can be used for solving for the scatteratielectric sphere to the coherent observed fields from the
field from a collection of spheres. The direct T-matrix, howeverandom medium sample at different volume fractions and
is computationally limited because it requires the inversiguarticle sizes can be compiled into a single plot (similar to the
of a large matrix whose dimension is directly proportional t@-D treatment in [13]) and the results compared to theoretical
the number of spheres that compose the composite scattarexthods. For the 3-D treatment discussed here, the scope of this
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Fig. 9. Comparison between the average scattered fields for a random et PRSP
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Fig. 11. Real refractive index and normalized extinction coefficient
comparison between the numerical method (symbols) and the theoretical
techniques of quasi-crystalline approximation with coherent potential (solid
lines) and the effective field approximation (dashed lines) for three particle
radii ranging fromka = 0.63 to 0.73. Normalized extinction (shown in

the lower plot) consistently increases with particle size for all three methods
shown. In this series of numerical experimems,.x = 17.

(QCA, solid lines), the effective field approximation (EFA,
dashed lines), and the Polder—Van Santen mixing formula
(PVS, dotted line).

The first plot of Fig. 11 compares the real component of
Fig. 10. Contour and gray-scale plot of the differences between the Mieg, Which is not expected to vary strongly as a function of
solution for a dielectric sphere and the averaged scattered field obtained frgirticle size. This is a characteristic that is common between
the random medium as a function of real and imaginary effective permittivity, . .

In this example, the volume fraction is 20% and the permittivity of thg.'e theoretical and numerical method results. The three sepa-
inclusions ise = 6.93 + i0.1. Dark areas represent areas where the differend@te dashed lines in this plot indicate theoretical results from
is the least between the two solutions. the effective field approximation for the three different particle
sizes with the effect of increasing particle size causing an in-
comparison is currently limited to a narrow range of particlgrease in real refractive index. The numerical results obtained
sizes and volume fractions due to computational consideratiofs) closely between the effective field approximation and the
the origins of which are discussed in the following section. Ipolder—Van Santen mixing formula using a background dielec-
this context, it is possible to explore volume fractions rangingic of free-space. The numerical calculations seem to indicate
from 10% to 40% and particle sizes whose radius at 10 Ghizat the behavior of the fields near the inclusions at these volume
varies from 3 to 3.5 mm (i.e., diameter varies fronb to fractions experience the full dielectric contrast between the in-
A/4.3). This range is sufficient enough to explore the effectgusions and the host material rather than the dielectric con-
of increased scattering losses due to larger particle sizes &2@t between the included material and the effective permit-
the behavior of both the real and imaginary components gfity of the random medium. At some point not modeled here
effective permittivity as a function of particle density. it is expected that this behavior should change as volume frac-

Fundamental quantities of interest over which to compareign increases and the medium becomes one dominated by in-
theoretical methods are the effective refractive index: = clusions rather than the spaces between inclusions. In this case,
Véerr) and the normalized extinction coefficient given by the background dielectric would no longer be similar to that of

_ free-space (as the numerical technique in this example would
tie [k = 20m{/een). (35) indicate) rather it would be closer to that of the effective permit-
The real part ofi.g is directly proportional to the phase delaytivity ¢.;. The manner in which particles are arranged within the
of an electromagnetic field as it passes through the randewiume may have an effect on this behavior as in this example,
medium ands./k is a measure of the power lost into thevhere the method of particle arrangement maximizes the av-
incoherent field. Fig. 11 illustrates the numerically calculategrage distance between inclusions.
results and provides a comparison to the theoretical modelsThe second plot of Fig. 11 displays the normalized extinc-
of the quasi-crystalline approximation with coherent potentitibn coefficient given by (35), which reflects the power lost to

15 1.6

17_18 19 2 21
Re(ee )
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the incoherent field. The numerical method is compared with
the theoretical methods of the quasicrystalline approximation
with coherent potential and the effective field approximation
(the supposed upper limit). Each of the method results is given
in sets of three for each of the three particle sizes used (radius,
a = 3,3.25,3.5 mm at 10 GHz oka = 0.63, 0.68, and0.73),

with the larger particle sizes having the effect of increasing:

for all three methods. It is evident from this illustration that at 01 02 03 04 05

