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Abstract—This paper presents a general procedure to analyze
a multilayer array structure, where each layer may have different
periodicities, different lattice structures, and/or the array axes be-
tween the layers may be nonparallel. The procedure involves de-
termination of global cell with a global coordinate system, then
computations of local generalized scattering matrices (GSM’s) of
individual layers followed by modal mapping from local to global
GSM’s. The global GSM’s for individual layers are then combined
to characterize the entire structure. The mapping relations are de-
rived for two layers with different lattice structures, different peri-
odicities, and array-axes orientations. Three examples of practical
importance are considered to demonstrate the methodology. The
first example is a two-layered patch array with different period-
icities. The second example is an array of subarrays with several
patch elements within a subarray. It is shown that a subarray can
be characterized rigorously by characterizing only one element of
a subarray instead of analyzing all the elements of the subarray
simultaneously. Consequently, analytical and computational com-
plexities reduce considerably. The last example is a patch array
loaded with multilayer meander-line polarizer. The patch array
and the meander-line array have two different periodicities and
the axes are nonparallel. Detailed radiation characteristics of the
structure are presented and compared with that of a strip-grid po-
larizer. Computational advantages of this method are discussed.

Index Terms—Arbitrary lattice, different axes orientation,
different periodicity, infinite array, meander-line polarizer, multi-
layer structures, patch-fed-patch array, scan blindness, strip-grid
polarizer, subarrays.

I. INTRODUCTION

M ICROSTRIP array antennas are popular for their low
fabrication cost, low profile, and lightweight [1]–[3]. For

bandwidth enhancement or for dual-band applications, multi-
layer patch structures have been proposed [4]–[7]. Analyses of
multilayer array structures have been reported in the literature
using Floquet modal analysis and generalized scattering ma-
trix (GSM) approach [8]. These analyses assume equal cell size
(periodicities) for the layers, therefore, the layers have iden-
tical Floquet modal functions and, hence, the GSM cascading
is straightforward. For many applications, the layers may have
different cell sizes. A typical example of this kind is a patch
array antenna loaded with a frequency selective surface (FSS).
The cell size of the radiating patch layer is generally determined
by the maximum scan requirement. On the other hand, cell size
of the FSS layer is determined independently by the pass band
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and stop-band specifications. This may result in two different
cell sizes for the two layers. A more complex multilayer array
structure is a patch array loaded with a polarizing screen [9]
(this particular example is considered in Section III-C for a de-
tailed analysis). For this structure, the patch layer and the po-
larizer layer have different cell sizes and the cell orientations
are nonparallel between the layers (patch rows and the polarizer
grids are not parallel). Analyses of multilayer array structures
having different periodicities between the layers have been re-
ported in [10] and [11]. The structure in [11] consists of a dipole
array loaded with one layer of strip grids. The formulation as-
sumes that the cell size of the dipole layer is an “integral mul-
tiple” of that of the strip-grid layer. No such assumption is made
in [10]. However, in both cases the theory is limited to parallel
array-axes orientations between the layers.

In this paper, we present a general analysis of multilayer
structures. The layers may have different lattice structures (unit
cells) with different periodicities and axes orientations. In our
analysis, we first obtain the global unit cell. The global unit
cell structure is dependent upon the cell structures and the
relative array-axes orientations of the individual layers. We
then find the GSM’s of the individual layers with respect to
the global unit cell. Construction of the global GSM for each
layer is necessary in order to apply the GSM cascading rule
[8] for analyzing a multilayer structure. It is found that a set of
local GSM’s (GSM’s with local unit cell and local coordinate
system of an individual layer) can be used to construct the
global GSM for that layer. This is possible because a Floquet
mode associated with a given lattice structure can represent a
Floquet mode associated with a different lattice structure. The
mode numbers (modal indexes for two-dimensional periodic
structures), however, will be different for the two different lat-
tices. A mapping relation between the modes associated with a
local lattice and the global lattice would allow constructing the
global GSM for the layer using the elements of local GSM’s.
We have established such mapping relations for different cases.
To find a local GSM of an individual layer, we use Floquet
modal analysis and Galerkin's method of moment [12]. Once
we find the global GSM’s for all the individual layers, we can
find the overall GSM of the structure.

