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Maxwellian Material-Based Absorbing Boundary
Conditions for Lossy Media in 3-D
David C. Wittwer, Member, IEEE,and Richard W. Ziolkowski, Fellow, IEEE

Abstract—A two time-derivative Lorentz material (2TDLM),
which has been shown previously to be the correct Maxwellian
medium choice to match an absorbing layer to a lossy region,
is extended here to a complete absorbing boundary condition
(ABC) for three-dimensional (3-D) finite-difference time-domain
(FDTD) simulators. The implementation of the lossy 2TDLM
(L2TDLM) ABC is presented. It is shown that in contrast to the
one-dimensional (1-D) and two-dimensional (2-D) versions, the
full 3-D ABC requires a three time-derivative Lorentz material
in the edge and corner regions to achieve a rigorous matching of
the resulting Maxwellian absorbing layer to the lossy medium.
The 3-D ABC implementation thus requires the introduction of
an auxiliary field to handle the edge and corner regions to achieve
a state–space form of the update equations in the ABC layers.
Fully 3-D examples including pulsed dipole radiation and pulsed
Gaussian beam propagation in lossless and lossy materials as
well as pulse propagation along a microstrip over lossless and
lossy materials are included to illustrate the effectiveness of the
L2TDLM ABC.

Index Terms—Lossy media, perfectly matched layers.

I. INTRODUCTION

CONSIDERABLE effort has been expended in recent
years both in the computational electromagnetics (CEM)

[1]–[22] and applied mathematics communities [23], [24]
toward the construction of highly efficient absorbing boundary
conditions (ABC’s) for reflectionless grid truncation of numer-
ical simulators for Maxwell equations. Ideally, the perfect ABC
would absorb electromagnetic energy incident from any angle,
with any polarization and at all frequencies. Reflectionless
termination of simulation regions associated with, for instance,
finite-difference time-domain (FDTD) and finite-element
(FEM) methods require such ABC’s. Generally, the perfectly
matched layer (PML) or the related uniaxial ABC’s have only
been applied to terminate lossless regions of the simulation
space [9]–[24].

Unfortunately, many practical simulation problems in-
volving, for instance, microstrip transmission lines, microstrip
patch antennas, and microwave/millimeter wave integrated
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circuits (MIC/MMIC), deal with lossy substrates. Accurate
simulations of these problems necessitate termination of the
simulation region with an ABC matched to these lossy di-
electrics. Several papers have appeared recently [1]–[8] which
have established the need for such lossy media ABC’s and
have proposed partial or complete solutions. Berenger’s PML
ABC cannot be applied directly in this case; it was developed
for the termination of a lossless dielectric region. For instance,
Rappaport and Winton [3] have demonstrated the need for
lossy media ABC’s with their modeling of ground probing
radar signals in lossy dispersive soil. Gedney in [4] and [8]
developed an uniaxial PML (UPML) ABC that avoids the field
splitting associated with the Berenger PML ABC. Results for
the UPML ABC applied in two dimensions to a current filament
radiating in air over a lossy half-space were given. Lauet al.
[5], Fang and Wu [6], and Liu [7] introduced variations of the
Berenger PML ABC to deal with evanescent wave and lossy
media problems. These approaches use the stretched coordinate
ideas and normal field splitting associated with the Berenger
PML ABC. An example of a line source in a two-dimensional
(2-D) homogeneous lossy medium was given in [5]; a line
source radiating in a 2-D layered lossy medium was given in
[6]. A three-dimensional (3-D) lossless microstrip line problem
was discussed in [6]. A qualitative graphical presentation of
comparisons with analytical solutions for a dipole source in a
homogeneous 3-D homogeneous lossy medium and scattering
from a conductive sphere in a 3-D homogeneous lossy medium
were given in [7]. Additional issues associated with ABC’s for
various media situations have been reviewed by Gedney in [8,
ch. 5].

