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A Parallel Finite-Element Tearing and Interconnecting
Algorithm for Solution of the Vector Wave Equation

with PML Absorbing Medium
C. T. Wolfe, Member, IEEE, U. Navsariwala, Member, IEEE, and Stephen D. Gedney, Senior Member, IEEE

Abstract—A domain decomposition method based on the
finite-element tearing and interconnecting (FETI) algorithm is
presented for the solution of the large sparse matrices associated
with the finite-element method (FEM) solution of the vector wave
equation. The FETI algorithm is based on the method of Lagrange
multipliers and leads to a reduced-order system, which is solved
using the biconjugate gradient method (BiCGM). It is shown that
this method is highly scalable and is more efficient on parallel
platforms when solving large matrices than traditional iterative
methods such as a preconditioned conjugate gradient algorithm.
This is especially true when a perfectly matched layer (PML)
absorbing medium is used to terminate the problem domain.

Index Terms—Finite-element methods, PML’s, vector wave
equation.

I. INTRODUCTION

T HE finite-element method (FEM) is an effective means
for analyzing a plethora of electromagnetic problems. The

FEM’s principal attribute is that it efficiently models highly ir-
regular geometries as well as penetrable and inhomogeneous
material media. The linear system of equations that results from
a FEM discretization is highly sparse and can be solved using
efficient solution techniques for sparse matrices based on either
direct methods [1] or iterative methods [2], [3]. Direct methods
have the advantage that multiple right-hand sides can be treated
efficiently. However, storing the factorized matrix is memory
intensive for large matrices. Iterative methods, such as the con-
jugate gradient (CG) method, are much less memory intensive.
However, an iterative solution must typically be performed for
each right-hand side.

Over the past decade, high-performance computing has been
achieved via multiprocessing. In a massively parallel environ-
ment, traditional sequential algorithms will not necessarily
scale and can lead to a very poor utilization of the multipro-
cessor’s architecture. As a result, specialized algorithms that
directly exploit the parallel architecture must be developed. For
the solution of sparse matrices, parallel algorithms based on
domain decomposition methods (DDM’s) have been the most
successful [2], [3]. DDM’s essentially partition the global mesh
discretizing the problem domain into several nonoverlapping
contiguous subdomains. Subsequently, a sparse matrix derived
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from a variational formulation can be introduced for each
subdomain. The subregions are then coupled together through
some boundary constraint. The advantage of this approach is
that if the mesh is equally partitioned, then this approach can
lead to a highly scalable algorithm. Therefore, the efficiency
of the parallel algorithm can be dependent upon both the algo-
rithm devised for the matrix solution as well as the partitioning
algorithm. There has been extensive effort in the areas of effec-
tive and efficient mesh partitioning algorithms, including the
recursive inertia partitioning algorithm [4], spectral bisection
methods [5], [6], the METIS algorithm [7], and the greedy
algorithm [8], [9].

The focus of this paper is on the development of the parallel
algorithm for the matrix solution. An early approach to this
problem was a divide-and-conquer technique developed by
Pattersonet al. [10], [11]. This approach consisted of par-
titioning the global matrix using an automatic partitioning
scheme. Subsequently, a global iterative solver based on
the biconjugate gradient (BiCG) method was used to solve
the distributed sparse matrix. Each matrix vector multiply
of the BiCG algorithm was done in parallel. Interprocessor
communication is required to concatenate the resultant vector,
as well as to perform the global dot-product operations. One
of the difficulties with the divide-and-conquer scheme is that
the number of iterations required for convergence is dependent
upon the condition number of the global matrix.

Alternatively, a parallel direct solution method for two-di-
mensional (2-D) FEM analysis was introduced by Leeet al.
[12], [13]. This technique coupled the subdomain solutions by
enforcing tangential field continuity between adjacent subdo-
mains leading to a global matrix representing only the tangen-
tial fields on the shared boundaries. The global matrix is much
smaller than the original FEM matrix and can be solved using a
direct method.

In [14], Deprés introduced a hybrid iterative DDM for the
2-D Helmholtz problem [14]. To this end, an iterative method
was proposed for which each iteration consists of solving the
fields interior to each subdomain and then constraining the field
continuity at the interface of each subdomain by enforcing a
Robin-type transmission condition on the boundary fields (this
transmission condition essentially enforces the continuity of
both the tangential electric and magnetic field intensities across
the shared boundaries). Depres also introduced a relaxation
scheme in [15] that greatly accelerated the iterative process.
Later Stupfel [16] extended this method by prescribing a new
ABC [17] at the exterior boundary and using an “onion-like”
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partition of the computational domain improving the efficiency
of the transmission condition and overall performance of this
DDM.