To illustrate the methodology, we consider three different ex-
amples for analysis. The first example is a two-layer patch array
with different periodicities of the layers. The lower layer patches
are excited by probe feeds. The input impedances seen by the
driven patch elements are determined. The second example is
an infinite array of patch subarrays. The impedance matrix of
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the subarray elements is formulated, which is essential for de-
signing the feed network. Computed results for three different
subarrays are compared with the available results. The third ex-
ample is a patch array loaded with a two-layer polarizing screen.
We present a detailed electrical characteristics including input
match, axial ratio bandwidth, and scan performance. Scan blind-
ness phenomena caused by various guided-mode-resonances are
explained through Floquet-mode circle diagram. Relative per-
formances of a meander-line polarizer and a strip-grid polarizer
are discussed and the important conclusions are outlined at the
end.

II. THEORY

We present the analysis of three structures with increasing
order of complexity. We first establish the mapping relations
between the Floquet modes of a local cell and the global cell
and then outline the steps to be followed towards the analysis of
the entire structure.

A. Layers with Different Periodicities: Rectangular Lattices

Consider a multilayer array of printed elements as shown in
Fig. 1 where the layers have different periodicities. The ele-
ments of each layer are aligned row wise alongand column
wise along , forming a rectangular lattice structure. Suppose

represents the overall periodicity (we will refer to as global
periodicity or global cell) of the structure, whereand are the
lowest common multiple (l.c.m.) of the different periods along

and directions, respectively. In other words, a unit cell of
dimensions will accommodate a finite number of cells of
any layer of the multilayer structure. The number of cells will
differ, in general, from layer to layer. The Floquet modes sup-
ported by the global cell is given by the following vector modal
function [12]:

(1)

where is a constant vector. Expressions for with respect
to the TE and TM fields are given in [13]. The wave numbers,
for rectangular lattice, are given by

(2)

is the propagation constant in a given medium.and
are the phase increments per unit cell dimension alongand
-directions, respectively. We will use the symbol to

represent the abovedifferential-phase-pair.
Suppose the above mode in (1) is incident upon theth patch

layer having the local cell size represented by . The inci-
dent phase differences between two adjacent local elements of
the th layer along and directions would be, respectively,

(3)

Fig. 1. A three-layered printed array structure with different periodicities and
parallel array axes orientations.

The reflected and transmitted modes supported by theth layer
due to the incident field given in (1) can be represented by the
following local modal function:

(4)

The -dependent factor is suppressed which is unimportant with
respect to the present context. The wave numbers in (4) are given
by

(5)

where and are the local mode-index-pair. Henceforth, a
Floquet mode with and as mode-index pair will be denoted
as the mode. Substituting and from (3) to (5) we
have the following expressions for the wave numbers associated
with the reflected and transmitted fields from theth layer:

(6)

where

(7)

and are integers.
From (6) we notice that when the global mode is inci-

dent upon theth layer, the elements of theth layer will pro-
duce the global modes, where and both
run from to . Interestingly, for a single global-mode inci-
dence, the reflected and transmitted global-mode indexes appear
only at discrete intervals. These intervals areand for and

indexes, respectively. Furthermore, the global
incident mode ( integers) will create the same set of reflected
and transmitted modes with different amplitudes. However, the
intermediate reflected and transmitted modes will be created if
the global incident modes have modal indexes like ,
where . The next step is to establish a one-to-one
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mapping between the global modal indexes and the local modal
indexes of the -th layer. This mapping relation allows repre-
senting the local GSM of theth layer with respect to the global
modal index system. When the individual layer GSM’s are rep-
resented in terms of a global modal index system, we can di-
rectly use the multimode cascading rules [8], [12] to analyze a
multilayer structure. The advantages of this procedure will be
discussed later.

From (5) and (6) we notice that the mode
in the cell is equivalent to the mode in cell.
The differential-phase pair for the above cells are and

, respectively. Therefore, by set-
ting different values of from zero to and from zero to

, we can cover the entire global modal space using local
modes.

From the previous discussion, we can conclude that the
local mode in the th layer with a differential-phase
pair is equivalent to the

mode in the cell with the differen-
tial-phase pair . Therefore, to fill in the entire global
modal space we have to compute the local GSM’s of theth
layer with the following set of differential-phase pairs:

The corresponding global mode-index pairs would be

where and both run from to . Note that to con-
struct the global GSM for theth layer, the local GSM’s should
be computed number of times. The following simple steps
should be followed in order to analyze a multilayered structure
with different periodicities.

Step 1) Find , the global cell size of the structure.
basically is equal to the l.c.m. of the local cell di-
mensions of the layers in the structure.

Step 2) Find the global differential-phase-pair
from the input excitations or scan direction, etc.

Step 3) Consider a given layer and find the local cell size
. Find and . Select a dif-

ferential-phase pair
by selecting a set of and , where should be an
integer between zero and and should be an
integer between zero and . Compute the cor-
responding local GSM. Rename the local GSM ele-
ment indexes globally as .
Repeat this for other sets ofand . There should
be times GSM computations for the layer under
consideration.

