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Two Time-Derivative Lorentz Material (2TDLM)
Formulation of a Maxwellian Absorbing Layer

Matched to a Lossy Medium
David C. Wittwer, Member, IEEE,and Richard W. Ziolkowski, Fellow, IEEE

Abstract—A two time-derivative Lorentz material (2TDLM)
is introduced to define polarization and magnetization fields that
lead to an absorbing layer that can be matched to a lossy dielec-
tric medium. The 2TDLM is a generalization of the successful
uniaxial polarization and magnetization time-derivative Lorentz
material (TDLM) which has been introduced as an absorbing
boundary condition for simulation regions dealing with lossless
materials. Expressions are derived to describe the propagation of
an arbitrary plane wave in this 2TDLM Maxwellian absorbing
material. They are used to study the scattering from a semi-infinite
2TDLM half-space of an arbitrary plane wave incident upon it
from a lossy isotropic dielectric medium. Matching conditions are
derived which produce reflectionless transmission through such
an interface for any angle of incidence and frequency. Numerical
tests are given which demonstrate the effectiveness of the resulting
2TDLM absorbing layer.

Index Terms—Lossy media, perfectly matched layers, time-do-
main analysis.

I. INTRODUCTION

CONSIDERABLE effort has been expended in recent
years both in the computational electromagnetics (CEM)

[1]–[14] and applied mathematics communities [15], [16]
toward the construction of highly efficient absorbing boundary
conditions (ABC’s) for reflectionless grid truncation of numer-
ical simulators for Maxwell equations. Ideally, the perfect ABC
would absorb electromagnetic energy incident from any angle
with any polarization and at all frequencies. Reflectionless
termination of simulation regions associated with, for instance,
finite-difference time-domain (FDTD) and finite-element
(FEM) methods require such ABC’s. Currently, the most
popular ABC is the perfect matched layer (PML) introduced
by Berenger [1]. While this approach has achieved excellent
numerical results, the requisite splitting of the field equations
renders the PML non-Maxwellian. Moreover, recent stability

Manuscript received February 27, 1998; revised March 5, 1999. The work
by D. C. Wittwer was supported in part by the Radar Design Center, Raytheon
Systems Company, Tucson, AZ, through the Doctoral Fellowship Program. The
work by R. W. Ziolkowski was supported in part by the Office of Naval Research
under Grant N0014-95-1-0636 and by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under Grant F49620-96-1-0039.
The views and conclusions contained herein are those of the author and should
not be interpreted as necessarily representing the Office of Naval Research or
the Air Force Office of Scientific Research or the U.S. Government.

The authors are with the Electromagnetics Laboratory, Department of
Electrical and Computer Engineering, University of Arizona, Tucson, AZ
85721-0104 USA.

Publisher Item Identifier S 0018-926X(00)01662-8.

analyses [15], [16] have shown the PML ABC to be weakly ill
posed.

A variety of alternative approaches that are Maxwellian have
appeared recently [7]–[14]. Most are based upon the uniaxial
medium formulation given by Sachset al.[7]. To effect the req-
uisite matched material conditions, Ziolkowski [11]–[14], for
example, engineers an uniaxial electric and magnetic medium
by introducing time-derivative Lorentz material (TDLM)
models for the polarization and magnetization fields and
currents. The resulting TDLM ABC for matching to isotropic,
homogeneous, lossless materials has been implemented in one-,
two-, and three-dimensional [(1-D), (2-D), (3-D)] FDTD simu-
lators and produces absorption levels comparable to the PML
ABC. Steps toward physical realization of such Maxwellian
absorbers with artificial electric and magnetic molecules have
been proposed by Auzanneau and Ziolkowski [17]–[19].

Unfortunately, many practical simulation problems in-
volving, for instance, microstrip transmission lines, microstrip
patch antennas, and microwave/millimeter wave integrated
circuits (MIC/MMIC), deal with lossy substrates. Accurate
simulations of these problems necessitate termination of
the simulation region with an ABC matched to these lossy
dielectrics. Berenger’s PML ABC cannot be applied in this
case. The development of a potentially physically realizable
material that can lead to a generalization of the TDLM ABC to
simulation regions dealing with general lossy dielectrics is the
focus of this paper.