The focus of this paper will be on the application of a hybrid
iterative solution based on the method of Lagrange multipliers.
This method is modeled after the finite-element tearing and in-
terconnecting (FETI) method originally developed by Farhat
and Roux [18]. Specifically, the FEM discretization of the weak
form equation for each subdomain will be posed. The solutions
of each subdomain will be constrained through the use of La-
grange multipliers by enforcing the continuity of the tangen-
tial fields across each boundary interface. A reduced system of
equations representing the Lagrange multipliers is then derived
and is solved using a preconditioned BiCG algorithm. The ad-
vantage of this method is that each subregion can be solved com-
pletely independently, leading to a scalable algorithm. Second,
the number of iterations required to solve the global problem is
dependent on the order of the matrix representing the Lagrange
multipliers as opposed to the global matrix.

Another challenge of modeling electromagnetic wave phe-
nomena in unbounded medium via the FEM is the accurate
and efficient termination of the discrete volume using an ab-
sorbing boundary condition or an absorbing layer. The goal of
such terminations is to be nonreflective, while minimizing the
overall mesh dimensions and the computational overhead as-
sociated with the truncation operator. Recently, Berenger [19]
proposed the perfectly matched layer (PML) as an absorbing
medium for orthogonal finite-difference time-domain (FDTD)
methods. Using the PML to truncate FDTD meshes, reflection
errors due to the absorber have been shown [20]–[25] to be80
dB or less. Berenger’s PML is based on a split-field formulation,
which is well suited for an orthogonal grid implementation.

A similar PML based on a uniaxial anisotropic medium was
introduced by Sackset al.[23] for finite-element frequency-do-
main methods, and by Gedney [24]–[26] for FDTD methods.
The uniaxial PML (UPML) technique is better suited for ap-
plications such as the FEM, which utilize unstructured grids
since it does not rely on field splitting based on orthogonal pro-
jections. Furthermore, it avoids much of the complexity intro-
duced by a stretched coordinate form of Berenger’s PML [27].
A number of recent papers have been published on the applica-
tion of PML and UPML terminations of FEM meshes. Sackset
al. [23], provided an example of a simple dipole radiating in an
open region. Gong and Volakis [28] used a PML to terminate a
microstrip line. Rappaport introduced the stretched coordinate
PML formulation for finite-element applications [27]. By ad-
justing the PML parameters, the layer was found to produce a
reflection error of 30 dB or less for a line current radiating in
an unbounded region. Likewise, Lyonset al. [29], used a PML
to terminate an air-filled waveguide and found reflection errors
of 30 to 55 dB. Kingslandet al. [30] investigated the use
of PML for propagation and scattering problems. Finally, Chew
and Jin [31] analyzed the PML in discretized space in order to
optimize the layer with respect to its parameters.

Even though PML methods have shown promising perfor-
mance, one difficulty that arises is that the matrix becomes
poorly conditioned when PML absorbing layers are present
[32]. As a result, iterative solvers suffer a substantial increase

in the number of iterations needed for convergence. It will be
shown herein that the number of iterations required by the FETI
algorithm for large matrices is dramatically reduced, even with
the presence of PML absorbing layers as compared to a direct
iterative solution.

This paper is organized as follows. The FEM formulation
with UPML absorbing layers is presented in Section II. The
FETI algorithm is then presented in Section III. In Section IV,
the efficiency and scalability of the FETI algorithm for the so-
lution of the FEM matrices with UPML absorbing media is pre-
sented.

II. FINITE-ELEMENT IMPLEMENTATION USING

A UNIAXIAL PML

Assume that a lossy inhomogeneous half-space is interfaced
with a uniaxial anisotropic medium in the plane. In the
anisotropic medium, Maxwell’s equations are described in the
frequency domain as

(1)

where is a complex and frequency dependent andis a 3
3 tensor. It was shown in [23]–[25] that an arbitrarily polarized
plane wave propagating from a medium with material parame-
ters and is impinging on a planar half-space at the
interface described as a uniaxial medium with material param-
eters and , the interface will be reflectionless if

(2)

This will hold true for arbitrary polarization, angle of incidence,
and frequency spectrum. For application to the finite method,
the anisotropic medium must be highly attenuative such that any
wave entrant in the medium will attenuate rapidly. By choosing

[22]–[25], then amplifies
the attenuation of the evanescent portion of the wave, and the
imaginary term attenuates the propagating portion.