Step 4) Repeat Step 3) for other layers in the structure.
Then combine the individual layer GSM’s to find
the overall GSM of the structure.

It should be mentioned that in order to increase the com-
putational efficiency and numerical accuracy, the total number

of global Floquet modes must be selected first. This number
depends on the element spacings in wavelength and the sep-
aration between the adjacent layers [12]. To comply with the
total number of global modes requirement, the number of local
modes in Step 3) may be considered approximately as
times the total number of global modes. Therefore, although the
GSM’s of an individual layer are computed number of times,
the dimensions of the associated matrices are reduced by the
same factor.

B. Layers with Different Periodicities and Axes Orientations:
Rectangular Lattices

In the foregoing section, the cell orientations between the
layers were assumed parallel. In many applications, cell orien-
tations are not parallel between the layers. In this section, we
consider rectangular global and local unit cells with nonparallel
array axes.

As before, we assume that the global periodicity of the struc-
ture is and the local periodicity of theth layer is .
The axis of the th layer is inclined at an angle with the
global -axis of the structure [see Fig. 2(a)]. The local modal
function of the -th layer can be expressed as

(8)

where

(9)

Using the following coordinate transformation formulas for axis
rotation:

(10)

and substituting in (8) we obtain

(11)

with

(12)

(13)

Recall that and are the periodicities of theth layer along
and directions, respectively. Now consider the periodicity

of the th layer along and directions of the global coordinate
system. The periodicity alongwould be the l.c.m. of
and 1 . Similarly, the periodicity along would be the
l.c.m. of and . Since is the global peri-
odicity the following relations must hold:

1For all practical purposesa = cos andb = sin can be considered as ra-
tional numbers, hence an l.c.m. is possible to obtain.
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(14)

where are all integers. Using (14) in (12) and
(13) we obtain

(15)

Suppose the above wave number corresponds to theglobal
mode with a differential-phase pair . Then, we can
write

(16)

Equation (16) essentially relates the local mode indexes
to the global modal indexes . For given and (which
are determined from desired scan direction or from other con-
siderations), each global mode-index pair has a corresponding
local mode-index pair and vice versa. In other words, every local
mode, represented by a coordinate point on the plane,
has an image point on the plane [see Fig. 2(b) and (c)].
Since and can take all possible integer values, a unit cell
in the plane, in general, maps into a parallelogram in

plane as shown in Fig. 2(c). The area of the parallelo-
gram can be found from the Jacobian relation of (16), which is
given by

(17a)

From (16) and (17) we obtain

(17b)

since . The number of discrete coordinate
points inside the parallelogram is equal to

, which is expected. If we excite theth layer with a dif-
ferential-phase pair that satisfies (16), then the global
modes will occur at discrete intervals. Each differential-phase
pair associates only one global mode point within each parallel-
ogram. The remaining mode points correspond to other differen-
tial-phase pairs. To generate the other global modes we should
use appropriate sets of . The procedure of finding ap-
propriate 's will be explained shortly. To fill in the en-
tire global modal space, one can follow a systematic procedure
as below:

Step 1) Estimate the global cell size and the global
coordinate axes for the structure. Consider theth
layer. Use (14) to find and , which
depends on , , and . Find and
from the excitation condition of the array or other
conditions relevant to the function of the structure.

Step 2) Construct a parallelogram in the plane.
The four corner points of the parallelogram are

and ,
respectively. Locate all the discrete points (with
integer coordinates) inside the parallelogram.

(a)

(b)

(c)

Fig. 2. (a) Two-layered printed array structure (rectangular lattices) with
different periodicities and non-parallel array axes orientations. (b) Floquet local
mode-index(m� n) plane. (c) Floquet global mode-index(p� q) plane.

Step 3)

a) Set . Then use (16)
to obtain and . Obtain the local GSM
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of the th layer for a differential-phase pair
. Rename all the modal in-

dexes of the local GSM elements by ,
where and are computed using (16). Note
that occurs at discrete intervals only.

b) Select another discrete point inside the paral-
lelogram of Step 2) and find . Set

(18)

and find solutions for and . At least one
of them ( or ) must be noninteger. Retain
only the integral parts as the solutions for
and . Use the integral values thus obtained
for and in (16) to find a new set of and

. With this new repeat Step 3a).
If some points lie on the boundary of the par-
allelogram, shift the parallelogram in appro-
priate directions (no rotation allowed) so that
no point lies on the boundary. Then consider
all the points inside the shifted parallelogram
[parallelogram with dash lines in Fig. 2(c)].