Beginning in Section II, the scattering of an obliquely in-
cident plane wave from the interface between a lossy dielec-
tric medium and a general biaxial anisotropic medium is de-
scribed. The properties of the biaxial medium that are required
for it to function as an ideal reflectionless medium are identi-
fied. In Section III, a physical material model is introduced, the
two time-derivative Lorentz material (2TDLM) model, which
allows this biaxial medium to become an ideal electromagnetic
absorber. In Section IV, the governing differential equations de-
scribing a 2TDLM layer are coupled with Maxwell’s equations
into a state-space form for implementation in a numerical FDTD
simulator. The explicit discretized forms of this 2TDLM layer
system are provided in [20]. Several validation cases in one,
two, and three dimensions have been completed; these results
are summarized in Section IV. They demonstrate the effective
absorption properties of the 2TDLM layer.

There have been a number of recent extensions of the PML
ABC to lossy media and evanescent wave applications that are
relevant to our absorber studies. Gedney in [21] and in [22, ch.
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5] develops an uniaxial PML (UPML) ABC that avoids the field
splitting associated with the Berenger PML ABC. Results for
the UPML ABC applied to a simple 2-D lossy medium test
case are given. Lauet al. [23], Fang and Wu [24], and Liu [25]
introduce variations of the Berenger PML ABC to deal with
evanescent wave and lossy media problems. These approaches
use the stretched coordinate ideas and normal field splitting as-
sociated with the Berenger PML ABC. Additional 2-D lossy
media examples were discussed. Rappaport and Winton [26]
have demonstrated the need for lossy media ABC’s with their
modeling of ground probing radar signals in lossy dispersive
soil. Further issues associated with ABC’s for various media sit-
uations are reviewed in [22]. The actual development of a com-
plete 3-D ABC for lossy media based upon the 2TDLM model
and its numerical implementation have been left to a companion
paper [20]. We concentrate here on the material aspects of the
2TDLM model and its potential for the development of a useful
absorbing slab. Consequently, we do not deal with any evanes-
cent wave issues.

II. PLANE WAVE SCATTERING FROM AN INTERFACEBETWEEN

A BIAXIAL MEDIUM AND AN ISOTROPICLOSSYELECTRIC AND

MAGNETIC MEDIUM

Consider a plane wave propagating in an isotropic lossy elec-
tric (relative permittivity and electric conductivity ) and
magnetic (relative permeability and magnetic conductivity

) medium (Region I) that is obliquely incident upon a semi-in-
finite anisotropic medium (Region II), as illustrated in Fig. 1.
The general obliquely-incident 3-D plane wave can be reduced
to two orthogonal TE and TM plane wave problems [27]. Let

lie in the -plane with the normal to the interface in the
direction. We have followed the analysis presented originally
in [7] but retaining all constitutive terms (i.e., are
carried throughout the entire calculation). We have carried all of
these terms to a point in our argument which does not restrict its
generality. However, since we are interested in the special case
of lossy dielectrics (i.e., lossy, nonmagnetic materials), we shall
restrict our explicit display of the results to that case.

An isotropic lossy medium in Region I is defined by setting
and where is the unit tensor

and the lossy relative permittivity and permeability are given by
complex scalar expressions containing the electric and magnetic
loss terms, viz:

(1)

In Region II, we assume the anisotropic medium is biaxial
in the same manner as was done in [11] for matching a layer
to a lossless medium. A biaxial electric and magnetic medium
may be represented in the most general sense by permittivity
and permeability tensors of the form

(2)

Fig. 1. Interface definition: parallel polarization.

where we have further introduced the complex coefficients

(3)

associated with the TM polarization and the complex coeffi-
cients

(4)

associated with the TE polarization. This is analogous to the
usual method of generalizing lossless problems to their lossy
counterparts.

Plane waves and the corresponding dispersion relations, wave
impedances, and wave numbers are constructed in a straight-
forward manner. Then, introducing a plane wave incident from
Region I onto Region II, one can obtain the reflection and trans-
mission coefficients associated with the interface between Re-
gions I and II for each polarization. It is readily shown that we
have two independent variables, i.e., two degrees of freedom,

and , to satisfy the systems for the cases of a TE or a TM
polarized incident plane wave. The conditions to affect a reflec-
tionless scattering for each polarization are readily derived. For
instance, one finds in the TE case that the coefficients of the
permittivity and permeability tensors must satisfy the relations:

and . The complementary pro-
cedure is carried out in the same manner for the TM case. One
finds that in order to realize reflectionless scattering for an ar-
bitrarily polarized plane wave, i.e., simultaneously for both the
TE and TM polarized components of the incident plane wave,
that the electric and magnetic material coefficients must satisfy

. This relation is equivalent to requiring that both
transverse wave numbers must be continuous across the Region
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I–II interface. Summarizing these results, this means the permit-
tivity and permeability tensors must have the forms

(5)

Note that the continuity of the transverse wavenumbers at the
interface necessarily excludes equality of the normal wavenum-
bers. This results in different propagation velocities into the ma-
terial for each polarization. Considering that our Region II mate-
rial will be designed as an absorber, this will not cause a problem
as one polarization will be simply damped faster than the other.