10% volume fraction, that the numerical method and QCA-CP volume fraction

agree closely forthe three partic_:le Sizes’-Wh”e as particle d-en-Si'ty 12. lllustration of the volume fraction and particle radius limits for the
Increases, th_e two methods diverge W!th QCA-CP pre_d|<_:t| termination of effective permittivity using the coherent method in three
lower scattering losses than the numerical method. This likelynensionsX s illustrate those points that have been calculated in the previous
reflects the natural limitation of QCA-CP to address particle iribsections (i.e., radius 3 mm to 3.5 mm and volume fraction ranging from
teractions that occur in groups larger than two (i.e., QCA model&’® ©© 40%)- The observing frequency is 10 Gz 3 cm).

multiple interactions between pairs of particles and excludes the ] ) o

effect three or greater particle interactions). This change occ§Rt the random medium. This large boundary is limited by the
most predominantly for volume fractions of 25% and great&faximum number of spherical waves,,..) computationally
and is more pronounced for larger particle sizes, an unsurprisflifwed to represent the aggregated T-matrix (for our facilities,
result given that the general accepted limitation for QCA is f¢PIS was approximately 20).

ka less than 0.2 or 0.3.

particle radius

V. CONCLUSIONS AND RECOMMENDATIONS

C. Limitations of the 3-D Technique In this paper, a 3-D coherent field technique for determining

In the previous subsection, the coherent numerical metheffective permittivity for random media was developed. We
presented in this chapter was used to compare with similar began by illustrating the success of this method for addressing a
sults obtained using theoretical methods for determining the &b problem and then discussed in-depth the 3-D T-matrix nu-
tinction coefficient. In this manner, the numerical technique waserical technique that was to be applied for solving Maxwell's
used to explore the limitations of the other methods. The 3-€yuations. One possible version of this RATMA technique was
determination of effective permittivity, however, has its own sefemonstrated to be insufficient for addressing this problem.
of limitations that are imposed due to computational concerns.For the numerical technique itself, between 30 and 50 inde-
Fig. 12 attempts to graphically display these limits as they hapendent realizations of the random medium were required to
been explored thus far and to illustrate those points that has@nverge on a representative coherent field. This coherent field
been demonstrated in the previous subsection (indicated by xtgn be used to determine effective permittivity. A complete ex-

The lower limit of the bounded region is labeled &s,,., ample was illustrated using a particle diametend (radius,
in reference to the fact that the direct T-matrix cannot simuk = 3 mm at 10 GHz) for volume fractions ranging from 10
taneously solve for more than 150 Rayleigh-sized spherestord0% where it was shown that the average scattered field ob-
a convex MPP-1000 parallel computer with approximately 5@8@ined from the Monte-Carlo simulations agreed well with a Mie
Mb of random access memory. Using less spheres would requsegies solution for a homogeneous dielectric sphere. Addition-
the use of a smaller bounding sphere, thus decreasing the sdly; the differences between the Mie series solution and the
sitivity of the coherent method to the imaginary component afveraged scattered field were shown to have an isolated local
effective permittivity. minimum within the physical range efg for a representative

The volume fraction limit, labeled “Packing Method” referssolume fraction of 20%. This example was then expanded to in-
to an upper limit on the volume fraction that can be obtainedude two other particle diameters ®4.6 (@ = 3.25 mm) and
using the random introduction of spheres into an empty spat&.3 (@ = 3.5 mm) where a comparison was made between the
(i.e., simulation of the Percus—Yevick pair distribution functiomumerical method and the theoretical methods of the quasi-crys-
for an ideal fluid). While other packing algorithms may be useiglline approximation with coherent potential and the effective
to surpass this limit, the isotropy of the medium can no longéeld approximation. It was shown that the numerical method
be guaranteed [12] and, in turn, it may no longer be acceptapledicted a lower real component of the index of refraction than
to alter the geometry of the incident field and the plane of olthese theoretical models and predicted an extinction coefficient
servation to obtain a sufficient number of independent sampl#sat agreed well with QCA-CP at low-volume fractions and the
This would have the effect of increasing the number of indepesmaller of the particle diameters. At higher volume fractions
dent realizations to an impractical number and, thus, the averagel large particle diameters, the numerical technique indicates
scattered field may not be representative of a homogeneousldiger scattering losses, with a higher order of particle interac-
electric. tion than QCA-CP theoretically accounts for (i.e., two-particle

