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Transformation of Surface Waves in Homogeneous
Absorbing Layers

Pyotr Y. Ufimtsev, Fellow, IEEE, R. T. Ling, and J. D. Scholler, Member, IEEE

Abstract—Surface waves in homogeneous absorbing layers are
studied. The transformation of surface waves into other types of
guided waves with frequency or layer’s parameters variations is
analyzed. It is found that in absorbing layers the standing damped
surface waves do not exist andcontinuous transformationof sur-
face waves into leaky waves is forbidden. Surface waves can only
transform continuously into nonphysical waves with field strengths
increasing exponentially in both the direction of propagation and
in normal direction away from the layer into free-space. The fre-
quency at which surface waves transform into nonphysical waves
can be considered as cutoff frequency of surface waves. New and
more general definitions previously proposed by the authors for
the phase and energy velocities of guided waves are analyzed. It
is shown that these velocities are identically equal to each other
and never exceed the light speed in free-space. Several new physical
phenomena are discovered. These are the upper frequency cutoff,
its shifting to higher frequencies for materials with lower losses and
the merging of high TE wave modes.

Index Terms—Absorbing media, electromagnetic surface waves.

I. INTRODUCTION

SURFACE wave in homogeneous lossless layers is a clas-
sical subject of the guided waves theory. Properties of sur-

face waves in absorbing layers are not well known. Only re-
cently have they been studied in details by the present authors
[1]–[7]. In particular, it was found that in absorbing layers, TM
surface waves cannot propagate if the frequency exceeds the
so-called upper cutoff frequency. At this upper cutoff frequency
a TM surface wave becomes a regular plane wave incident on
an absorbing layer at the Brewster angle. In this connection, we
recall that, in general, surface waves can be interpreted as inho-
mogeneous plane waves incident on a flat guiding surface under
the complex Brewster angle without reflection [6], [8], [9]. The
complex Brewster angle is defined by of [6, eqs. (26)–(28)].
Note also that in (42) of [6], an additional factor of 1/2 was
overlooked. Therefore, all expressions and numerical data for
the energy velocity presented in [6], except the definition (40),
must be multiplied by a factor of two. These corrections are pub-
lished in [7].

In the present paper, we continue the study of surface waves.
New and more general definitions for the phase and energy ve-
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Fig. 1. Absorbing layer(0 � y � a) backed up by a perfectly conducting
plane(y = 0):

locities, which were introduced in [6], [7], are analyzed in Sec-
tion II. It is shown that these velocities are always identically
equal to each other. Some general properties of guided waves
in the complex plane of the transverse wave number are con-
sidered in Section III. They include the rotation of the Poynting
vector and all possible values of the phase and energy velocities
of guided waves. It is found that these velocities never exceed
the light velocity. Absence of standing damped surface waves
in absorbing layers is demonstrated in Section IV. Continuous
transformation of guided waves in absorbing layers is studied in
Section V. It is found that acontinuous transformationof surface
waves into leaky waves is forbidden. Several new physical phe-
nomena are discovered. These are the upper frequency cutoff,
its shift to higher frequencies in materials with lower losses and
the merging of fundamental and higher order TE modes. These
phenomena are described in Sections VI–VIII.

II. BASIC CHARACTERISTICS OFSURFACEWAVES

We consider surface waves in a homogeneous absorbing layer
placed on a perfectly conducting plane (Fig. 1). The thickness
of the layer is denoted by the letter, its relative permittivity
and permeability are and , respectively. A free-space

is assumed to be above the layer. The wave number
in free-space is denoted as where

is the angular frequency of harmonic oscillations andis
the free-space wavelength. The time dependence is
assumed and suppressed below. We consider both TM and TE
surface waves. The TM waves are described by equations

(1)

in the free-space (Region 1), and by equations

(2)
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Fig. 2. Amplitude and phase fronts of the surface wave above the layer.

inside the layer (Region 2), . In these equations,
is the impedance of the free-space. The com-

plex quantities and are the
transverse wave numbers of the wave field outside and inside
the layer, respectively. The complex quantity
is the longitudinal wave number, or the propagation constant.
These wave numbers are connected by the relations

(3)

through the Helmholtz wave equation. It follows that

(4)

The components from (1) and (2) are continuous on top of
the layer . The -component satisfies the boundary
condition on the perfectly conducting plane at
and its continuity on top of the layer leads to a transcen-
dental relationship

(5)