Step 4) Repeat Step 3b) for other discrete points inside the
parallelogram. There should be a total of

local GSM computations for theth layer.
Step 5) Follow Steps 1) to 4) for the other layers and cascade

the global GSM’s to obtain the overall GSM of the
structure.

The procedure presented above is applicable for rectangular
lattice structures. For other lattice structures or for different lat-
tices at different layers (for example, rectangular in one layer
and triangular in other layer) the mapping relations would be
different. This is considered in the section that follows.

C. Layers with Different Periodicities and Different Axes
Orientations: Arbitrary Lattices

The procedure in Section II-B can be generalized for different
lattice structures at different layers. A general lattice structure
of the th layer is shown in Fig. 3. The unit cell area is
where is the element spacing along the row (-axis), is the
perpendicular distance between two consecutive rows andis
the lattice angle. The three parameters and can describe
any arbitrary unit cell. Different unit cell structures at different
layers may result in a general global unit cell structure. Suppose
the global unit cell has a lattice angleand the cell area is
(Fig. 3). The row-axis (-axis) of the global cell makes an angle

with the -axis of the local cells. The local wave numbers
associated with the local mode in the th layer can be
expressed as

(19a)

We like to mention that although the wave number alongis
a function of both and , for simplicity we keep the same

Fig. 3. Arbitrary lattice structure of a layer. Also shown are the global unit cell
(thick-line parallelogram) and the relative axis orientation.a� b is the area of
a global unit cell;a � b is the area of a local unit cell.

notation as in the case of a rectangular lattice. The global wave
numbers corresponding to the global mode are

(19b)

Following the procedure detailed in Section II-B, we can find
the relation between the local and the global mode indexes. The
final relation becomes

(19c)

where

are four integers and their values are
, , ,

and , respectively. To obtain the global
GSM from local GSM’s of theth layer one should use (19c)
instead of (16) and then follow the steps from 1 through 4 in
Section II-B. Notice that setting , (19c) modifies
to (16).

III. A PPLICATIONS

To demonstrate the methodology, we consider the following
three examples of practical importance. In order to validate the
theory, we compare our computed results with the available re-
sults in the literature.

A. Patch-Fed Patch Subarray

A patch fed patch subarray is considered as the first example
of a multilayer (two layers in this case) array structure with
different periodicities. Fig. 4(a) shows the geometry of a unit
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(a)

(b)

Fig. 4. (a) A two-layered patch-fed patch subarray. The lower layer patch
electromagnetically couples the upper layer patches. Lower layer patch is
excited by probe feed. (b) Input impedance versus frequency plot of the
subarray. SubarrayE-plane dimension= 7:2 cm, H-plane = 6:4 cm,
upper layer patches 2.0 cm� 1.6 cm, lower layer patch 2.13 cm� 2.0 cm.
Substrate thickness of the layers= 0:16 cm each, dielectric constant for both
layers = 2:55. Probe located at 0.8 cm from the center alongE-plane. —
Infinite array of subarrays for bore-sight radiation; --- isolated subarray [6].

cell of the structure. The array consists of two patch layers on
a dielectric coated ground plane. Another dielectric layer sep-
arates the patch layers. Probes excite the lower layer patches.
Each lower layer patch electromagnetically couples four upper
layer patches. The driven patch in the lower layer and the four
coupled patches in the upper layer make a subarray of an infi-
nite array. The lower layer patches have the periodicity ,
while the upper layer patches have the periodicity .
Both layers have rectangular lattice structures. In a global unit
cell, the driven patch is symmetrically located below four upper
layer patches. Analysis of an isolated subarray is reported by
Legay and Shafai [6]. However, our analysis is applicable for
infinite array of such subarrays.

To analyze the infinite array, we first find the local GSM’s of
the upper layer and convert the local GSM’s to a global GSM
using the steps in Section II-A. For the upper layer, we compute
four local GSM’s with differential-phase pairs

,
respectively, where

being the scan direction in the spherical coordinate
system. We consider as the local cell size for the

upper layer. The local mode indexes are then converted to
obtain the global GSM for the upper layer. Because the cell
centers between the two layers are misaligned, appropriate
phase factor is introduced for each elements of the global GSM.
To compute the GSM of the lower layer, we use as the
differential-phase pair and as the cell size. The two global
GSM’s are combined to obtain the overall GSM of the patch
layers. To find the input impedance seen by the probe feed, the
overall GSM is converted to the matrix. The matrix of
the probe feed is obtained separately using the reaction theorem
and Floquet modal analysis [13]. Combining the matrices,
the input impedance seen by the probe is obtained.