The focus of this paper is the development of a complete 3-D
Maxwellian material-based ABC for the truncation of FDTD
simulation regions dealing with general lossy dielectrics in
three dimensions. This is accomplished with a generalized for-
mulation of the two time-derivative Lorentz material (2TDLM)
approach that has been shown previously to be the correct
Maxwellian medium choice to match an absorbing layer to a
lossy dielectric region [1]. It is shown here that in contrast to
the 2TDLM absorbers, which are sufficient to treat the faces
of the truncated 3-D FDTD simulation region, the full 3-D
ABC requires a three time-derivative Lorentz material in the
edge and corner regions to achieve a rigorous matching of the
resulting Maxwellian absorbing layers to the lossy medium.
The 3-D ABC implementation thus requires the introduction
of an auxiliary field to handle the edge and corner regions to
achieve a state-space form of the update equations in the ABC
layers. The desire to have a Maxwellian-based ABC extends
beyond the numerical simplification it affords by avoiding the
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field splitting associated with the PML ABC; it also allows for
the possibility of potentially physically realizable materials for
absorbers using the artificial material constructs discussed; for
instance, in [25] and [26]. Complete details of the numerical
implementation of the lossy 2TDLM (L2TDLM) ABC are
presented. Comparisons between the L2TDLM ABC and the
UPML ABC for the 2-D test cases presented in [4] and [8, ch.
5] are discussed. Fully 3-D examples including pulsed dipole
radiation and pulsed Gaussian beam propagation in lossless and
lossy materials as well as pulse propagation along a shielded
microstrip line over lossless and lossy materials are included
to illustrate the effectiveness of the L2TDLM ABC. We do not
deal explicitly with evanescent wave issues associated with
guided wave environments; rather we focus attention on the be-
havior of the L2TDLM ABC for source and propagation issues
in both open and guided wave configurations. The applications
of the L2TDLM ABC in a variety of MMIC configurations is
presented elsewhere [27].

The derivation of the generalized formulation begins in Sec-
tion II with an overview of the lossy two time-derivative Lorentz
material (L2TDLM) model and its coupling to Maxwell’s equa-
tions. Like the previous development in [1] we characterize a
face (or slab) by its normal and introduce additional loss in that
direction with an increasing profile function. To achieve a com-
plete ABC we also introduce the requisite formulation for the
edges (union of two faces, hence, depending on two indepen-
dent loss profile parameters) and for the corners (union of three
faces, hence, depending on three independent loss profile pa-
rameters). Like the previous development in [1], a formulation
is introduced that reduces to the lossless case when the con-
ductivity of the media becomes zero and which further reduces
to Maxwell’s equations in free-space as the permittivity goes
to unity and, hence, recovers the 3-D TDLM ABC developed
in [22]. It is highly desirable from a numerical implementation
point of view to arrive at a formulation that has these properties.
Furthermore, it is also highly convenient from an implementa-
tion point of view to have a formulation for a corner which re-
duces uniquely to the correct edge formulation and which fur-
ther reduces uniquely to the correct face formulation with the
appropriate selection of parameters. This avoids having sepa-
rate formulations for each region, hence, makes the ABC very
efficient to implement algorithmically and reduces the coding
complexity. Differences between the previous formulation and
the formulation presented here are identified and the selection
of the parameter space is described. The discussion continues
with the treatment of edges and corners. Finally, the formula-
tion developed for the corner regions is demonstrated to reduce
to the edge and face formulations as the appropriate parame-
ters go to zero. The numerical implementation of the L2TDLM
ABC is given in Section III and the numerical simulations used
to quantify its performance are discussed in Section IV. Conclu-
sions and future directions are presented in Section V.

II. L2TDLM ABC D ERIVATION

Our foundation for engineering an absorbing material is
based on the coupling of the electric and magnetic fields to po-
larization and magnetization currents. The coupling coefficients

of the polarization and magnetization currents are then free
parameters, which may be specified in such a way as to provide
a reflectionless boundary between the surrounding homoge-
neous medium and the absorbing layer, which, following [15],
is taken to be an uniaxial medium. Furthermore, the loss in the
absorbing medium can be enhanced by varying the independent
parameters of the polarization and magnetization currents as
functions (profiles) of position away from an interface along
the normal direction to that interface [1], [18]–[20], [22].

We wish to match a lossy dielectric medium to a uniaxial
medium. The frequency-domain Maxwell’s equations de-
scribing this uniaxial medium can be expressed in the following
form:

where we have defined as in [1] the tensorsand for an inter-
face with an , , directed normal, respectively, by

where all of the off-diagonal terms are zero, the term
, the term , and the terms , ,

and correspond to the alteration of the material model in a
direction transverse to the normal direction, which is labeled by
the subscript. As was done in [1], these tensors are rewritten in
terms of the electric and magnetic susceptibility tensors

Consequently, the material parametersare written below
in terms of the material model susceptibilities as

. We choose the absorber medium to be described by the
two time-derivative Lorentz material model for lossy, dispersive
media [1], denoted by L2TDLM, where time derivatives of the
driving fields act as source terms to describe the coupling of the
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electric and magnetic fields to the polarization and magnetiza-
tion fields, [18]–[20], [22]. These polarization and magnetiza-
tion field models are represented in differential form as

(1)

