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A Parallel Finite-Element Tearing and Interconnecting
Algorithm for Solution of the Vector Wave Equation
with PML Absorbing Medium

C. T. Wolfe Member, IEEEU. NavsariwalaMember, IEEEand Stephen D. Gednegenior Member, IEEE

Abstract—A domain decomposition method based on the from a variational formulation can be introduced for each
finite-element tearing and interconnecting (FETI) algorithm is  subdomain. The subregions are then coupled together through
presented for the solution of the large sparse matrices assomatedsome boundary constraint. The advantage of this approach is

with the finite-element method (FEM) solution of the vector wave that if th hi I titi d. then thi h
equation. The FETI algorithm is based on the method of Lagrange atirthe mesh is equally partitioned, then this approach can

multipliers and leads to a reduced-order system, which is solved l€ad to a highly scalable algorithm. Therefore, the efficiency
using the biconjugate gradient method (BiCGM). It is shown that  of the parallel algorithm can be dependent upon both the algo-

this method is highly scalable and is more efficient on parallel rithm devised for the matrix solution as well as the partitioning
platforms when solving large matrices than traditional iterative algorithm. There has been extensive effort in the areas of effec-

methods such as a preconditioned conjugate gradient algorithm. _. _ s . . .
This is especially true when a perfectly matched layer (PML) tive and efficient mesh partitioning algorithms, including the

absorbing medium is used to terminate the problem domain. recursive inertia partitioning algorithm [4], spectral bisection

Index Terms—Finite-element methods, PML's, vector wave methods [5], [6], the METIS algorithm [7], and the greedy
equation. algorithm [8], [9].

The focus of this paper is on the development of the parallel
algorithm for the matrix solution. An early approach to this
problem was a divide-and-conquer technique developed by

HE finite-element method (FEM) is an effective meanBattersonet al. [10], [11]. This approach consisted of par-

for analyzing a plethora of electromagnetic problems. THiéioning the global matrix using an automatic partitioning
FEM’s principal attribute is that it efficiently models highly ir-scheme. Subsequently, a global iterative solver based on
regular geometries as well as penetrable and inhomogenethes biconjugate gradient (BiCG) method was used to solve
material media. The linear system of equations that results fréhe distributed sparse matrix. Each matrix vector multiply
a FEM discretization is highly sparse and can be solved usiafthe BiCG algorithm was done in parallel. Interprocessor
efficient solution techniques for sparse matrices based on eittemmunication is required to concatenate the resultant vector,
direct methods [1] or iterative methods [2], [3]. Direct methodas well as to perform the global dot-product operations. One
have the advantage that multiple right-hand sides can be treatédhe difficulties with the divide-and-conquer scheme is that
efficiently. However, storing the factorized matrix is memoryhe number of iterations required for convergence is dependent
intensive for large matrices. Iterative methods, such as the coipon the condition number of the global matrix.
jugate gradient (CG) method, are much less memory intensiveAlternatively, a parallel direct solution method for two-di-
However, an iterative solution must typically be performed fanensional (2-D) FEM analysis was introduced by legeal.
each right-hand side. [12], [13]. This technique coupled the subdomain solutions by

Over the past decade, high-performance computing has beeforcing tangential field continuity between adjacent subdo-
achieved via multiprocessing. In a massively parallel enviromains leading to a global matrix representing only the tangen-
ment, traditional sequential algorithms will not necessarilyal fields on the shared boundaries. The global matrix is much
scale and can lead to a very poor utilization of the multipremaller than the original FEM matrix and can be solved using a
cessor’s architecture. As a result, specialized algorithms thtect method.
directly exploit the parallel architecture must be developed. Forin [14], Deprés introduced a hybrid iterative DDM for the
the solution of sparse matrices, parallel algorithms based 2D Helmholtz problem [14]. To this end, an iterative method
domain decomposition methods (DDM'’s) have been the maséas proposed for which each iteration consists of solving the
successful [2], [3]. DDM’s essentially partition the global mesfields interior to each subdomain and then constraining the field
discretizing the problem domain into several nonoverlappirggntinuity at the interface of each subdomain by enforcing a
contiguous subdomains. Subsequently, a sparse matrix deriiRabin-type transmission condition on the boundary fields (this