In Fig. 4(b) we have plotted the input impedance. About 120
Floquet modes were used to obtain a reasonable convergence.
To compare the impedances between an isolated subarray and
its infinite array, we have also plotted the input impedance of
an isolated subarray. The impedance data were extracted from
Fig. 2 of [6]. High resonances are found to occur for the in-
finite array case. For the isolated subarray, no such resonance
exists. The high resonances near 4.4 and 5 GHz are due to
the parallel plate modes that couple with higher order Floquet
modes. The uncharacteristic behavior of the array impedance
near 4.16 GHz is due to the appearance of the first grating lobe.
If the high resonance points are ignored (which are pertinent
to an infinite array), the general shapes (including the number
of peaks) of the impedance curves are very similar to each other.

B. Array of Subarrays

For a limited scan requirement, the subarray concept is useful,
because it allows lesser number of phase shifters than normal. To
excite the subarray elements with appropriate tapering, which
is sometimes necessary to control the grating lobes [14], one
should have a knowledge of the impedance matrix of the sub-
array elements. The usual way of analysis is to consider the en-
tire subarray as a unit cell of the array and then solve the patch
currents using the method of moments [15]. This method re-
quires excessive analytical and computational efforts because
all patch currents in a subarray are solved simultaneously with
a large number of unknowns. Furthermore, the cell size being
larger, several Floquet modes are required for a reasonable con-
vergence. In the present approach, we use the general procedure
outlined in Section II with necessary modifications for ma-
trix representation of a subarray. We will demonstrate that one
needs to characterize only one element in a subarray to char-
acterize the entire subarray consisting of several identical ele-
ments. To simplify the presentation we outline the procedure
for a rectangular subarray of 2 2 elements as in Fig. 5(a). In
the Appendix, we consider more general subarrays with arbi-
trary number of elements.

Suppose are the dimensions of a subarray (rectangular
lattice) in an infinite array. As explained in Section II-A,
we consider the local cell size as the element spacing inside
a subarray. The cell size in this case is . Now
we compute the Floquet impedances of the array elements
with the following differential phase pairs:

,
where , ,
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(a)

(b)

Fig. 5. (a) Subarray of 2� 2 patch elements. (b) Reflection coefficient versus
E-plane scan angle of an infinite array of subarrays. Number of elements in
subarrays are 1� 1, 2� 1, and 3� 1, respectively. Subarray elements are
arranged along theE-plane. Element spacing within a subarray 0.5� � 0.5�.
Element size 0.28�� 0.3�. Dielectric constant= 2:55. Equal voltages for all
the elements within a subarray. —This theory; --- [15].

being the scan angle. Suppose and are
the Floquet impedances for the above four cases. Then the
impedance matrix of the subarray elements for a given scan
angle would be (see Appendix for derivation)

(20)

where is a diagonal matrix, being the
diagonal elements, and is given by

(21)

with

Note that is an orthogonal matrix that can be inverted by
transposing its complex conjugate and then multiplying with the
normalization constant. If the number of elements in a subarray
increases indefinitely, the mutual impedance between the ele-
ments approaches the integral relation derived in [16].

Fig. 6. Exploded view of a slot-coupled patch array loaded by a meander-line
polarizing screen for circular polarization.

In order to validate the above subarray analysis, we compute
the impedance matrix of three subarrays with elements 11,
2 1, and 3 1, respectively. From the impedance matrix,
the active input impedances seen by the patch elements of a
subarray are obtained. From the active impedances, we derive
the reflection coefficient seen by an equal-split power divider.
Each subarray is assumed to be boresight matched. We compute
the reflection coefficients for several scan angles in the-plane
and compare our numerical results with that reported in [15].
Fig. 5(b) shows the comparison. For our numerical results, we
assume that the feed probes are located near the radiating edges
of the patch elements. Excellent agreements between the two
sets of results are found. For 31 element subarray, discrep-
ancies are found near and scan angles. These
two angles correspond to the array blind spots. The magnitude
of the reflection coefficient near the blind spot is very sensitive
to the feed location. We assume the feed location near the edge
of the patch elements, which may be different from that in [15].