(2)

where is the resonance frequency and is the width of
that resonance. The terms , , and represent, re-
spectively, the coupling of the electric (magnetic) field and its
first- and second-time derivatives to the local polarization (mag-
netization) fields. The term can be viewed as the plasma fre-
quency associated with this coupling. It has been shown in [18]
that if , then the frequency-domain electric and mag-
netic susceptibilities associated, for instance, with (1) and (2)
may be approximated in the frequency domain by

(3)

(4)

Following the arguments in [1], this material is readily
matched to a lossy dielectric characterized by the material
constants , , and . One finds that matching is
achieved when the free parameters in the L2TDLM model are
given by

(5)

(6)

(7)

and

(8)

(9)

(10)

We note that the term is taken as a single quantity and
is composed of a profile for increasing the loss
while moving away from the interface along the normal direc-
tion and the profile maximum . For all the cases considered
below, the profile was taken (as it was in [1]) to be a quadratic
function of the distance away from the interface. These parame-
ters represent the only independent values which must be spec-
ified to define the absorbing ABC layer. We also note that the
form of the electric susceptibility reduces to the lossless case in
the absence of the conductivity term. Furthermore, the electric
susceptibility reduces to the free-space result as the permittivity
approaches unity.

A. Faces

Consider a slab of absorber, which is matched to a lossy di-
electric medium with the normal to its face being in the di-
rection. Using our definition of and we define the electric
and magnetic susceptibilities simply as

The magnetization terms are identical to those treated in [22]
and in [1]. On the other hand, the permittivity tensors must be
handled as they were in [1], which is slightly different from their
treatment in [22]. If we let represent the profile along,
the polarization field (1) combined with the L2TDLM material
specifications (7)–(10) yield the following frequency domain
expressions for the electric susceptibilities

The corresponding time-domain ordinary differential equations
(ODE’s) are

(11)

(12)

To reduce these second-order ODE’s to a first-order system that
can be incorporated with Maxwell’s equations, we introduce
equations for the polarization currents in terms of the
new variables as

(13)

(14)

With these choices, the corresponding Maxwell’s equations be-
come
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These equations can be further reduced to the following forms
which explicitly show the lossy nature of the ABC layer:

(15)

(16)

Using our choices for the polarization currents (13) and the
Maxwell (15), we can arrive at the expression

(17)

The corresponding equation for thecomponent of the polariza-
tion field (12) combined with the polarization current definition
(14) produces the relation

that can be reduced with the corresponding Maxwell equation
(16) to the following form

and, hence, yields the desired expression for the-component
of the polarization current

(18a)

B. Edges

Consider the union of two slabs of absorber. Let, for example,
one slab have its face normal to the direction and the other
normal to the direction. To prevent reflections from an edge,
the electric and magnetic susceptibilities must have the forms

Again, the magnetization terms are identical to those treated
in [22] and the polarization terms must be handled separately.
If we additionally let represent the profile along, the po-
larization fields are given by the frequency domain expressions

as shown in (18b) at the bottom of the page. The corresponding
time domain ODE’s are

(19)

(20)

(21)

We note that second-order Lorentz models for the electric
polarization fields arise in the components associated with the
directions defining the edge while a third-order Lorentz model
arises for the component normal to this edge. Again, to reduce
these ODE’s to a first-order system that can be incorporated with
Maxwell’s equations, we introduce equations for the polariza-
tion currents in terms of the new variables as

(22)

(23)

(24)

with these choices the corresponding Maxwell’s equations be-
come

(25)

(26)

(27)

(18b)
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These equations can be simplified to the following set, which
clearly shows the lossy nature of the medium:

(28)

(29)

(30)

Again, using our choices for the polarization currents (22)–(24),
we can arrive at

The first relation yields the equation for thecomponent of the
electric current

(31)

The corresponding equation for thecomponent of the current
can be found by symmetry to be

(32)

The remaining equation for thecomponent of the electric
current is determined from the third-order Lorentz model for the
electric polarization field (20) as follows:

This leads immediately to a second-order ODE for

This second-order ODE for is dealt with by introducing the
auxiliary function as defined by

(33)

This represents the desired rate equation for thecomponent
of the electric current. It then follows that the auxiliary function
must satisfy the corresponding rate equation

(34a)

We note that this auxiliary function is identically zero when the
conductivity goes to zero.

C. Corners

Finally, consider the union of three slabs of absorber, one slab
having its face normal to the , one normal to the , and one
normal to the direction. To prevent reflections from a corner,
the electric and magnetic susceptibilities must have the forms:

Again, the magnetization terms are identical to those treated
in [22] and the polarization terms must be handled separately.
With the form of the susceptibility matrix, one finds each term
is related to all the others simply by a cyclic permutation of the
indices. Thus, if we additionally let represent the profile
along , the polarization field, for instance, along theaxis is
given by the frequency domain expression as shown in (34b) at
the bottom of the page.