transmission condition essentially enforces the continuity of

Manuscript received June 2, 1997; revised October 7, 1999. This work V\ggth the tangential electric and magnetic field intensities across
supported by the National Science Foundation under Grant ECS-9624628. the shared boundaries). Depres also introduced a relaxation
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partition of the computational domain improving the efficiencyn the number of iterations needed for convergence. It will be
of the transmission condition and overall performance of thi&hown herein that the number of iterations required by the FETI
DDM. algorithm for large matrices is dramatically reduced, even with
The focus of this paper will be on the application of a hybrithe presence of PML absorbing layers as compared to a direct
iterative solution based on the method of Lagrange multiplierigerative solution.
This method is modeled after the finite-element tearing and in-This paper is organized as follows. The FEM formulation
terconnecting (FETI) method originally developed by Farhatith UPML absorbing layers is presented in Section Il. The
and Roux [18]. Specifically, the FEM discretization of the weakETI algorithm is then presented in Section Ill. In Section IV,
form equation for each subdomain will be posed. The solutiotf®e efficiency and scalability of the FETI algorithm for the so-
of each subdomain will be constrained through the use of Liation of the FEM matrices with UPML absorbing media is pre-
grange multipliers by enforcing the continuity of the tangersented.
tial fields across each boundary interface. A reduced system of
equations representing the Lagrange multipliers is then derived Il. FINITE-ELEMENT IMPLEMENTATION USING
and is solved using a preconditioned BiCG algorithm. The ad- A UNIAXIAL PML
vantage of this method is that each subregion can be solved com; . o
. : : Assume that a lossy inhomogeneous half-space is interfaced
pletely independently, leading to a scalable algorithm. Second o : . o
: : . with a uniaxial anisotropic medium in the= 0 plane. In the
the number of iterations required to solve the global problem Js . . . ; . : :
. . anisotropic medium, Maxwell's equations are described in the
dependent on the order of the matrix representing the Lagraq e .
- . quency domain as
multipliers as opposed to the global matrix.
Anothe_r challenge of mod_eling glectromagngtic wave phe- V x E = —jwpoprsH, V x H = jwege,5E 1)
nomena in unbounded medium via the FEM is the accurate
and efficient termination of the discrete volume using an alyeres, is a complex and frequency dependent @risia 3 x
sorbing boundary condition or an absorbing layer. The goal 8fensor. It was shown in [23]-[25] that an arbitrarily polarized
such terminations is to be nonreflective, while mlnllelng th9|ane wave propagating from a medium with material parame-
overall mesh dimensions and the computational overhead @§s¢, and;:.is impinging on a planar half-space at the= 0
sociated with the truncation operator. Recently, Berenger [1lerface described as a uniaxial medium with material param-

proposed the perfectly matched layer (PML) as an absorbigfbrsso¢,5 andop,s, the interface will be reflectionless if
medium for orthogonal finite-difference time-domain (FDTD)

methods. Using the PML to truncate FDTD meshes, reflection s, 0 O

errors due to the absorber have been shown [20]-[25] te8fk s=(0 s, 0 |. (2
dB orless. Berenger's PML is based on a split-field formulation, 0 0 st

which is well suited for an orthogonal grid implementation.

A similar PML based on a uniaxial anisotropic medium WaTS'his will hold true for arbitrary polarization, angle of incidence,
introduced by Sackst al.[23] for finite-element frequency-do- and frequency spectrum. For application to the finite method,

main methods, and by Gedney [24]-[26] for FDTD methogihe anisotropic medium must be highly attenuative such that any

The uniaxial PML (UPML) technique is better suited for apV/ave entrant in the medium vinI attenuate rapidly. By chposing
= a — jf [22]-]25], thenx . amplifies

plications such as the FEM, which utilize unstructured grid = %= + (9=/jweo) _
since it does not rely on field splitting based on orthogonal prd1€ attenuation of the evanescent portion of the wave, and the
jections. Furthermore, it avoids much of the complexity intrdMa9!nary term attenuates the propagating portion. .

duced by a stretched coordinate form of Berenger's PML [27]. In the corner regions, where the UPML Iaygrs over@mll