C. Patch Array Loaded with Screen Polarizer

We now present an example of a multilayer structure with
different periodicities and array-axes orientations. An exploded
view of the entire structure is shown in Fig. 6. It is a slot-fed
patch array antenna loaded with a two-layered polarizing screen.
The patch array is designed to radiate linearly polarized wave
with its polarization direction along the-axis. The screen po-
larizer converts the fields from linear polarization to circular po-
larization. The screen polarizer consists of a dielectric layer with
conducting meander-lines (or strip-lines) etched on both sides of
the layer. The screen polarizer is placed above the patch surface
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(a)

(b)

Fig. 7. Impedance and axial ratio of the structure in Fig. 6. Patch cell size 0.99
cm� 0.99 cm. Patch size= 0:35 cm� 0:6 cm. Slot size= 0:27 cm� 0:025

cm. Patch substrate thickness= 0:081 cm, feed substrate thickness= 0:038

cm. Dielectric constant for patch substrate (also feed substrate) is 2.55. 50


microstrip feed lines excite slots. Meander-line periodicity 0.7 cm� 0.35 cm.
Line width = 0:035 cm, meander depth= 0:1 cm. Meander-line axis is 135�

with x-axis of patch array. Polarizer spacer thickness= 0:502 cm, dielectric
constant of spacer= 1:1. Strip-width for the strip-line polarizer= 0:025 cm,
spacer thickness= 0:5 cm. (a) Input impedance versus frequency. --- patch
array without polarizer, -�- patch array with strip-line polarizer atd = 0:5

cm, - - patch array with meander-line polarizer atd = 0:5 cm, -O- patch
array with meander-line polarizer atd = 0:7 cm, d = distance between the
patch surface and polarizer inner surface. (b) Axial Ratio versus frequency. ---
meander-line polarizer by itself for normal plane wave incidence, -�- patch
array with strip-line polarizer atd = 0:5 cm, - - patch array with meander-line
polarizer atd = 0:5 cm, -O- patch array with meander-line polarizer atd = 0:7

cm.

and at a finite distance from the patch metallization. The dis-
tance between the patch and the polarizer is adjusted to optimize
the electrical performance of the antenna. Analysis of an iso-
lated screen polarizer has been reported in the literature [9]. We
will present a detailed analysis of the patch-polarizer assembly.
We shall see shortly that the scan performance of an isolated
screen polarizer differs considerably from that when coupled to
a patch array.

In our structure, the periodicity of the patch elements is 0.99
cm in both directions. For the screen polarizer, the spacing be-
tween two grid lines is 0.35 cm and the grids are oriented at an
angle 135 with the -plane of the patch array. The meander
periodicity along the length is 0.7 cm. The-axis of the me-
ander-line makes 45angle with the -axis of the patch. Using

(a)

(b)

Fig. 8. (a) Reflection coefficient versus scan angle of the slot-coupled patch
array (no polarizer) described in Fig. 7. (b) Reflection coefficient of the patch
array with meander-line polarizer loading. Separation between patch surface
and the inner surface of the polarizer is 0.5 cm.f = 20:7GHz. The resonances
are explained through circle diagram in Fig. 9.

(14) we find and . Following the
steps in Section II, we find the GSM of the structure with respect
to the global modes. From the GSM, we determine the input
impedance, axial ratio of the array. Fig. 7(a) shows the input
impedance of an element with and without screen polarizers.
Two different polarizers (meander-line and strip-line polarizers)
are considered for this study. The impedances are computed for
boresight beams. The polarizers reduce the impedance band-
width of the array. The strip-line polarizer introduces high
resonances, which are due to coupling between strip-line modes
and higher order Floquet modes. For meander-line polarizer no
such resonance occurs for the boresight beam. We will explain
these phenomena later in further details. Fig. 7(b) shows the
axial ratio versus frequency for three different screen locations.
By adjusting the spacing between patch surface and the screen
polarizer, the array structure can be tuned to some extent to im-
prove the axial ratio of the radiated fields. For the strip-line po-
larizer, the axial ratio degrades significantly at the resonance
locations.

To examine the scan performance of the integrated array
structure, we compute the reflection coefficient seen by the
microstrip feed line at various scan planes. Fig. 8(a) and (b)
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shows the scan performance of the patch array without and
with meander-line polarizer loading. The scan planes were 0,
45 , 90 , and 135, respectively. Several blind spots are found.
These blind spots are due to the trapped guided modes that
exist between the polarizer screen and the patch ground plane.
There are three different types of guided modes responsible
for scan blindness. They are: 1) surface wave modes; 2)
meander-line-guided modes; and 3) parallel—plate waveguide
modes. The occurrence of a scan blind angle can be explained
through the Floquet mode circle diagram in Fig. 9. Each circle
(with radius equal to ) is associated with a Floquet mode
supported by the array structure. The family of curves (almost
straight lines with small periodic perturbations) in the diagram
represent the wave number loci of meander-line-guided modes2

The meander mode loci were obtained from an independent
analysis of meander-line structure over a ground plane. The loci
are oriented at 45with the -axis, because the meander-line
axis is at 135with the -axis of the patch array (Fig. 6).