The resulting time domain ODE is then found to be

We note that a third-order Lorentz model for the electric po-
larization field again arises in 3-D for the corners. We make the
following choice for the polarization current:

(35)

(34b)
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We then find Maxwell’s equation for thecomponent of the
electric field to be

which reduces to the lossy medium relation

(36)
Using the choice (35) for the polarization current, one obtains

which yields a current equation of the form

Again, we introduce the auxiliary function defined by the
following ODE

(37)

The second-order equation for can then be reduced to the
relation

The following first-order ODE’s for and are then ob-
tained:

(38)

(39)

We note that if in the corner equations we set (or
or ), which would be appropriate for the corner re-

ducing to an – edge (or – edge or – edge, respectively),

the equations obtained in the previous subsection for that edge
are recovered. Similarly, the corner equations with two profile
parameters set to zero or the edge equations with one profile
parameter set to zero recover the corresponding face equations.
This self-consistency of the equations significantly reduces the
complexity of coding the L2TDLM ABC. Moreover, it also sig-
nificantly reduces the operation counts required to implement
the L2TDLM ABC from those associated with Berenger’s PML
ABC, particularly in the face and edge regions, which account
for the majority of the layers associated with these ABC’s.

III. I MPLEMENTATION

These polarization, magnetization and auxiliary field rate
equations are implemented into a FDTD simulator by obtaining
their discrete forms using finite differences. Consider, for
instance, the component set of equations for the corner

For convenience, we define the quantities

(40)

(41)

(42)

(43)

to simplify the form of the equation system as

(44)

(45)

(46)

If we let these fields be located at , , and
and introduce an exponential difference scheme, the

simplified system then takes the discrete form

These update equations for and can be rewritten in a
state-space matrix form
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where the matrices

(47)

(48)

(49)

This state–space system has the explicit solution

We then finally arrive at the semi-implicit update equations

(50)

(51)

(52)

Similar equations occur for theand components. They can
be obtained immediately from this set by cyclic permutations of

the indices and profile parameters. These L2TDLM ABC up-
date equations reduce to the corresponding TDLM ABC update
equations given in [22] when and . Note that one
of the main reasons that the exponential differencing scheme
was selected here was to ensure this reduction. Similar numer-
ical results can be obtained for the L2TDLM ABC using a more
direct central differencing scheme.

IV. NUMERCIAL RESULTS

The L2TDLM ABC developed above has been implemented
in a 3-D FDTD simulator, and the quality of absorption pro-
vided by it has been evaluated. Several 3-D problems have been
used to test the efficacy of the L2TDLM ABC including: 1) a
Hertzian dipole radiator in a homogeneous lossy medium; 2) a
Gaussian beam incident from free space onto a homogeneous
lossy medium; and 3) a shielded microstrip transmission line
with a lossy homogeneous dielectric substrate. In all these val-
idation examples, a numerical reflection coefficient due to the
introduction of the L2TDLM ABC is calculated by first running
simulations with a large spatial extent to define the reference so-
lution. Simulations with a smaller simulation space, which was
truncated with the L2TDLM ABC, were then performed. Elec-
tric field quantities were monitored at fixed locations in both
cases and compared. Their Fourier spectra were then obtained
via a discrete Fourier transform. The difference between the cal-
culated truncated and reference field spectra normalized by the
calculated reference field spectrum was used to generate the nu-
merical reflection coefficient. This spectral domain information
thus allowed us to quantify the numerical reflection coefficient
introduced by the L2TDLM ABC as a function of the frequency.

The following descriptions of the test problems indicate the
internal dimensions of the simulation. Additional cells that are
required by the L2TDLM ABC are to be added onto the total
sizes cited below. Unless otherwise noted, the L2TDLM ABC
layers were taken to be ten cells thick.

A. Comparisons with Gedney’s UPML ABC

Comparisons between the L2TDLM ABC and the TDLM
ABC for the 2-D cases discussed in [20] and between the UPML
ABC for the 2-D cases discussed in [4] and [8, Ch. 5] were run
to provide initial test results. A 2-D version of the 3-D L2TDLM
ABC is straightforwardly obtained from (50)–(52). The update
equations are essentially those for the faces and edges, but no
auxiliary field variable needs to be introduced into the update
system. The out-of-plane component of the electric field is not
excited in this reduced dimensionality problem. A code was
constructed to test the 2-D L2TDLM ABC. The cases in [20]
provided basic algorithmic checks since, as noted above, the
L2TDLM ABC reduces to the TDLM ABC when the losses go
to zero and the medium becomes free-space. All of the results
obtained in [20] were reproduced with the L2TDLM ABC al-
gorithm.