A number of recent papers have been published on the applig§-"éPresented by the product of tensors. This can easily be de-
tion of PML and UPML terminations of FEM meshes. Saeks "V€d by matching a UPML to a uniaxial medium [26]. Subse-
al. [23], provided an example of a simple dipole radiating in afiU€nty.s is generalized as

open region. Gong and Volakis [28] used a PML to terminate a SyS= 0 0
microstrip line. Rappaport introduced the stretched coordinate Sy
PML formulation for finite-element applications [27]. By ad- s = 0 Sz5z 0 3)
justing the PML parameters, the layer was found to produce a Sy ’
reflection error of-30 dB or less for a line current radiating in 0 0 Sz3y
SZ

an unbounded region. Likewise, Lyoatal.[29], used a PML

to terminate an air-filled waveguide and found reflection errotsecondly, due to discretization errors, the PML medium can

of —30 to —55 dB. Kingslandet al. [30] investigated the use suffer from numerical reflection error. To circumvent this

of PML for propagation and scattering problems. Finally, Cheptoblem, the material parameters have been scaled using a

and Jin [31] analyzed the PML in discretized space in order #@lynomial scaling [18]-[26].

optimize the layer with respect to its parameters. The FEM is used to compute the fields in the volumetric
Even though PML methods have shown promising perfogpace. The vector wave equation in the uniaxial medium is de-

mance, one difficulty that arises is that the matrix becomeised from (1)

poorly conditioned when PML absorbing layers are present

[32]. As a result, iterative solvers suffer a substantial increase V x 157V x E— wQNOEOé,EE =0 4)



280 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 2, FEBRUARY 2000

where UPML is assumed throughout the volume. PerforminghereK is a block diagonal matrix defined by
the inner product with a testing function defined over the finite

volume$? and utilizing Green’s first identity results in the weak Igl Ig o 8
form equation K=| 2 . 9)
/// [v xT-p='5 'V x E— w2u050é,,f~§ﬁ} dQ 0 0 --- Ky
2 e, f, and B are described as
- ﬂ [fﬁ X itV x E‘} dA=0. (5) ey £
o €2 fa
- L . . e=| . f=1. B=[B By --- By]
The finite-element solution is performed by discretizing the : :

volume into element domains and expanding the testing and trial en fn
vector functions using vector edge elements (in this paper first- (10)

order Whitney elements are employed). Then, the first variatidh iS @ matrix representing the continuity of tangential fields
of (5) is evaluated at the stationary point, leading to a sparséch thatB;e; + Bje; = 0. Itis noted that the matrix3 is
linear system of equations. highly sparse and all nonzero entries are simply. From the
Inside the working volume, the medium is assumed to teeory of Lagrange multipliers, the solution of this constrained
isotropic. Specifically from (3)5 reduces to the identity tensor.linear system is equivalent to finding the stationary point of the
Within the PML region is anisotropic and the parameters arfunctional
assumed to be spatially dependent agdh-order polynomial
along the normal axes. To more accurately represent the spa- f=seKe—clf+ N\ Be 1)

tial variation, Gaussian quadrature numerical integration Was,ere \ is the vector of Lagrange multipliers. Taking the first

used to perform the integrals in (5) [33]. Furthermore, since g iation of (11) and evaluating it at the stationary point leads
PML interfaces are assumed planar the implementation of (5} isine symmetric linear system of equations

quite simple in the FEM routine and no special preprocessing

is required. The exterior boundary backing the PML region is K BT]]Je _|f (12)
assumed to be a PEC wall. On this wall, a Dirichlet boundary B 0 A 0"
condition is enforced. From the first row of (12), it follows that

lll. FINITE-ELEMENT TEARING AND INTERCONNECTING e=KY(f—B"\) (13)

METHOD

The finite-element tearing and interconnecting metho%ombmmg this with the second row of (12) leads to the sym-

(FETI) is a domain decomposition technique based on rraetnc sparse linear system of equations

hybrid variational principle. For simplicity consider a domain BK'BT)\ = BK~'f. (14)

Q divided into nonoverlapping subdomain3;. Adjacent

subdomains will share common boundaries defined’hy. The parallel algorithm then proceeds as follows.

The vector electric fields and testing functions within each 1) K s factorized using a sparse matrix factorization
subdomain are discretized separately into finite elements. Then  method. Note that this is done completely in parallel

evaluating the first variation of (5) at a stationary point yields due to the block diagonal characteristics¥ofdefined in
(9). As a result, eacl’; is factorized independently and
concurrently on each processor.

2) A preconditioned BiCG algorithm is used to compute the
solution for the vector of Lagrange multipliekfrom the
reduced-order matrix equation in (14). It is noted that the
matrix vector multiplies are performed completely in par-
allel since the products of vectors with the matrix blocks
K;l and B; can be performed explicitly in parallel.

3) Once the Lagrange multipliers are computed, the electric
fields are computed in parallel from (13).