In Fig. 9, the circle with slightly larger radius, concentric with
the mode represents the surface wave mode. Whenever
a guided mode locus passes through a Floquet mode circle, it
indicates that the Floquet mode and the guided mode may be
strongly coupled to each other, causing a resonance that may
lead to a scan blindness. Each point of the guided mode locus
that lies inside the Floquet mode circle corresponds to a blind
spot. For example, the point B represents a blind spot due to
coupling between a meander-line mode and the Floquet
mode. The blind spot is represented by the vector, so the
blind spot is located at ( -plane),

. Likewise, the vector represents the scan blindness on
the -plane due to the surface wave resonance. Similarly, the
vector represents a blind spot at and .
In Fig. 9, we have shown the points corresponding to each blind
angle of Fig. 8(b). Note that some of the above blind spots would
not be observed in the case of an isolated meander-line polarizer
with a plane wave incidence, because those blind spots are due to
coupling between higher order Floquet modes and the meander-
line-guided modes.

It is important to note that the meander-line polarizer intro-
duces undesirable blind spots at about 9angle from the bore-
sight direction of the array. The intensity of the above blind-
ness can be reduced or eliminated if the coupling between the
meander mode and the Floquet mode associated with the blind
spot is reduced. This can be accomplished if the distance be-
tween the meander-line polarizer and the patch surface is in-
creased, because the coupling Floquet mode is evanescent, so
the fields decay exponentially along. In Fig. 10 we have shown
the scan performance of the same antenna structure, when the
polarizing screen position is elevated by 0.5 cm along. Notice
that the meander mode resonance is completely subsided, en-
hancing the scanning range of the array. However, by elevating
the screen position, we find few additional peaks (resonances)

2If � be the propagation constant of a guided mode, then the guided mode will
be coupled to any Floquet mode that has a wave number of(2n�=b��), where
b represents the periodicity of the Floquet mode along the meander-line-mode
propagation direction andn is an integer. Therefore, to examine he coupling
between all possible Floquet modes and the meander-line mode we should plot
two sets of loci—one being the mirror image of the other—as shown in Fig. 9.

Fig. 9. Floquet mode circle diagram. Each circle corresponds to a Floquet
mode. The circle with dash lines corresponds to the TMsurface wave
mode. The family of curves represents the propagation constant loci of the
meander-line-guided modes. The points indicated by capital letters correspond
to the resonances in Fig. 8(a) and (b).

Fig. 10. Scan performance with elevated (d = 1:0 cm) meander-line
polarizing screen. The other parameters are same as that in Fig. 7.

in the reflection curves. These peaks correspond to the parallel
plate waveguide modes that propagate along the transverse di-
rection with multiple reflections from two reflecting planes. The
incident angle of the wave front is given by

(22)

where is an integer, is the wavelength inside the parallel
plate region and is the distance between the two planes. Since
the upper plane is made of meander-lines, the location of the
upper reflection plane slightly deviates from the physical loca-
tion of the meander-line plane. This deviation depends on the
incident angle and polarization angle of the incident field. To
estimate the location of resonance, we wave plotted the distance
of apparent plane of reflection versus the scan angle in Fig. 11.
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The distance of apparent plane of reflection is estimated using
the following expression:

(23)

where is the equivalent “free-space distance” (considering
two different dielectric media) between the inner plane of the
polarizer and the patch ground plane andis the distance of
the apparent plane of reflection in the vicinity of the polarizer
inner surface. is obtained from the following relation:

(24)

where is the input susceptance of the polarizer with respect
to either the TE or the TM mode incidence that has
a larger reflection coefficient. is the scan angle and is the
free-space wave number. Resonance occurs when the distance
between the two planes of reflections satisfies (22). To find the
resonance points we have also plotted the function
versus in Fig. 11. The intersection points correspond to reso-
nances. The intersection points are found at for the -
and -planes, for plane, and for

plane. These resonant locations closely agree with
that observed in Fig. 10. These simple relations give an estimate
of the resonant locations, however for an accurate prediction one
has to analyze rigorously as has been done for Fig. 10.

It can be noted in Fig. 10 that for the and
cuts resonances occur near . These resonances are due
to the and modes, respectively, that also couple to
the parallel plate modes. From grating-lobe point of view, when
the array scans at on the -plane, the grating lobe
appears at and vice versa, causing resonances at both
41 and 54scan locations on -plane. For 45and 135 planes
the grating lobes do not exist, therefore, only one parallel-plate
mode resonance occurs in each of these scan planes.