Next, Gedney’s test case [4] and [8, ch. 5] was considered. It
is a two medium problem in which the simulation space is split
into two homogeneous half-spaces: one air, the other a lossy
medium with and S/m. The normal to the
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interface is selected to be the-direction. The source is a electric
dipole strip driven with the Gaussian derivative
time signal

(53)

where ps and . The spectrum of this driving
pulse has its peak at an effective frequency of
GHz where , but extends out to 40 GHz where

. The strip is oriented along the normal to the inter-
face and is located in the free-space region at two cells above
the center of the simulation space. The simulation space con-
sisted of 40 40 square cells and was truncated with a ten-layer
quadratic L2TDLM ABC. The reference simulation region was
1240 1240 square cells and was terminated with perfect elec-
tric conductors. The cell size was mm. We introduce a
grid frequency, , where is the max-
imum of the cell side lengths , or ; it corresponds
to the lowest frequency at which the grid provides a dis-
cretization level. Thus, for the cubical grid associated with this
problem, Hz. The simulation was run for
1000 time steps, the time step being set at 0.98 of the Courant
value. Standard differentiation, while maintaining the semi-im-
plicit formulation, rather than exponential differencing was used
to make the 2-D L2TDLM ABC algorithm as close as possible
to Gedney’s UPML. The problem is treated in a 2-D TE polar-
ization sense; the field components ( , and ) are ob-
tained with the FDTD simulator. The maximum relative errors

and in are measured, respectively, at the point,
which is located in free-space two cells above the interface and
two cells from one face of the ABC region, and at the point,
which is located two cells from each face of one of the corners in
the lossy medium. The maximum relative error in is defined
as the difference in time between the amplitude offor the
small problem and for the reference problem normalized by the
maximum in time of for the reference result. Note that like
Gedney’s UPML ABC, only a single maximum parameter is
used throughout the L2TDLM ABC. This simplifies the coding
requirements significantly. The maximum parameter that gave
the best error results in the split region problem corresponded
to the best value for the free-space case.

Using the L2TDLM ABC it was found that
dB and dB with a maximum loss param-
eter . Changing the profile of the ABC
layers to a quartic variation yielded the errors
dB and dB with a maximum loss parameter

. These results are comparable to those
reported by Gedney. This problem is a quite difficult one in
which to assess the difference in errors between pointsand

because the time signals arriving at these two points are
dramatically different. The pulse reaching pointis nearly a
derivative of the excitation pulse, hence, the peak of its fre-
quency spectrum is upshifted significantly. Moreover, because
of the field pattern from the source, different sides of the ABC
are illuminated differently. We felt, like Gedney, that these
levels of reflection errors are quite satisfactory considering
the fact that the discretization is below for a

significant portion of the frequency spectrum of the signals
reaching the sampling points.

However, to connect these 2-D results with those in [5],
[6], and [20], the corresponding line source problem was also
treated. Instead of the electric strip, the problem is now excited
by a magnetic line source driven with the time signal used
in the cases in [20]:

for ns
for ns

(54)

where . The advantage of this source is that
the faces and corners of the simulation region see essentially
the same time signal. The cell size was mm; hence,

Hz.
In our first series of 2-D simulations, the simulation region

was free space. We obtained dB and
dB for a maximum loss parameter and

dB and dB for a maximum loss
parameter . The latter case provided the best
overall error performance for a variety of sampling points. These
results indicate that the edge and corner errors vary with the
choice of the maximum parameter. The more uniform maximum
relative error seems to be the most beneficial choice for standard
application problems. In our second series of 2-D simulations,
the simulation region was completely filled with the lossy di-
electric having and S/m. It was found that

dB and dB with a maximum loss pa-
rameter , approximately smaller than
its free-space value. In our third series of 2-D simulations, the
simulation region, as it was in Gedney’s test case, was half-filled
with free space and with the same lossy medium. The line source

was now excited in free-space, two cells away from the
center of the simulation region along the normal to the interface.
It was found that dB and dB with a
maximum loss parameter . All of these re-
sults demonstrate excellent reflectionless behavior.