It is noted that the order of the matrix in (14) is greatly re-

ced as compared to the order of the global matrix. As a re-

sult, the iterative scheme is expected to converge rapidly. It is
Ke=f @) also noted that if there is symmetry or repetitiveness in the ge-
ometry resulting in blocks with identicdt’;, then such blocks
with the constraint only need to be stored and factored once on one processor. (Itis
noted that proper load balance should still be monitored in such
Be=0 (8) instances.) Furthermore, since the global problem is of reduced

Kie; = f; (6)

where

e; vector field unknowns in regiof;;

K, stiffness matrix;

fi forcing vector in§2;.

The discrete fields in each subregion are constrained to en-
force the continuity of the tangential electric fields across the
shared boundary. Specifically, 8 ¢; mape; into the space of
tangential fields on the shared boundarigs;. Subsequently,
using the method of Lagrange multipliers, it is desired to sol\{]eu
the linear system of equations
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order it would be possible to solve the problem with a dire: PML Regions
solver. However from a scalability issue, an iterative solver wi vi
implemented. € oH, ¥
The performance of a number of preconditioners for accele Y2 W
ating the BiCG solution of (14) was studied. Interestingly, di —
agonal preconditioning based on the full maté¥ B did  v3 &k
not significantly reduce the number of iterations. Regardles
this preconditioner is prohibitively expensive to construct, as « o < 2l » .1
requires the rigorous evaluation & ! B7. Incomplete diag-
onal preconditioners based only on the diagonakoélso do Fig. 1. Dimensions for microstrip line problemz = 0.012 m): PML
not accelerate the BiCG solution. depth in z-direction; @2 = 0.0238 m): problem depth inz-direction;
" _ : i 619 — E N g
The most successful preconditioner found that &gmﬂcant&?l - ig;_ld%rg“c)t-ioi'?"'(;:?ep:th Q%Odggeﬁg;”agfec?ﬂcoggg;h 'T%f&‘ii cst?;rie
accelerates the BiCG convergence without msurmountal@f = 0.016 m): PML depth in=-direction; ¢2 = 0.05492 m): problem
computational overhead waBK BT. While, this precondi- depth inz-direction; (¢ = 0.00548 m): width of microstrip. Note: the
tioner is more expensive than a simple diagonal precondition%‘i’,‘ducmr thickness of the microstrip line was infinitesimal.
it does significantly accelerate the convergence of the BiCG
algorithm and reduces the overall CPU time for the solution. TABLE |
The condition number of the reduced-order system in (1490“"PAR'So',i;gff;fjf;fgggaiméuﬁg’géﬁ'\'lpggggg);m GLoBAL
was found to be sensitive to the aspect ratio of the subdomains.

This was also reported in [34]. More specifically, highly elon- 8 Domains 16 Domains 32 Domains
. . . . . D&C / METIS 24336 (19474) 46572 (19116) 86943 (29564)
gated domains or domains with highly irregular surfaces tende 71/ MeTIS 2199 (1789) 5510 (2634) 12323 (4955)
to lead to poorer conditioned matrices and, hence, slower cor EETI/METIS-SA | 2107 (1619) 5242 (2106) 11700 (3909)
FETI/H-RIP 1944 (991) 5016 (1375) 10842 (2015)

vergence. It was found that regulating (or smoothing) the do

main shape greatly improved this. If one were to decompose

the mesh using an automated mesh partitioning scheme such as TABLE I

METIS, such smoothing can be done automatically using SimCOMPARISON OFDEGREES OFFREEDOM (ITERATION COUNTS) FOR GLOBAL
’ ; . . PR 6000 WN PER PR R

ulated annealing or other techniques as reported in [35]. OBLENWITH KNOWNS PER FROCESSO

8 Domains 16 Domains 32 Domains
D&C /METIS 46572 (18869) 86943 (29720) 172766 (49309)
FETI/ METIS 3355 (1489) 8111 (2287) 19342 (7912)
IV. RESULTS FETI/METIS-SA 3181 (1273) 7911 (2070) 18431 (5381)
FETI/H-RIP 2986 (956) 7439 (1530) 16884 (2540)