This transforms into the dispersion equation

(6)

with the substitutions of and from (3).
The time-averaged Poynting vector Re

points in the direction of the power flux. Above the layer it con-
tains the components

(7)

Their ratio equals

(8)

where is the angle between the phase front and the-axis
(Fig. 2). The Poynting vector of surface waves is perpendicular
to the phase front and directed along the amplitude front. The

angle in Fig. 2 determines the orientation of the amplitude
front. This angle is given by

(9)

According to the first equality in (3),

(10)

The TE surface waves are described by similar equations.
Their field components above the layer are

(11)

and inside the layer they are

(12)

where is the admittance of free-space.
The wave numbers of TE waves also obey (3) and

(4). But instead of (5) for TM waves, they satisfy the dispersion
equation

(13)

which can be written as

(14)

Above the layer, the time-averaged Poynting vector of TE waves
contains the components

(15)

Their ratio is given by (8) where the quantitiesand satisfy
(14). Thus, in the case of TE waves, the Poynting vector is also
perpendicular to the phase front.

In [6], [7] we introduced new definitions for the phase ve-
locity and the energy velocity of TM and TE surface waves
above the layer . These velocities are perpendicular to the phase
front and directed toward the absorbing layer (Fig. 2). The phase
velocity is the speed of the phase front propagation. The energy
velocity is defined as the ratio where is the power
flux density (the Poynting vector) and is the volume energy
density. According to [6], [7], the quantities and are de-
termined by the following expressions:

(16)

Using the dispersion relation , one can show that
the energy velocitiy is identically equal to the phase velocity
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Fig. 3. The first Riemann sheet[Im(�) � 0]:

It is necessary to emphasize the distinction in prin-
ciple between our definition for the phase velocity and the con-
ventional definition for the phase velocity ,
which is accepted in the theory of transmission lines. According
to our definition (16), the phase velocity is oriented under the
oblique angle towards the layer surface in the direction,
while the conventional phase velocity is oriented parallel
with the layer surface in the direction(Fig. 2). In the particular
case of lossless structures , the quan-
tity determined by (16) exactly coincides with There-
fore, our definition for the phase velocity (16) can be considered
as a natural generalization of the conventional phase velocity for
the case of absorbing guiding structures. Note also that our def-
inition for the energy velocity is completely different from
the conventional group velocity , which
is not applicable in the case of absorbing and dispersive guiding
structures. This is clearly shown in Fig. 23 of [6].

III. D IAGRAMS OF GUIDED WAVES

The complex plane of the transverse free-space wave number
is often used in the analysis of guided waves

[10]–[13]. The longitudinal wave number is
a single-valued function in the two-sheet Riemann-plane
with two branch cuts shown in Fig. 3. The upper branch cut
starts at on the positive real axis, moves towards the
origin and turns upwards along the positive imaginary axis.
The lower branch cut starts at on the negative real
axis, moves towards the origin and turns downwards along the
negative imaginary axis. On these cuts, the imaginary part of
the longitudinal wave number equals zero Im . We
assume Im on the first Riemann sheet and Im
on the second sheet. Note also that on the first Riemann sheet,
the real part of longitudinal wave number is negative
in the first and third quadrants and positive in the
second and fourth quadrants (Fig. 3). On the second Riemann
sheet, in the first and third quadrants and in
the second and fourth quadrants.

Fig. 4. The diagram of guided waves in the first Riemann sheet[Im(�) � 0]:

There is a common functional form for all possible guided
waves in each Riemman sheet. All of these waves can be written
in the form . Since
the parameters and have different sign combinations
in various quadrants of the Riemann sheets, the guided waves in
different quadrants have different physical properties. However,
outside the open guiding structures, all of them are inhomoge-
neous plane waves.

Figs. 4 and 5 show the wave diagrams for the
first and second Riemann sheets. These diagrams ex-
plain the qualitative behavior of the wave amplitude

as a function of the
distance from the layer and the distancealong the layer.
They also show the directions of the Poynting vector, which is
always perpendicular to the phase fronts.