In the corner regions, where the UPML layers overlap,will
be represented by the product of tensors. This can easily be de-
rived by matching a UPML to a uniaxial medium [26]. Subse-
quently, is generalized as

(3)

Secondly, due to discretization errors, the PML medium can
suffer from numerical reflection error. To circumvent this
problem, the material parameters have been scaled using a
polynomial scaling [18]–[26].

The FEM is used to compute the fields in the volumetric
space. The vector wave equation in the uniaxial medium is de-
rived from (1)

(4)
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where UPML is assumed throughout the volume. Performing
the inner product with a testing function defined over the finite
volume and utilizing Green’s first identity results in the weak
form equation

(5)

The finite-element solution is performed by discretizing the
volume into element domains and expanding the testing and trial
vector functions using vector edge elements (in this paper first-
order Whitney elements are employed). Then, the first variation
of (5) is evaluated at the stationary point, leading to a sparse
linear system of equations.

Inside the working volume, the medium is assumed to be
isotropic. Specifically from (3), reduces to the identity tensor.
Within the PML region, is anisotropic and the parameters are
assumed to be spatially dependent as anth-order polynomial
along the normal axes. To more accurately represent the spa-
tial variation, Gaussian quadrature numerical integration was
used to perform the integrals in (5) [33]. Furthermore, since the
PML interfaces are assumed planar the implementation of (5) is
quite simple in the FEM routine and no special preprocessing
is required. The exterior boundary backing the PML region is
assumed to be a PEC wall. On this wall, a Dirichlet boundary
condition is enforced.

III. FINITE-ELEMENT TEARING AND INTERCONNECTING

METHOD

The finite-element tearing and interconnecting method
(FETI) is a domain decomposition technique based on a
hybrid variational principle. For simplicity consider a domain

divided into nonoverlapping subdomains . Adjacent
subdomains will share common boundaries defined by.
The vector electric fields and testing functions within each
subdomain are discretized separately into finite elements. Then
evaluating the first variation of (5) at a stationary point yields

(6)

where
vector field unknowns in region ;
stiffness matrix;
forcing vector in .

The discrete fields in each subregion are constrained to en-
force the continuity of the tangential electric fields across the
shared boundary. Specifically, let map into the space of
tangential fields on the shared boundaries . Subsequently,
using the method of Lagrange multipliers, it is desired to solve
the linear system of equations

(7)

with the constraint

(8)

where is a block diagonal matrix defined by

...
...

...
(9)

, , and are described as

...
...

(10)
is a matrix representing the continuity of tangential fields

such that . It is noted that the matrix is
highly sparse and all nonzero entries are simply1. From the
theory of Lagrange multipliers, the solution of this constrained
linear system is equivalent to finding the stationary point of the
functional

(11)

where is the vector of Lagrange multipliers. Taking the first
variation of (11) and evaluating it at the stationary point leads
to the symmetric linear system of equations

(12)

From the first row of (12), it follows that

(13)

combining this with the second row of (12) leads to the sym-
metric sparse linear system of equations

(14)

The parallel algorithm then proceeds as follows.

1) is factorized using a sparse matrix factorization
method. Note that this is done completely in parallel
due to the block diagonal characteristics ofdefined in
(9). As a result, each is factorized independently and
concurrently on each processor.

2) A preconditioned BiCG algorithm is used to compute the
solution for the vector of Lagrange multipliersfrom the
reduced-order matrix equation in (14). It is noted that the
matrix vector multiplies are performed completely in par-
allel since the products of vectors with the matrix blocks

and can be performed explicitly in parallel.
3) Once the Lagrange multipliers are computed, the electric

fields are computed in parallel from (13).
It is noted that the order of the matrix in (14) is greatly re-

duced as compared to the order of the global matrix. As a re-
sult, the iterative scheme is expected to converge rapidly. It is
also noted that if there is symmetry or repetitiveness in the ge-
ometry resulting in blocks with identical , then such blocks
only need to be stored and factored once on one processor. (It is
noted that proper load balance should still be monitored in such
instances.) Furthermore, since the global problem is of reduced
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order it would be possible to solve the problem with a direct
solver. However from a scalability issue, an iterative solver was
implemented.

The performance of a number of preconditioners for acceler-
ating the BiCG solution of (14) was studied. Interestingly, di-
agonal preconditioning based on the full matrix did
not significantly reduce the number of iterations. Regardless,
this preconditioner is prohibitively expensive to construct, as it
requires the rigorous evaluation of . Incomplete diag-
onal preconditioners based only on the diagonal ofalso do
not accelerate the BiCG solution.