It is important to notice that these tensors will only be dual
for the lossless free-space case where and . For
this case, the expressions derived in [7] are recovered.

III. T WO TIME-DERIVATIVE LORENTZMATERIAL MODEL

As found in [11], a susceptibility model that provides broad
bandwidth absorption characteristics can be developed if the
polarization (magnetization) of the medium is driven with
contributions from time derivatives of the electric (magnetic)
fields. Electric and magnetic field time derivative contributions
to the polarization and magnetization fields can occur in a linear
medium when it has both electric and magnetic properties.
This means we can rewrite and in the form of complex
susceptibilities . All that is required is that we find a suitable
model for to specify completely the properties of the medium.

In order to simplify the analysis we will restrict the materials
to which we will match the absorber. We now consider only non-
magnetic materials having equal to unity and . It is
important to keep in mind that this restriction is not a require-
ment but merely a simplification of the analysis to problems
most often encountered in engineering applications. Making this
specialization reduces the complex coefficients in Region I to
the form , . We now make the choice

.
The tensors resulting from (5) are then

(6)

(7)

As was done in [11]–[14], one can introduce a generaliza-
tion of the Lorentz model for the polarization and magnetiza-
tion fields that includes time derivatives of the driving fields as
source terms. For instance, the-directed polarization and mag-
netization fields in such a material would be assumed to satisfy
a linear two time-derivative Lorentz material (2TD-LM) model,
hence, have the forms

(8)

(9)

where is the resonance frequency and is the width of
that resonance. Note the introduction of the second-time deriva-
tive; this is different from the formulation in [11]–[14]. The
second-time derivative is required here to account for the loss
in the medium. The terms and represent, re-
spectively, the coupling of the electric (magnetic) field and its
first- and second-time derivatives to the local charge motion.
The term can be viewed as the plasma frequency associated
with those charges. This 2TDLM model leads, for example, to
the following frequency-domain electric and magnetic suscep-
tibilities

(10)

(11)

Ziolkowski [11] presents a proof that defines when a broad
band absorber is realized. The desired conditions are obtained
if the anisotropic 2TDLM medium is designed such that ,

, , and . This choice gives
the desired form of the 2TDLM susceptibilities. In particular,
the transverse components of the magnetic susceptibility can be
assigned to have the form

(12)

The values for , and may be determined by
forcing continuity of the material properties and, hence, the
impedance across the interface. From (5) we know that the
permeability is directly related to . Clearly then, we need
to set at the interface between Regions
I and II. On the other hand, from (12) we recognize that the

and terms are responsible, respectively, for a static (dc)
contribution and a frequency dependent contribution in the real
part of the permeability, while the term is responsible for a
frequency dependent loss. Since we desire the loss to increase
as the wave propagates into the absorber (Region II), we then
choose to set

(13)

(14)

(15)
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where is a profile function whose value is zero at the inter-
face and whose maximum value will be fixed by the sim-
ulation problem. The explicit loss tangent coefficient

is included here for notational and magnitude conve-
nience; in particular, it shows that the term can be nor-
malized to a more manageable value.

Consequently, the corresponding transverse components of
the magnetic susceptibilities then have the form

(16)

and, similarly, the longitudinal component of the magnetic sus-
ceptibility has the form

(17)

Therefore, the frequency-domain expressions for the magneti-
zation fields are

(18)

(19)

To find the corresponding expressions for the polarization
fields, reconsider now the impedance ratio in Region I.
Because of the choice that was made for, we find that this
ratio remains the same in Region II if it has the following form:

(20)

This choice guarantees that the impedance in Region II will
always be matched to its value in Region I. Due to the form of the
denominator of this expression, we recognize that must
then also have a 2TDLM form. The transverse components of
the electric susceptibility are of the form

(21)

This expression is matched to the 2TDLM model for the
electric susceptibility, i.e.,

, if we identify the coefficients

(22)

(23)

(24)

The longitudinal component of the electric susceptibility
tensor is then fixed to be

(25)