We adopt the following terminology for guided waves in
these diagrams. “Growing waves,” shown in the first quadrant,
increaseexponentially in the direction of propagation along
the layer anddecreaseexponentially in the direction away
from the layer. They can be excited in amplifying systems.
In passive lossless systems these waves always exist in pairs
with guided waves from the second quadrant and combine
into standing damped waves [10]–[12]. We consider these
waves in more details below. “Surface waves,” shown in the
second quadrant,decreaseexponentially both in the direction
away from the layer and in the direction of propagation along
the layer. “Nonphysical waves” in the third quadrantincrease
exponentially both in the direction of propagation along the
layer and in the direction away from the layer. “Leaky waves”
in the fourth quadrantincreaseexponentially in the direction
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Fig. 5. The diagram of guided waves in the second Riemann sheet[Im(�) �
0]:

away from the layer anddecreaseexponentially in the direction
of propagation along the layer. The term “leaky” implies that
these waves transfer energy out of the guiding structure. All
these types of guided waves can be considered as analytical
continuations of surface waves in the complex plane

Note that the complex-plane also can be used for analysis of
guided waves. However, it is less convenient than the complex

-plane because each Riemann sheet of the-plane contains
only two types of guided waves. Its first sheetIm
contains only the surface and growing waves, while the second
sheet Im contains only the nonphysical and leaky
waves. In contrast to this, each Riemann sheet of the complex

-plane contains all four types of guided waves.
Some interesting features of guided waves can be seen from

the these diagrams shown in Figs. 4 and 5. Let us consider
closed contours in the complex plane that intersect the
branch cuts. Symbols 1RS and 2RS denote the respective quad-
rant in complex plane belonging to the first or second Riemman
sheet. Figs. 6 and 7 show the orientations of Poynting vector
along closed contours indicated by broken lines. These con-
tours in general can have arbitrary shapes. For simplicity, we
have chosen the square contours. In these figures we assume
that Poynting vector is expressed in Cartesian coordinates
and oriented along axes and respectively, as defined
in Figs. 4 and 5. The contour in Fig. 6 intersects the branch
cuts twice. As the point moves along the contour, the
Poynting vector undergoes a rotation. The sense of this rota-
tion is opposite to the sense in which the point moves
along the contour. When this point moves clockwise along the

Fig. 6. Rotation of the Poynting vector on the contour, which intersects branch
cuts two times.

Fig. 7. Rotation of the Poynting vector on the contour, which intersects branch
cuts four times.

contour, the Poynting vector rotates counter-clockwise and vice
versa. The closed contour indicated by the broken lines in Fig. 7
intersects the branch cuts four times. When the point
moves from the left half-plane into the right half-plane

along the horizontal lines, the Poynting vector rotates
counter-clockwise. The sense of the Poynting vector rotation is
not constant on the vertical lines of the contour. For example,
along the left vertical line in Fig. 7, the Poynting vector ro-
tates clockwise before the point in the second quadrant
moves down and intersects the real axis. In the third quadrant,
the Poynting vector rotates counter-clockwise after the point

crosses the real axis and moves down. However, the
total angle of rotation in each direction does not exceed 45.
We do not consider here the behavior of the Poynting vector on
closed contours which do not cross the branch cuts since it is
clearly shown in Figs. 4 and 5.

According to (16), moduli of the phase and energy velocities
are functions symmetrical with respect to the- and -axes.
Numerical calculations show that these velocities do not ex-
ceed the light velocity anywhere . They are close to
the light velocity near the origin in the -plane and then de-
crease as the point moves away. At a distance

from the origin, the moduli of
the phase and energy velocities approach values of the order

. Using the dispersion equation , one can
show that . Therefore, according to (16), we
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have . This means that all guided waves presented in
diagrams in Figs. 4 and 5 are slow waves.

It is to be noted that diagrams in Figs. 4 and 5 relate to
any guiding structures homogeneous in the planes const
(Fig. 1). However, their constitutive parametersand can
depend arbitrarily on the coordinate. In particular, such
guiding structures can consist of arbitrarily stratified material.

IV. A BSENCE OFSTANDING DAMPED GUIDED WAVES IN

HOMOGENEOUSABSORBINGLAYERS

As it is well known [10]–[12] for lossless structures, the
growing guided waves from the first quadrant on the wave
diagrams (Figs. 4 and 5) always exist in pairs with surface
guided waves from the second quadrant. These pairs form
standing damped waves excited in the vicinity of a field
source. As it is mentioned in [10]–[12], this type of waves
does not exist in lossy structures. This is proven below for any
homogeneous absorbing layers. In the region to the right of the
source , the standing wave can be represented
as the sum

(17)

Here

(18)

is the surface wave with the wave numbers from the
second quadrant in the first Riemman sheet (Fig. 4) and

(19)

is the growing wave with the wave numbers from
the first quadrant in the same Riemman sheet. These two waves

and can form a standing damped wave only in the case
when their wave numbers satisfy the following relationships:

(20)

where the symbol denotes the complex conjugate. In ad-
dition, the wave numbers related to the region inside the layer
must satisfy the equation

(21)

All these wave numbers must also satisfy the dispersion equa-
tions (3)–(6), (13), and (14). Let us check the validity of (3) for
wave numbers and . Starting with the equation for
the wave numbers and , we have

(22)

Thus, the wave numbers and satisfy the first dispersion
relation in (3).