Finally, we ran our 3-D L2TDLM ABC simulator for the cor-
responding 3-D problem of a vertical electric dipole located in
free space 2 cells above the same lossy half-space. The simula-
tion space consisted of 40 40 40 cubic cells and was trun-
cated with a ten-layer quadratic L2TDLM ABC. The reference
simulation region was 140 140 140 cubic cells and was ter-
minated with the same ten-layer quadratic L2TDLM ABC. The
cell size was again mm; hence,
Hz. The simulation was run for 1000 time steps, the time step
being set at the Courant value. The electric dipole was driven
with the time signal (53). We obtained dB and

dB for a maximum loss parameter
. These results are comparable with those obtained in the 2-D

simulations. We note that while the 2-D L2TDLM ABC exhib-
ited a much slower late time growth of the error over the indi-
cated simulation time than Gedney’s 2-D UPML ABC, the 3-D
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Fig. 1. Incident pulse spectrum and reflection coefficients for the pulsed Hertzian dipole radiator case. The peak frequency of the incident pulse was 1.7 GHz.
The discretizations were�x = �y = �z = � =40, wheref = 3:1 GHz.

L2TDLM ABC simulation showed no growth over the same
simulation time. Similar to the free-space TDLM results [22],
the largest error occurred for the leading wave front and settled
into a much lower average value.

B. Hertzian Dipole Radiator

The Hertzian dipole radiator in a homogeneous region is
one of the most fundamental radiation problems. It made an
excellent candidate for our initial validation purposes in 3-D.
Additionally, since comparisons between the TDLM and PML
ABC’s were provided for the free space version of this 3-D
problem in [22], we could check our L2TDLM ABC algorithm
against those results in that limit.

The reference (140 140 140 cells) and trial (40 40
40 cells) solutions were excited with a bipolar pulse having

an effective (root mean square) frequency of GHz
(the peak of the spectrum of the driving pulse is at 1.7 GHz).
The discretization was set at ; hence . This
is equivalent to a cell size of mm. The
corresponding time step was taken at the CFL = 1.0 limit and,
hence, ps. The simulation was run for 2000 time
steps. The L2TDLM ABC was placed on all six faces. The cur-
rent element was placed at [ , ]
to locate it exactly in the middle of the simulation region. The
electric field was sampled 15 cells (36.3 mm) away at the points
[ , ].

The simulation region was first filled with a lossless dielec-
tric, ( ), and the numerical reflection coeffi-
cient due to the L2TDLM ABC was calculated. The , and
profile functions were all taken to be the same. The associated
parameter was obtained with several simulation runs to
optimize the performance of the L2TDLM ABC; its value was

chosen to be . This value was held fixed for
each of the dipole source examples. The simulation was then
run again using a lossy dielectric, ( ). This
is a highly lossy dielectric having an equivalent loss tangent,

, at 3.0 GHz.
Fig. 1 displays the results of these computations. The spec-

trum of the excitation pulse is provided to define the relevant
frequencies. The L2TDLM ABC provides a reflection coeffi-
cient smaller than 75 dB for the lossless case and smaller than

85 dB for the lossy case over the frequency band of interest
( – GHz). It is important to note that the discretization
(cells ) at the highest usable frequency (4.5 GHz) is
cells/ . In other words, the incident pulse spectrum is fairly
well resolved over the entire bandwidth. It also indicates why
the error increases further with increasing frequency. Thus, the
L2TDLM ABC is very effective for truncati es and lossy ma-
terials. Note that the spikes in the reflection coefficients occur
where the excitation spectrum has a null; hence, they are due
to the normalization. While the incident field has no energy at
those frequencies, numerical dispersion results in noise contri-
butions there. Thus the noise in the grid at those frequencies
divided by essentially noise resulting from the discrete Fourier
transform there produces large reflection coefficients. This sig-
nature is present in all of the results presented below.

C. Pulsed Gaussian Beam Incident on a Homogeneous Slab

The pulsed Gaussian beam problem is of particular interest
because it allows us to investigate the behavior of the L2TDLM
ABC as the incident energy propagates across a dielectric inter-
face. Moreover, unlike the dipole case, it allows us to test the
effectiveness of the L2TDLM ABC in a finite beam scattering
problem. Furthermore, unlike the shielded microstrip case to
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Fig. 2. Incident pulse spectrum and reflection coefficients for a pulsed Gaussian beam incident on a lossy dielectric half-space (� = 1:0; � = 0:0; 0:167). The
peak frequency of the incident pulse was 3.0 GHz. The discretizations were�x = �y = �z = � =20.

follow, the field energy is propagating normal to the interface
as opposed to parallel to the interface as it does in the shielded
microstrip problem.