The polarization fields may then be represented in the fre-
quency domain by

(26)

(27)

With all of the susceptibility terms now well defined, it re-
mains to develop a consistent set of ordinary differential equa-
tions that may be easily implemented in a FDTD code. In the
general sense, Maxwell’s equations including the polarization
and magnetization fields are

(28)

(29)

The time-domain differential equations for the polarization
and magnetization fields may be recovered by identifying mul-
tiplication by in the frequency domain as equivalent to dif-
ferentiation with respect to time in the temporal domain. Thus,
the time-domain expression for the polarization and magnetiza-
tion fields are found, respectively, from (18), (19), (26), and (27)

(30)

(31)

(32)

(33)

We introduce the polarization and magnetizations currents

(34)

(35)

(36)

(37)

so that we may now treat a self-consistent set of first-order equa-
tions in state–space form. Substitution of the expressions for the
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currents into (28), (29), and (30)–(33) yields the desired equa-
tion set

(38)

(39)

(40)

(41)

(42)

(43)

(44)

We note that none of the polarization or magnetization field
components need to be included in this set. This greatly simpli-
fies the computational aspects of implementing a 2TDLM ab-
sorbing layer.

IV. NUMERICAL IMPLEMENTATION AND VALIDATION RESULTS

It is now left to implement the 2TDLM model into a FDTD
simulator. The loss in the 2TDLM slab is gradually introduced
through the term . To correlate with the results in [20],
we set

(45)

where . The function is the profile
function associated with the slab. Setting causes the loss
to have a quadratic profile in the slab. The slab is defined by
and and is the only region where the 2TDLM is imple-
mented. The time derivative of the electric (magnetic) field on
the right-hand side of (41) [(44)] is replaced by the expression
in (39) [(43)]. This substitution along with the explicit material
relations (13)–(15) and (22)–(24) leads from (38)–(44) to the
following set of differential equations that may be implemented
with a second-order differencing scheme and that preserves the
leap frog paradigm

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Note that we have introduced a scaling factor into (51)
and (52) to force their right-hand sides to have the same forms
as the corresponding longitudinal electric field and polariza-
tion current equations. Discretization of the above differential
equation set based on a standard Yee cell with both linear and
exponential differencing has been performed and both differ-
encing schemes produce essentially the same results. We im-
plemented the numerical implementation approach discussed in
[20], which uses the exponential differencing form, to produce
the results presented below.

Numerical tests of a 2TDLM absorbing layer were performed
in 1-D, 2-D, and 3-D FDTD simulators. In all cases, the simula-
tions were performed with and without the 2TDLM layer, thus
generating a known numerical solution for comparison. After
obtaining the reference solution, the 2TDLM layer, consisting
of ten cells and a perfect electric conductor (pec) backing, is
then inserted into the problem space and the simulation is per-
formed again. In the 1-D and 2-D simulations, both calculations
were obtained simultaneously. In the 3-D simulations, this ap-
proach was not taken and the numerical reference solution was
obtained independently to allow for larger simulation regions.
The reflection caused by the introduction of the 2TDLM layer
is then calculated at selected points in the grid by subtracting
the reference solution from the solution containing the 2TDLM
layer and then normalizing that difference by the maximum of
the recorded reference field at that sample point.

The 1-D simulations considered the interaction of two pe-
riods of a 3.0-GHz plane wave modulated by a smooth enve-
lope with the 2TDLM layer. The 2-D
simulations considered the interaction of a normally incident
1-0-1 and a 2-2-2 pulsed, 3.0-GHz Gaussian beam with a waist
of 0.1 with the 2TDLM layer. The - - pulse profile con-
sists of cycles of rise time, cycles of full amplitude os-
cillation and cycles of fall time. Both of the 1-D and 2-D
tests were run with and resolution. The 3-D sim-
ulation space, shown in Fig. 2, consisted of a lattice containing

square cells and ran for . A col-
limated, two-cycle 3.0-GHz Gaussian beam pulse with a waist
of 0.1 and a 1-0-1 pulse profile was launched at normal inci-
dence from a total field/scattered field plane ten cells in front of
the air-dielectric interface. The 2TDLM model was introduced
30 cells into the lossy dielectric medium. Only the reso-
lution case was run in 3-D in order to allow us to implement,
given the available memory, a very large electrical-sized simu-
lation region.
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Fig. 2. 3-D problem space geometry.