Let us next check the validity of the second dispersion relation
in (3)

(23)

Thus, the dispersion equation for the wave numbers insideab-
sorbing layers [when is violated. Therefore,
standing damped waves cannot exist in homogeneousabsorbing
layers. It is clear also that such waves can exist only in those
guiding structures where the dispersion equation
remains valid when is replaced by .

V. CONTINUOUS TRANSFORMATIONS OFSURFACE WAVES IN

ABSORBINGLAYERS

On the complex plane of the transverse wave number, contin-
uous transformation of surface waves means a movement of the
point from the second quadrant into other quadrants
(Fig. 8). A possibility of these transformations depends on the
wave behavior at the transition points A, B, C, and D. At point
A which lies on the upper branch cut, i.e., on the boundary be-
tween the first and second quadrants in the first Riemman sheet,
the surface wave transforms into the wave ,
which propagates along the layer without attenuation. This wave
cannot exist in absorbing layers, therefore, the transformations
of surface waves into growing waves is forbidden.

Next, let us consider the possible transformation of surface
waves into leaky waves. Such a transformation implies the tran-
sition of the point from the second quadrant into the
fourth quadrant through the point B where and .
At this point, the surface wave transforms into the plane wave

, which propagates along the layer without attenua-
tion. Again in absorbing layers such a wave cannot exist. There-
fore, in absorbing layers, the direct transformation of surface
waves into leaky waves is forbidden.

It is of interest to note that the TM surface waves in loss-
less plasma layers can be continuously transformed, first into
the growing waves and then into leaky waves when the wave
frequency increases from zero to infinity. In particular, growing
waves transform into leaky waves when the wave frequency ex-
ceeds the plasma frequency. This follows from in [10, fig. 16]
and [11, fig. 3], if we use our classification of guided waves in
Fig. 4 of the present paper. However, as shown above for ab-
sorbing layers, the continuous transition of the point
from the second quadrant (with surface waves) into the first
quadrant (with growing waves) is forbidden. Therefore, in ab-
sorbing layers this type of continuous transformation of sur-
face waves into leaky weaves through the intermediate stage of
growing waves is also forbidden.

Transformation of surface waves into nonphysical waves
means the transition of the point from the second
quadrant into the third quadrant (Fig. 8). This transition can
occur through the point C or D. Point C lies on the lower
branch cut while point D is beyond the branch cut. At the
point C, the surface wave transforms into the regular plane
wave incident on the layer under the
Brewster angle without any reflection. At the point D, the
surface wave transforms into aninhonogeneous plane wave

. The amplitude of this wave exponentially
decreases along the layer while the wave propagates in the
direction normal to the layer. Since nonphysical waves cannot
exist, the arrival of the point into the transition
points C and D can be interpreted as a cutoff phenomenon. For
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Fig. 8. Continuous transformation of surface waves.

Fig. 9. Constitutive properties of sample material (constant relative
permittivity: " = 20:45; " = 0:73):

example, if the movement of the point is due to the
frequency change, the frequency at the points C and D can be
interpreted as a cutoff frequency of surface waves.

It is to be noted that the waves transformations described
above and illustrated in Fig. 8 relate to any absorbing strati-
fied guiding structures for both TM and TE types of guided
waves. In the following, we present numerical data that illus-
trates the cutoff phenomenon in homogeneous layers. This data
was obtained with the numerical solutions for dispersion equa-
tions (6) and (14) using the Muller’s method [14]. All calcula-
tions were performed for an actual commercially available ma-
terial with constitutive parameters shown in Fig. 9. Such mate-
rials are widely used as microwave absorbing coatings.