The reference (100 100 100 cells) and trial (100
100 60 cells) solutions where discretized at ,
being the wavelength associated with the effective frequency,
and GHz (the peak of the spectrum of the driving
pulse). This is equivalent to a cell size of
mm; hence, . The corresponding time step was
taken at the CFL = 1.0 limit and, hence, ps. The
simulation was run for 250 time steps. The L2TDLM ABC was
again placed on all six faces of the simulation region. The,
and ABC profile functions again were all taken to be the same.
The ABC parameter was obtained with several simulation
runs to optimize the performance of the L2TDLM ABC. The
Gaussian beam was polarized in thedirection and propagated
in the direction. The beam was excited on a total/scattered
field boundary located in the plane. A dielectric
half-space was introduced in the plane. This dielec-
tric half-space extends into the L2TDLM ABC regions. The
component of the electric field was sampled 28 cells (140.0 mm)
away from the L2TDLM interface at the point (50, 50, 38).

The dielectric half-space was first filled with vacuum (
) and the numerical reflection coefficient calcu-

lated. Although not of practical interest, the effect of adding con-
ductivity without the presence of a relative dielectric constant
was examined. The half-space was filled with a lossy medium,
( ), which has an equivalent loss tangent

at 3.0 GHz. The ABC parameter was chosen
to be for both cases. Fig. 2 shows both nu-
merical reflection coefficients introduced by truncating the sim-
ulation region with the L2TDLM ABC. Again, it also includes
the spectrum of the pulse excitation.

Excellent absorption is provided by the absorbing layer with
relatively coarse discretization. The L2TDLM ABC produces
reflections less than 75 dB over the bandwidth of the pulse for
the free-space case. Introduction of the conductivity in the half-
space region further reduces the reflection introduced by the
boundary to less than90 dB. This is in part due to propagation
loss but proves that the L2TDLM ABC is stable and effective in
simulations utilizing lossy media.

The properties of the L2TDLM ABC were further in-
vestigated with dielectric materials. Initially, the reflection
coefficient introduced by the ABC was calculated with a
lossless dielectric ( ) filling the half-space.
This calculation was repeated using a lossy dielectric
( ). Again, the ABC parameter
was chosen to be for both cases. Fig. 3
shows both numerical reflection coefficients introduced by the
L2TDLM ABC. The spectrum of the incident field is provided
again to focus attention on the relevant frequencies.

The lossless case shows better than75 dB reflection over
the frequency bandwidth of the pulse. The monotonically in-
creasing characteristic of the reflection coefficient caused sus-
picion of under sampling at the higher frequencies. It was found
that the effective discretization in the dielectric was at
3.0 GHz where , which meant that the effective
discretization in the dielectric was approximately at 2.0
GHz and only at 4.0 GHz. This is not sufficient sam-
pling for the entire frequency bandwidth of the driving pulse;
especially when proper modeling of any dispersive behavior is
desired. Regardless, the lossy dielectric case produced a reflec-
tion less than 110 dB over the frequency bandwidth of the in-
cident pulse.

The effect of under sampling at the higher frequencies in the
incident pulse was investigated by increasing the discretization
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Fig. 3. Incident pulse spectrum and reflection coefficients for a pulsed Gaussian beam incident on a lossy dielectric half-space (� = 2:0; � = 0:0; 0:167). The
peak frequency of the incident pulse was 3.0 GHz. The discretizations were�x = �y = �z = � =20.

by 50%. The reference and trial solutions were scaled appropri-
ately to (150 150 150) and (150 150 120) cells, respec-
tively. At an effective frequency of GHz and a dis-
cretization of , the cell size is
mm and . The simulation was run at the CFL =
1.0 limit, hence, with ps, for 600 time steps for a
total time of 3.85 ns. Again the L2TDLM ABC was placed on all
six faces of the simulation domain. The same source was used.
The total/scattered field boundary is located in the
plane. The air/dielectric interface is located in the
plane. The component of the electric field was sampled at (75,
75, 57) which is 123.2 mm in front of the total/scattered field
boundary and 89.9 mm in front of the air/dielectric interface.
The ABC parameter was chosen to be
for the lossless case and for the lossy case.
Both the lossless and lossy dielectric cases were run again. The
resulting numerical reflection obtained at this discretization is
shown in Fig. 4.

The lossless reflection coefficient is less than75 dB over the
frequency bandwidth of the pulse. The increase in discretization
removed the monotonically increasing behavior of the reflection
coefficient. The increased resolution improved the lossy case to
better than 115 dB over the frequency bandwidth of the pulse.
Smaller discretizations were not performed since the memory
requirements would have exceeded the available memory on our
machines. These pulsed Gaussian beam results were in good
agreement with those calculated previously with those presented
in [1].