In this section, the efficiency of the FETI solution will be
presented for FEM models with UPML. To this end, the results
for a microstrip line are presented. This problem was chosset assigns approximately 3000 unknowns per processor, the
since the computational domain was terminated on five sidesdgcond approximately 6000, and the third set approximately
a UPML layer (see Fig. 1). The microstrip line was excited b9000. In order to obtain the number of unknowns desired,
a 4.0-GHz voltage. The relative permittivity and permeabilitthe number of cells was scaled in they-, and z-directions.
of the dielectric under the microstrip line were chosen to be 3The geometry was kept constant, so the average cell size
and 1.0, respectively. was decreased. The benchmark used to compare against the

The microstrip line length was set to 0.08629 m and tHeETI algorithm was a divide-and-conquer-type preconditioned
depth of the PML on the end walls was effectively six-cell-radBiCGM. The preconditioner used was an inexpensive diagonal
thick, on the side walls five-cell-radii thick, and on the top walpreconditioner. The FETI method usé&¥ B as its precon-
five-cell-radii thick. First-order tetrahedral edge elements dlitioner for the BICGM as previously discussed. In addition,
Whitney elements were used in this study and there was no éifferent mesh partitioning methods were used in conjunction
fort to make the tetrahedral elements symmetric about any axisth the FETI method. The ones presented are: 1) heuristic RIP
however, the PML interfaces were planar. No special meshi(ig-RIP), which recursively slices along the long axis of the
was done in the PML regions. From (4), we arbitrarily set thgeometry but only along a planar boundary leaving “cube-like”
order of the spatial polynomial te: = 0. This reduces the subdomains; 2) METIS; and 3) METIS with simulated an-
complexity of the expressions for (3) with minimal increase inealing (METIS-SA), which recursively subdivides domains
error. For the study, the values used were= s, = (2—3j1.8) but uses simulated annealing after each partitioning in order
ands. = (1 — j1.8). These values were experimentallto smooth the interface boundaries. Since the eigen spectrum
determined by minimizing the error of the electric field alongf the divide-and-conquer method is a function of the overall
the microstrip line. geometry and not of individual subdomains, it is necessary to

To study the efficiency of the FETI algorithm, the paralleshow results using only one of the partitioning methods.

FETI solution outlined in Section Il was implemented on Tables |-Ill summarize the number of degrees of freedoms for
a 32-processor subcomplex of an HP SPP2200. Scalabilitye global problems and their iteration counts (in parenthesis)
results were found for 8, 16, and 32 processors by keepifay the various solution methods. For the divide-and-conquer
the (unknowns/processor) approximately equivalent. Thregethod thisis simply the number of field variables. For the FETI
sets of problems were investigated in this manner. The firstethod this would be the number of Lagrange multipliers. It can
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TABLE Il 450
COMPARISON OFDEGREES OFFREEDOM (I TERATION COUNTS) FOR GLOBAL 400 A
PROBLEM WITH 9000 LNKNOWNS PER PROCESSOR 350 |
(] TP
8 Domains 16 Domains 32 Domains g 300 4 —— FETVHeuristic RIP
D&C/METIS 86043 (29650) | 172766  (48235) | 314591 (68304) § 250 -=—FETWMETIS
FETI/ METIS 4819 (1554) 12790 (3352) | 29101 (12372) | !
FETI/METIS-SA | 4684 (1121) 12319 (2349) | 27335 (6130) 5 200 ——FETIMETIS-SA
FETI/ H-RIP 4421 (1128) 12020 (2002) | 24886 (3431) & 150 —»— D&C/METIS
100 -
50 - /
TABLE IV 0
COMPARISON OFSOLUTION TIMES IN CPU-SECONDS AND (RELATIVE ' ‘
SPEEDUF) FOR A FIXED PROBLEM WITH 86 943 LNKNOWNS 8 16 32
Domains
8 Domains 16 Domains 32 Domains
D&C / METIS 1072 (1.0) |569 (1.88) | 406 (2.64) Fig. 2. Comparison of solution times in CPU-seconds for problem with 3000
FETI/ METIS 420 (1.0) [507 (0.82) | 418 (L00)  ynknowns per processor.
FETI/METISSA | 382 (1.0) | 406 (0.94) |28 (157)
FETI/ H-RIP 323 (L0) [249 (1.29) [130 (2.48)
1400
be seen for the different partitioning methods that the number ¢~ 1200 |
Lagrange multipliers as well as the associated iteration coun § 1000 1 ( FETVHeuristic RIP
vary considerably. 2 800 —s— FETIMMETIS
Figs. 2—4 report the solution time of both methods. For the¢ & 600 1 ——FETVMETIS-SA
divide-and-conquer method this is the iteration time of the &§ 40 | —*—D&CMETIS
BiCGM. For the FETI method this includes the factorization 54 |
of the K; matrices and then finding the solution to global 0
problem (15) using BICGM and the local problem (14) using 8 16 a2
a direct solver. Both methods used—f0Oas the termination Domains

criteria for the BICGM. Because of this low value the iteration

counts are relatively high. Table IV reports solution timekig. 3. Comparison of solution times in CPU-seconds for problem with 6000
and relative speedup for a fixed problem of 86 943 unknowr§!knoWns per processor.