Transformation of TM surface waves into nonphysical waves
through the point C (Fig. 8) is illustrated in Fig. 10 for absorbing
layers with thickness ranging from 0.05 to 0.09 inch. The
oscillation frequency ranges from 2
GHz at the upper end of each trajectory in Fig. 10 to 18 GHz
at its lower end. The frequency, at which the wave number tra-
jectory crosses the real axis can be interpreted as the upper
cutoff frequency. This phenomenon has been also described re-
cently in [6]. As shown above, at this frequency the TM sur-
face waves transform into regular plane wave incident on the
absorbing layer under the real Brewster angle.

Fig. 10. Trajectories of the transverse wave number of fundamental TM
guided waves in absorbing layers. The oscillation frequency(f = c � k =2�)
increases in the counter-clockwise direction along each trajectory.

Fig. 11. Trajectories of the transverse wave number of fundamental TE guided
waves in absorbing layers. The oscillation frequency(f = c �k =2�) increases
from the bottom to the top along each trajectory.

Fig. 11 illustrates the transformation of TE surface waves. In
this figure, the point moves from the second quadrant
into the third quadrant through the point D beyond the branch
cut (Fig. 8) when the frequency decreases. Therefore, the fre-
quency at which this point crosses the real axiscan be inter-
preted as the usual lower cutoff frequency.

VI. A N UPPERFREQUENCYCUTOFF OFTE SURFACEWAVES

A new physical phenomenon, so far unknown, concerns an
upper frequency cutoff for TE waves. It is shown in Figs. 12
and 13. The TE surface waves (with , ,
and shown in these figures can propagate only in
finite frequency bands. The lower boundary of these bands is
the usual lower cutoff frequency and the upper boundary is the
upper cutoff frequency. In contrast to the case of TM surface
waves, no specific values of the phase and energy velocities are
inherent for upper cutoff frequencies.

Let us numerate the curves on Figs. 12 and 13 in the order of
increasing frequency. It is obvious that all curves with numbers
higher than one relate to high-order modes. The mode related to
the first curve can be conditionally considered as fundamental.
We cannot state that this is exactly a fundamental mode because
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Fig. 12. Dispersion curves of TE surface waves in the absorbing layer with
constitutive parameters shown in Fig. 9 and with thickness of 0.30 in. The
transverse wave numbers of these waves are located in the second quadrant on
the first Riemann sheet in the complexk -plane shown in Fig. 4

Fig. 13. Dispersion curves of TE surface waves in the absorbing layer with
constitutive parameters equal to 1.2" and 1.2�, where" and� are shown in
Fig. 9. The layer thickness equals 0.30 of inch. The transverse wave numbers of
these waves are located in the second quadrant on the first Riemann sheet in the
complexk -plane shown in Fig. 4.

we do not have the data for the constitutive parametersand
at frequencies lower than 2 GHz. It may be that this mode also
belongs to high-order modes.

Note also that the lower and upper cutoff phenomena for TE
surface waves shown in Figs. 12 and 13 do not relate to the tran-
sition of their wavenumbers from the second quadrant into other
quadrants or other Riemann sheets in the complex-plane.
Such transitions were not revealed in the numerical investiga-
tions of these waves. However, these transitions were obtained
for surface waves in a thinner layer and they are shown below
in Figs. 15 and 16.

The data in Fig. 12 relate to the actual absorbing layer with
electromagnetic parameters given in Fig. 9. The data in Fig. 13
relate to the hypothetical absorbing layer which permittivity and
permeability are 120% of original values given in Fig. 9. Note
that the Kramers–Kronig relations are invariant with respect to
a constant factor and allow multiplication ofand by any
constant real number. This property of the Kramers–Kronig re-
lations is also used in the next section.

Fig. 14. Dispersion curves of TE surface waves in the absorbing layer with
constitutive parameters equal to 1.35" and 1.35� where"and� are shown in
Fig. 9. The layer thickness equals 0.30 of inch. The transverse wave numbers of
these waves are located in the second quadrant on the first Riemann sheet in the
complexk -plane shown in Fig. 4.

Fig. 15. Dispersion curves of TE wave modes in the absorbing layer with
constitutive parameters shown in Fig. 9 . The layer thickness equals 0.075 of
inch.

Fig. 16. Trajectories of the transverse wave number of those TE guided
waves, which are shown in Fig. 15. The layer thickness equals 0.075 of inch.
Constitutive parameters of the layer are given in Fig. 9. The directions at which
the oscillation frequency(f = c � k =2�) increases along each trajectory are
shown by arrows.