The most successful preconditioner found that significantly
accelerates the BiCG convergence without insurmountable
computational overhead was . While, this precondi-
tioner is more expensive than a simple diagonal preconditioner,
it does significantly accelerate the convergence of the BiCG
algorithm and reduces the overall CPU time for the solution.

The condition number of the reduced-order system in (14)
was found to be sensitive to the aspect ratio of the subdomains.
This was also reported in [34]. More specifically, highly elon-
gated domains or domains with highly irregular surfaces tended
to lead to poorer conditioned matrices and, hence, slower con-
vergence. It was found that regulating (or smoothing) the do-
main shape greatly improved this. If one were to decompose
the mesh using an automated mesh partitioning scheme such as
METIS, such smoothing can be done automatically using sim-
ulated annealing or other techniques as reported in [35].

IV. RESULTS

In this section, the efficiency of the FETI solution will be
presented for FEM models with UPML. To this end, the results
for a microstrip line are presented. This problem was chosen
since the computational domain was terminated on five sides by
a UPML layer (see Fig. 1). The microstrip line was excited by
a 4.0-GHz voltage. The relative permittivity and permeability
of the dielectric under the microstrip line were chosen to be 3.2
and 1.0, respectively.

The microstrip line length was set to 0.08629 m and the
depth of the PML on the end walls was effectively six-cell-radii
thick, on the side walls five-cell-radii thick, and on the top wall
five-cell-radii thick. First-order tetrahedral edge elements or
Whitney elements were used in this study and there was no ef-
fort to make the tetrahedral elements symmetric about any axis,
however, the PML interfaces were planar. No special meshing
was done in the PML regions. From (4), we arbitrarily set the
order of the spatial polynomial to . This reduces the
complexity of the expressions for (3) with minimal increase in
error. For the study, the values used were
and . These values were experimentally
determined by minimizing the error of the electric field along
the microstrip line.

To study the efficiency of the FETI algorithm, the parallel
FETI solution outlined in Section III was implemented on
a 32-processor subcomplex of an HP SPP2200. Scalability
results were found for 8, 16, and 32 processors by keeping
the (unknowns/processor) approximately equivalent. Three
sets of problems were investigated in this manner. The first

Fig. 1. Dimensions for microstrip line problem. (x1 = 0:012 m): PML
depth in x-direction; (x2 = 0:0238 m): problem depth inx-direction;
(y1 = 0:012 m): PML depth iny-direction; (y2 = 0:0085 m): free-space
depth in y-direction; (y3 = 0:0021 m): dielectric depth iny-direction;
(z1 = 0:016 m): PML depth inz-direction; (z2 = 0:05492 m): problem
depth in z-direction; (w = 0:00548 m): width of microstrip. Note: the
conductor thickness of the microstrip line was infinitesimal.

TABLE I
COMPARISON OFDEGREES OFFREEDOM (ITERATION COUNTS) FOR GLOBAL

PROBLEM WITH 3000 UNKNOWNS PER PROCESSOR

TABLE II
COMPARISON OFDEGREES OFFREEDOM (ITERATION COUNTS) FOR GLOBAL

PROBLEM WITH 6000 UNKNOWNS PER PROCESSOR

set assigns approximately 3000 unknowns per processor, the
second approximately 6000, and the third set approximately
9000. In order to obtain the number of unknowns desired,
the number of cells was scaled in the-, -, and -directions.
The geometry was kept constant, so the average cell size
was decreased. The benchmark used to compare against the
FETI algorithm was a divide-and-conquer-type preconditioned
BiCGM. The preconditioner used was an inexpensive diagonal
preconditioner. The FETI method used as its precon-
ditioner for the BiCGM as previously discussed. In addition,
different mesh partitioning methods were used in conjunction
with the FETI method. The ones presented are: 1) heuristic RIP
(H-RIP), which recursively slices along the long axis of the
geometry but only along a planar boundary leaving “cube-like”
subdomains; 2) METIS; and 3) METIS with simulated an-
nealing (METIS-SA), which recursively subdivides domains
but uses simulated annealing after each partitioning in order
to smooth the interface boundaries. Since the eigen spectrum
of the divide-and-conquer method is a function of the overall
geometry and not of individual subdomains, it is necessary to
show results using only one of the partitioning methods.