D. Shielded Microstrip

Finally, we also considered the very practical printed circuit
problem of modeling a shielded microstrip propagating into

a L2TDLM ABC. This problem is encountered in many
EMI/EMC problems. It is quite different from the previous
problems in that it is a guided wave problem that allows
unipolar pulse excitations, i.e., pulses with nonzero spectra at
dc.

The reference (24 50 500 cells) and trial (24 50 50
cells) solutions where discretized at in the and di-
rections and in the direction. The effective frequency
was GHz. The equivalent cell sizes are

mm and mm; hence, .
The corresponding time step at the CFL = 1.0 limit and, hence,

fs. The simulation was run for 2000 time steps.
The 2TDLM ABC was placed only on thenormal faces with
the other faces being perfect electric conductors (PEC). The di-
electric substrate ( ) was six cells (0.72 mm) thick in
the direction. The microstrip was modeled as infinitely thin,
being six cells (0.72 mm) wide and starting in the
plane. The microstrip line was excited by adirected current
source having a Gaussian time history with spectral width as
shown in Fig. 5 and an effective cutoff frequency of approxi-
mately 30 GHz. The component of the electric field was sam-
pled 16 cells (3.24 mm) away from the source plane at the point
(3, 26, 37). The interface between the air and dielectric region
was treated by using an average of the neighboring permittivity
values for the field quantities which lie on the interface.

The simulation region was first filled with a lossless dielec-
tric ( ). With several simulation runs to op-
timize the performance of the L2TDLM ABC, the parameter

was chosen to have a value for the
lossless case. The numerical reflection coefficient due to the
L2TDLM ABC was then calculated. The simulation was then
run again using a lossy dielectric ( ). This
is a highly lossy dielectric having an equivalent loss tangent
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Fig. 4. Incident pulse spectrum and reflection coefficients for a pulsed Gaussian beam incident on a lossy dielectric half-space (� = 2:0; � = 0:0; 0:167). The
peak frequency of the incident pulse was 3.0 GHz. The discretizations were�x = �y = �z = � =30.

Fig. 5. Incident pulse spectrum and reflection coefficients for a shielded microstrip transmission line over a lossy substrate (� = 2:2; � = 0:0; 0:167). The
effective frequency of the incident Gaussian pulse was 25.0 GHz.

, at 25.0 GHz. Similar optimization runs led to
the value for the lossy case. The numerical
reflection coefficient due to the L2TDLM ABC was then calcu-
lated for the lossy substrate case.

Fig. 5 displays the results of these computations. It demon-
strates that the L2TDLM ABC provides for a reflection co-
efficient better than 75 dB for both the lossless and lossy
cases over the frequency band of interest (– GHz). At the

upper edge of the frequency band (30.0 GHz), the discretization
is cells/ in the air region and cells/ within
the dielectric region for the direction and is a much finer res-
olution than that in the transverse directions. The incident pulse
spectrum is significantly over sampled for the entire bandwidth.
Again, the interface between the air and dielectric region was
treated as an average of the neighboring permittivity values for
field quantities which lie on the interface.
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TABLE I
SUMMARY OF NUMERICAL REFLECTION

COEFFICIENTRESULTS

The physical size of the absorber is an important issue for dis-
cussion, especially when one would like to simulate structures
with detail much smaller than the wavelength in the medium. It
was found previously [16] that the effectiveness of the Berenger
PML ABC [9] was reliant on the physical size of absorber to be a
significant fraction of the wavelength in the medium. This does
not appear to be the case in this instance. The absorber is only
1/8 of a wavelength in free space and 1/5 of a wavelength in the
dielectric. It is felt that this is the case because most of the en-
ergy is normally incident on the L2TDLM ABC in this guided
wave situation.

V. CONCLUSIONS ANDFUTHER WORK

A generalized lossy two time-derivative Lorentz material
(L2TDLM) model absorbing boundary condition (ABC) has
been introduced. The advantage of the generalized formulation
presented here is that only one equation set is required in the
implementation for all parts of the ABC region. This equation
set reduces to the appropriate formulation (corner to edge to
face) dependent on the number of independent parameters
present in a given portion of the simulation region. A complete
3-D FDTD implementation was described and its performance
was evaluated using several two and three dimensional test
cases. The results of these 3-D test cases is summarized in the
Table I. They demonstrate that the L2TDLM ABC is a very
effective technique for truncating FDTD simulation regions
dealing with lossy media.

Several practical applications involving the L2TDLM ABC
including micropatch antennas, microstrip filters and couplers
have also been investigated. The results of these studies are sum-
marized in [27].
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