Results were produced in 1-D, 2-D, and 3-D FDTD simula-
tions at a resolution of . These analyses were completed for
a dielectric (Duroid) with relative permeability and two
different loss tangents . The results of these
calculations are shown in Fig. 3. Examination of the curves re-
veals that increasing the loss tangent by two orders of magnitude
reduces the optimum value of by two orders of magnitude.
It is also noted that the 1-D, 2-D, and 3-D simulation cases are
in rather good agreement despite the differences in the spatial
dimensions and their different excitations. Since there is no an-
alytic formula at present for determining the optimum value of

, this agreement in 1-D, 2-D, and 3-D means that one can
simply use the 1-D simulator to determine a good choice for

in the 2-D and 3-D situations. These 1-D simulations can
be accomplished in a matter of minutes on a high performance
workstation. Fig. 3 demonstrates that the 2TDLM slab is very
effective as an absorber. Further, the selected value of has
a definite impact on the absorption qualities of the slab. In fact,
it has a minimum value just as the PML ABC does [28]. The
1-D and 2-D simulations with the finer resolution showed
slightly better absorption levels despite the fact that the 2TDLM
slab was electrically thinner, and the general behavior was the
same as its parameters were varied.

It is common when doing numerical work to try and use as
few cells as possible to implement a given model. This reduces
the size of the model and makes simulations possible on com-
puters of limited size. This is particularly critical for 3-D simula-
tions. Thus, the effectiveness of the 2TDLM layer with varying
thicknesses was next examined. Fig. 4 shows the reflection co-
efficient in 3-D for the case as a function of
absorber thickness. The latter was determined in terms of the
number of FDTD cells. The total thickness of the slab is .

Fig. 3. Reflection coefficient versus� with �=20.

Note the expected result that the reflection coefficient increases
when using fewer cells in the absorbing layer. However, note
that a high level of absorption is achieved even with relatively
few number of cells.

V. CONCLUSIONS

The analytic solution for a general plane wave obliquely
incident from a lossy electric and magnetic medium onto a
biaxial anisotropic medium was presented and reformulated
to take into account the polarization and magnetization fields
responsible for the scattering. Selection criteria for the permit-
tivity and permeability tensors, which provide reflectionless
transmission through the interface, were found. A physical
Maxwellian 2TDLM model was introduced to satisfy the
matching conditions in addition to producing the desired loss
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Fig. 4. Reflection coefficient versusN with �=20 andtan � = 0:1.

behavior. The final permittivity and permeability tensors for
a 2TDLM absorbing layer were obtained from all of these
conditions. A numerical implementation of this 2TDLM model
was then derived for FDTD simulators. Numerical validation of
the 2TDLM model was presented. It was demonstrated in 1-D,
2-D, and 3-D that a 2TDLM layer is a very effective matched
absorber in the presence of lossy dielectric materials. Moreover,
the similarity of the results in 1-D, 2-D, and 3-D provided
justification to use the 1-D simulator to determine quickly the
2TDLM material constants for the 2-D and 3-D simulators.

Note that the lossy dielectric medium is naturally dispersive.
By its very nature, the 2TDLM layer provides a means to
terminate even more complex dispersive dielectric media.
The procedure presented here can also be extended to lossy,
dispersive magnetic media in a straightforward manner. It could
be extended to lossy, dispersive electric and magnetic media
as indicated in our analysis. However, the latter requires some
extra considerations. There are several additional frequency
terms that will appear because of the products and ratios of
and and must be handled properly in the transition to the
time domain. The same issue occurs in edge and corner regions
if one extends the results here to achieve a full 3-D 2TDLM
ABC since in those regions products of the permittivity and
permeability tensors are required as discussed in [13] and
[14]. Nonetheless, the results for the 2TDLM absorbing layer
presented here clearly demonstrate that Maxwellian material
models can be incorporated with standard FDTD solvers to
define effective lossy layers which can be matched to any type
of medium.

We note that while we have provided explicit results for
FDTD simulators, the frequency domain version of the 2TDLM
discussion can be applied immediately to FEM simulation
regions. While the realization of absorbing layers matched to
lossy dielectrics has many practical applications, this work,
as noted in the introduction, also has applications toward the
development of a complete absorbing boundary condition for
numerical 3-D FDTD simulations of lossy dielectric regions.
Such a 3-D 2TDLM ABC has been realized; its formulation
and performance evaluation are reported in [20]. Moreover,
applications of the 3-D 2TDLM ABC to microstrip line and

micropatch antenna problems have been investigated; these
results have been presented in [29].
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