The upper limit which dictates the maximum radius alloweuhteractions).
for the inclusions is imposed because larger inclusions requireA discussion was then provided regarding the current
more terms in the spherical wave expangiéf,..) in addition limitations of the coherent technique in three dimensions.
to the fact that a large boundary dimension may be requiredThese limitations are imposed by the computational technique
enclose a sufficient number of inclusions to accurately repritat has been implemented (direct T-matrix approach) and
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may be broadened as the technique is used to explore a wid@b] L. Tsang, J. Kong, and R. ShirTheory of Microwave Remote
range of problems. It is recommended that the technique is _ Sensing New York: Wiley, 1985. o

. . . . . [16] L. Tsang, C. E. Mandt, and K. H. Ding, “Monte Carlo simulations of
eXpandedlve“f'ed in the future by' 1) explorlng a variety of the extinction rate of dense media with randomly distributed dielectric
different boundary shapes and sizes to maximize the sensitivity  spheres based on solution of Maxwell’s equatiof@pt. Lett, vol. 17,
of the coherent field technique to the imaginary component of _ nO. 5, pp. 314-316, 1992. _ _

. . . . . . [17] Y. M. Wang and W. C. Chew, “A recursive T-matrix approach for the
effective permittivity (the dielectric slab used in two dimen- solution of electromagnetic scattering by many spher#=EE Trans.
sions seems to be one such possibility); 2) implementing and  Antennas Propagatvol. 14, pp. 1633-1639, Dec. 1993.

Comparlng alternative numerical technlques for 80|V|ng ScatL].S] P. C. Waterman, “Matrix formulation of eleCtromagnetiC Scattel’ing," in

. . . . . IEEE Proc, vol. 53, Aug. 1965, pp. 805-812.
tered fields; and 3) using the results that have been obtained jfy; | “m. zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner, “Monte Carlo
this paper to explore theoretical/numerical methods of reducing  simulations of the extinction rate of densely packed spheres with clus-
the computational burden that a full Monte-Carlo simulation  tered and nonclustered geometries, Opt. Soc. Amer. Avol. 12, pp.

that th bl tail 1772-1781, 1995.
at the problem entafls. [20] L. M. Zurk, L. Tsang, and D. P. Winebrenner, “Scattering properties of
dense media from Monte Carlo simulations with the application to active

ACKNOWLEDGMENT remote sensing of snowRadio Sci. vol. 31, pp. 803-819, 1996.

The authors would like to thank the Advanced Laboratory
for Parallel High-Performance Applications Group at the Jet
Propulsion Laboratory (JPL), Pasadena, CA, for technical ¢
sistance and S. Lagault, University of Michigan, Ann Arbor, fo
his useful discussions.

Paul Siqueira (S'92-M’96) was born in Skokie, IL,
in 1966. He received the B.S. and M.S. degrees in
electrical engineering from lowa State University,
Ames, in 1987 and 1990, respectively, and the Ph.D.
degree in electrical engineering from the Radiation
Laboratory, University of Michigan, Ann Arbor, in
1996

From 1990 to 1991, he worked at the Astronomy
and Molecular Biology Departments, University of
Chicago, IL. He is currently working as a Staff En-

REFERENCES

[1] M. Abramowitz and |. StegunHandbook of Mathematical Func-
tions New York: Dover, 1965, p. 1046.

[2] C.Bohren and D. Huffmarbsorption and Scattering of Light by Small gineer performing system engineering and radar data
Particles New York: Wiley, 1983, p. 519. analysis for the Radar Science and Engineering Section, Jet Propulsion Labora-
[3] W. C. Chew,Waves and Fields in Inhomogeneous Medialew York:  tory, Pasadena, CA. His current research interests are in the modeling and char-
IEEE Press, 1990, p. 608. acterization of polarimetric/interferometric measurements of random media.
[4] ——, “Recurrence relations for three-dimensional scalar addition the-
orem,” J. Electromagn. Waves Applicatol. 6, no. 2, pp. 133-142,
1992.