VII. M ERGING OFHIGH TE WAVE MODES

From observation of Figs. 12 and 13 it appears that the ends
of neighboring trajectories tend to approach one another when
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Fig. 17. Attenuation constants of TM surface waves in layers with constitutive
parameters equal to 120% of original" and�, shown in Fig. 9.

and increase. In Fig. 14, it is seen that four trajectories of
surface waves merge into one related to the fundamental mode
(with , and when the
layer’s permittivity and permeability reach 135% of original
values given in Fig. 9. This is a newly discovered phenomenon.
As with the upper frequency cutoff, it may have diverse practical
applications. In particular, it can be used in the design of mi-
crowave devices with an extended single-mode frequency band.

VIII. L EAKY WAVES

Fig. 15 shows the dispersion characteristics of TE waves in a
layer with 0.075 in thickness and with the original permittivity
and permeability given in Fig. 9. The upper and middle
curves represent the first (fundamental) and second modes,
respectively. The lower curve relates to the leaky wave. This
becomes clear from Fig. 16 where the dispersion characteristics
of the same modes are displayed in the complex-plane. The
directions at which frequency increases along dispersion
trajectories are indicated by arrows. The left trajectory relates
to the second mode. The central trajectory relates to the first
(fundamental) mode. The frequencies at which these two
trajectories intersect the real axis are the usual lower cutoff fre-
quencies. The right trajectory in Fig. 16 is located in the fourth
quadrant of the first Riemann sheet in Fig. 4 and represents a
leaky wave. The left end of this trajectory represents the upper
cutoff of the leaky wave.

Fig. 16 shows a continuous transformation of surface waves
into nonphysical waves. However, changes of frequency and
thickness of the layer with parametersand given in Fig. 9
do not reveal a continuous transformation of nonphysical waves
into leaky waves. Other changes of thickness and, may re-
veal such a transformation.

IX. SHIFTING OF THEUPPERCUTOFF TOHIGHERFREQUENCIES

IN MATERIALS WITH LOWER LOSSES

Another interesting phenomenon is illustrated in Figs. 17–19,
with dispersion curves for TM surface waves in lossy materials.
In these figures, the positive values of the attenuation constant

relate to propagating surface waves while the
negative values to nonphysical waves. Transformation of sur-

Fig. 18. Attenuation constants of TM surface waves in layers with original"

and�, shown in Fig. 9.

Fig. 19. Attenuation constants of TM surface waves in layers with constitutive
parameters equal to 80% of original" and�, shown in Fig. 9.

face waves into nonphysical waves happens at the upper cutoff
frequencies. Fig. 17 contains the dispersion curves for layers
with the hypothetical material whose constitutive parameters are
120% of original and , shown in Fig. 9. In Fig. 18, we have
the dispersion curves for layers with originaland . In Fig. 19,
the constitutive parameters are equal to 80% of original values.
We recall again that multiplication of constitutive parameters by
any positive constants does not violate the Kramers–Kronig re-
lations. Comparison of these figures clearly shows that the upper
cutoff frequencies increase when the absorbing layers become
less lossy. The same observation follows from the comparison
of the dispersion curves for TE surfaces waves in Figs. 12 and
13. This observation suggests the following idea: surface waves
in all materials may have the upper frequency cutoff, but this
cutoff happens at very high frequencies for materials with very
low losses. This may explain why the upper cutoff phenomenon
was not discovered in common materials with low losses which
are used in transmission lines and microwave devices.

X. CONCLUSION

Transformation of guided waves in absorbing layers has been
investigated in the previous [6] and present papers. Characteris-
tics of TM waves in such layers were studied in paper [6]. Gen-
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eral properties of TM and TE guided waves in absorbing layers
are the subjects of the present paper. It is shown that all waves
guided by any homogeneous absorbing layers are slow waves.
Their phase and energy velocities are identically equal to each
other and always less than the light speed. It is also found that
in such layers the continuous transformation of surface waves
into growing and leaky waves is forbidden. New physical phe-
nomena are discovered. These are the upper frequency cutoff
for TM and TE surface waves, the shifting of the upper cutoff
to higher frequencies in materials with lower losses, and the
merging of high order TE wave modes.

The present paper supplements extensive publications on an-
alytical investigations of dispersion equations. These investiga-
tions show that transformation of guided waves is determined
by analytical properties of dispersion equations in the vicinity
of some critical and singular points such as fold points, Morse
points, and branch points. Relevant references can be found in
[15] and [16]. Extension of such analytical techniques for real
absorbing and dispersive materials is very attractive but it seems
to be difficult.
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