Speedup is defined as execution timeygbrocessors divided

by the execution time for one processor. However, a measu 7000
of relative speedugan be defined as the execution time of ~ 6000 |
y processors divided by the exe.cution time fpr any numbeg 5000 1 < FETVHeuristic RP
of x processors. Therefore, relative speedup iseiation to (% 4000 —=— FETIMETIS
x processors instead of one processor if the serial time is n @ 3000 —— FETIMETIS-SA
available. A mathematical expression of this definition is & 2000 | —+—D&CMETS

Relative Speedup,,ocessors 1000 1

Execution Tim 0 ' '
_ g I)I‘OCeSSOI‘S7 1 Z T. (15) 8 16 32

Execution Tlm@ Processors Domains

The relative time used in Table 1V is the solution time for eight ] o ] )
processors (i.eq = 8). Therefore, linear relative speedup'j'ngk‘n‘gwncsopn;f;rr'gfgsggf_o'unon times in CPU-seconds for problem with 9000
would be 2.0 for 16 processors and 4.0 for 32 processors.

Analyzing the results, it is obviously apparent that the FETI

method reduces both the number of unknowns for the gIobaIAISO’ Itis n0t|c§able that the time per iteration for_ the di-
vide-and-conquer is considerably less. One of the main reasons

problem as well as the iterations to solve it. For al problemls the preconditioner used. The diagonal preconditioner does a
considered, FETI with the heuristic RIP partitioning methoQ P ' 9 P

produced the best results. However, FETI with METIS di(r]elanvely good job and is very inexpensive. However, the pre-

not always produce better results than the divide-and-conqlfq;grndItloner we used for the FET| method decreases the execu-

X n time but is relatively expensive. Other inexpensive precon-
method, especially as the number of processors of processors . . : . )
: ; ioners investigated had little or negative effect on the solution
grow. METIS does an excellent job keeping the number ﬁf
cells per processor constant. However, as a tradeoff, irregular
boundaries between subdomains are produced. FETI unfortu-
nately is highly sensitive to nonsmooth boundaries. By using
simulated annealing, results were improved dramatically asA highly scalable domain decomposition algorithm referred

is shown in the tables. By contrast, FETI with the heuristio as the finite-element tearing and interconnecting (FETI) al-
RIP produces the most unbalanced loads regarding cells gerithm for solving electromagnetic problems with PML was

processor. However, it does produce the best results with piesented. It was shown that this method can be more efficient
regular boundaries. for the analysis of general FEM problems on parallel computers

V. CONCLUSIONS
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than a divider and conquer scheme. The FETI scheme is bettan]
suited for parallel computers with a moderate number of pro-
cessors. One reason for this is that the algorithm is best suited
when the Lagrange multipliers is kept small compared to the
global problem size. Second, when using automatic partitioning-2]
schemes such as METIS, finely partitioned meshes tend to result
in highly irregular domains. The condition of the reduced order
matrix produced by the FETI algorithm can be sensitive to ir{13l
regular domains. It was shown that this is circumvented through
the use of an optimization method based on simulated annealing
that smoothed out highly irregular domains [35]. The tradeoff
is that the workload can become unbalanced. However, it wags,
found that the FETI algorithm is much less sensitive to load im-
balances than the shape of the mesh partitions.

It should also be noted that this method was investigated fo[r16]
use with PML. As was stated in the introduction, the addition
of PML has a dramatic effect on the condition number of thell]
global matrix. When the PML is removed the performance of
the divide and conquer improves increases more dramaticallys]
than that of the FETI algorithm. This is due to, once again, the
irregular boundaries. [19]

Future work planned for maximizing the efficiency of the
FETI algorithm is the development of an improved precondi{2°]
tioner that is computationally inexpensive. This will be neces-
sary for the FETI algorithm to scale over a large numbers of21]
processors.
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