Tables I–III summarize the number of degrees of freedoms for
the global problems and their iteration counts (in parenthesis)
for the various solution methods. For the divide-and-conquer
method this is simply the number of field variables. For the FETI
method this would be the number of Lagrange multipliers. It can
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TABLE III
COMPARISON OFDEGREES OFFREEDOM (ITERATION COUNTS) FOR GLOBAL

PROBLEM WITH 9000 UNKNOWNS PER PROCESSOR

TABLE IV
COMPARISON OFSOLUTION TIMES IN CPU-SECONDS AND(RELATIVE

SPEEDUP) FOR A FIXED PROBLEM WITH 86 943 UNKNOWNS

be seen for the different partitioning methods that the number of
Lagrange multipliers as well as the associated iteration counts
vary considerably.

Figs. 2–4 report the solution time of both methods. For the
divide-and-conquer method this is the iteration time of the
BiCGM. For the FETI method this includes the factorization
of the matrices and then finding the solution to global
problem (15) using BiCGM and the local problem (14) using
a direct solver. Both methods used 10as the termination
criteria for the BiCGM. Because of this low value the iteration
counts are relatively high. Table IV reports solution times
and relative speedup for a fixed problem of 86 943 unknowns.
Speedup is defined as execution time ofprocessors divided
by the execution time for one processor. However, a measure
of relative speedupcan be defined as the execution time of

processors divided by the execution time for any number
of processors. Therefore, relative speedup is inrelation to

processors instead of one processor if the serial time is not
available. A mathematical expression of this definition is

Relative Speedup

Execution Time
Execution Time

(15)

The relative time used in Table IV is the solution time for eight
processors (i.e., ). Therefore, linear relative speedup
would be 2.0 for 16 processors and 4.0 for 32 processors.

Analyzing the results, it is obviously apparent that the FETI
method reduces both the number of unknowns for the global
problem as well as the iterations to solve it. For all problems
considered, FETI with the heuristic RIP partitioning method
produced the best results. However, FETI with METIS did
not always produce better results than the divide-and-conquer
method, especially as the number of processors of processors
grow. METIS does an excellent job keeping the number of
cells per processor constant. However, as a tradeoff, irregular
boundaries between subdomains are produced. FETI unfortu-
nately is highly sensitive to nonsmooth boundaries. By using
simulated annealing, results were improved dramatically as
is shown in the tables. By contrast, FETI with the heuristic
RIP produces the most unbalanced loads regarding cells per
processor. However, it does produce the best results with its
regular boundaries.

Fig. 2. Comparison of solution times in CPU-seconds for problem with 3000
unknowns per processor.

Fig. 3. Comparison of solution times in CPU-seconds for problem with 6000
unknowns per processor.

Fig. 4. Comparison of solution times in CPU-seconds for problem with 9000
unknowns per processor.

Also, it is noticeable that the time per iteration for the di-
vide-and-conquer is considerably less. One of the main reasons
is the preconditioner used. The diagonal preconditioner does a
relatively good job and is very inexpensive. However, the pre-
conditioner we used for the FETI method decreases the execu-
tion time but is relatively expensive. Other inexpensive precon-
ditioners investigated had little or negative effect on the solution
time.

V. CONCLUSIONS

A highly scalable domain decomposition algorithm referred
to as the finite-element tearing and interconnecting (FETI) al-
gorithm for solving electromagnetic problems with PML was
presented. It was shown that this method can be more efficient
for the analysis of general FEM problems on parallel computers
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than a divider and conquer scheme. The FETI scheme is better
suited for parallel computers with a moderate number of pro-
cessors. One reason for this is that the algorithm is best suited
when the Lagrange multipliers is kept small compared to the
global problem size. Second, when using automatic partitioning
schemes such as METIS, finely partitioned meshes tend to result
in highly irregular domains. The condition of the reduced order
matrix produced by the FETI algorithm can be sensitive to ir-
regular domains. It was shown that this is circumvented through
the use of an optimization method based on simulated annealing
that smoothed out highly irregular domains [35]. The tradeoff
is that the workload can become unbalanced. However, it was
found that the FETI algorithm is much less sensitive to load im-
balances than the shape of the mesh partitions.

It should also be noted that this method was investigated for
use with PML. As was stated in the introduction, the addition
of PML has a dramatic effect on the condition number of the
global matrix. When the PML is removed the performance of
the divide and conquer improves increases more dramatically
than that of the FETI algorithm. This is due to, once again, the
irregular boundaries.

Future work planned for maximizing the efficiency of the
FETI algorithm is the development of an improved precondi-
tioner that is computationally inexpensive. This will be neces-
sary for the FETI algorithm to scale over a large numbers of
processors.
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