[5] W.C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for waveKamal Sarabandi (S'87-M'90-SM’'92) received the B.S. degree in electrical
scattering solutions using windowed addition theoreinElectromagn. engineering from Sharif University of Technology, Tehran, Iran, in 1980, the
Waves Applicatvol. 6, no. 11, pp. 1537-1560, 1992. M.S.E. (electrical engineering) degree from the University of Michigan, in 1986,

[6] W. C. Chew and C. C. Lu, “The resurive aggregate interaction matrand the M.S. (mathematics) and Ph.D. (electrical engineering) degrees from the
algorithm for multiple scatterers|EEE Trans. Antennas Propagatol.  University of Michigan, Ann Arbor, in 1989.

43, pp. 1483-1486, Feb. 1995. From 1980 to 1984, he worked as a Microwave Engineer in the Telecommu-

[7] A. Nashashibi and K. Sarabandi, “A technique for measuring the effenication Research Center. He is presently an Associate Professor in the Depart-
tive propagation constant of dense random mediaJEBE AP-S Int. ment of Electrical Engineering and Computer Science, University of Michigan.
Symp, Newport Beach, CA, June 1995, pp. 748-751. He has 18 years of experience with microwave sensors and radar systems. In the

[8] J. Percus and G. Yevick, “Analysis of classical statistical mechanics Ipast eight years he has served as the Principal Investigator and Co-Investigator
means of collective coordinates?hys. Reyvol. 110, pp. 1-113, 1958. on many projects sponsored by National Aeronautics and Space Administration

[9] B.Petersonand S. Storm, “T-matrix for electromagnetic scattering froNASA), Jet Propulsion Laboratory (JPL), Army Research Office (ARO), Office
an arbitrary number of scatterers and representations of BYs. Rev. of Naval Research (ONR), Army Research Labs (ARL), and General Motors

D, vol. 8, no. 10, pp. 3661-3678, 1973. (GM) all related in one way or another to microwave and millimeter-wave radar
[10] D. Polder and J. H. VanSanten, “The effective permeability of mixture@mote sensing. He has published many book chapters and more than 80 papers
of solids,”Physica vol. 12, no. 5, pp. 1257-1271, 1946. in refereed journals on electromagnetic scattering, random media modeling, mi-

[11] K. Sarabandiand P.R. Siqueira, “Numerical scattering analysis for tworowave measurement techniques, radar calibration, application of neural net-
dimensional dense random media,”lEEE Antennas Propagat. Conf. works in inverse scattering problems, and microwave sensors. He has also had
Proc,, Seattle, WA, May 1994, pp. 858-867. more than 140 papers and invited presentations in national and international

[12] ——, “Numerical scattering analysis for two-dimensional dense randononferences and symposia on similar subjects.
media: Characterization of effective permittivityf?EE Trans. Antennas  Dr. Sarabandi is listed iAmerican Men and Women of Sciersoe Who's
Propagat, vol. 45, pp. 858-867, May 1997. Who in Electromagnetic$ie is a member of the IEEE Geoscience and Remote

[13] P. R. Siqueira, K. Sarabandi, and F. T. Ulaby, “Numerical simulatioBensing ADCOM since January of 1998 and served as the Chairman of Geo-
of scatterer positions in a very dense media with an application to teeience and Remote Sensing Society Southeastern Michigan chapter from 1992
two-dimensional born approximationRadio Sci. vol. 30, no. 5, pp. to 1998. He is also a member of Commission F of URSI and the Electromag-
1325-1339, Sept./Oct. 1995. netic Academy. He was a recipient of a 1996 Technical Excellence Award, the

[14] P. Siqueira and K. Sarabandi, “Method of moments evaluation dP97 Henry Russel Award from the Regent of The University of Michigan, and
the two-dimensional quasicrystalline approximationZEE Trans. the 1999 GAAC Distinguished Lecturer Award from the German Federal Min-
Antennas Propagatvol. 44, pp. 1067-1077, Aug. 1996. istry for Education, Science, and Technology.