To compare the scan performance between a meander-line
polarizer and a strip-line polarizer, we present the scan char-
acteristics of a patch array loaded with a strip-line polarizer in
Fig. 12. We notice that the nearest blind spot occurs at about
1 scan angle for the - and -plane scans, as opposed to the
9 for the meander-line case [see Fig. 8(b)]. This effect can
be explained from the circle diagram presented in Fig. 9. For
the strip-line polarizer, the loci for the strip-line guided mode
would be almost a straight line with 45angle of inclination
with the axis (as compared to somewhat zigzag line for me-
ander-line-guided mode). Therefore, one of the loci will inter-
sect the axis at a point very close to the mode circle's
center. In other words, the magnitude of the vector will be
smaller in this case, as compared to that of the meander-line
polarizer, resulting in a smaller blind angle. Similar argument
applies to the -plane scan. It is worth mentioning that by ad-
justing the patch cell size, we can move the center of the higher
order Floquet mode circles. Consequently, some of the blind
spots will move from their previous locations.

Another important difference between a strip-line polarizer
and a meander-line polarizer is observed in the 45scan plane.
The strip-line polarizer shows several resonances whereas

Fig. 11. Apparent plane of reflection of a meander-line surface versus scan
angle. The stiff curve is�=(2 cos �) versus�. The intersection points represent
blind spots caused by parallel plate modes.

Fig. 12. Scan performance of the patch array of Fig. 7 when loaded with the
strip-line plarizer. Separation between patch surface and polarizer is 0.5 cm.
strip-line polarizer dimensions are given in Fig. 7.

the meander-line polarizer shows only one resonance. The
resonance near the 33angle is due to a parallel plate mode
that propagates between the ground plane and the lower
strip-grid layer. High inductive reactance of the strips moves
the apparent plane of reflection above the strip-grid surface,
which effectively lowers the cutoff frequency, facilitating the
parallel plate mode to propagate. From the analysis, it is found
that, this parallel plate mode couples with the Floquet
mode, which is evanescent. Therefore, elevating the polarizer
screen can eliminate this resonance. The resonances near 45
and 48 angles are due to other higher order parallel plate
modes. One of the modes propagates between the upper grid
layer and the patch ground plane and the other propagates
between the upper grid layer and the patch surface layer. The
above two scan angles closely match with the formula in (22),
if is considered as the distance between the upper grid layer
and the patch ground plane or the patch surface layer. It is
also found that if the separation between the patch layer and
the polarizer increases, the resonances move to larger angles,
which also comply with (22). These two resonances are due to
the coupling between the Floquet mode and higher order
parallel plate modes. Therefore, unlike the resonance discussed
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before (at 33), elevating the polarizer screen does not eliminate
these resonances; moves the resonant locations only.

It is interesting to note that if the polarizer grids are par-
allel to the -plane of the patch array, the additional scan
blindness (besides the blindness due to the surface wave
modes) in the -plane due to polarizer loading may not
occur. For such configurations the strip-line-mode loci gen-
erally do not intersect with the axes of the Floquet mode
circles, hence the Floquet modes and the strip-line modes
do not couple to each other. This observation is in confor-
mity with that reported in [11]. For large element spacing in
the -plane, however, a strip-line mode locus may intersect
with the axis at a point inside a Floquet mode circle and
scan blindness may occur in the-plane. Similar argument
applies to -plane parallel grids. However, these situations
do not arise in the case of circular polarizer screens, because
for circular polarization, the grid axis must not be parallel
with the or -plane of the patch array.

In order to examine the validity of the analysis we present
the measured return loss of a Ka-band subarray of 44
patch elements loaded with a two-layer strip-line polarizer.
The periodicity of the patch elements was 0.876 cm0.876
cm. The polarizer grids were spaced at 0.35 cm and the grids
were oriented at 45angle with respect to the patch axis. The
polarizer screen was placed at 0.22 cm above the patch sur-
face. The patches within a subarray were excited by a 1 : 16
binary split power divider (with several Tee-junctions and
quarter wave transformers) realized in asymmetric striplines.
The patch elements were coupled with the striplines through
ground plane slots. To suppress the parallel plate modes,
each slot was surrounded by eight plated-through vias. The
measurement was conducted in a large array environment
where the other subarrays were matched terminated. Fig. 13
shows the computed and measured return loss seen at the
input end of the power divider of a subarray. The agreement
between the two results is good. The array was designed to
operate between 20.2 and 21.2 GHz. Computed return loss
is 15 dB or better within the band. The slight discrepancy
between the two curves is attributed to fabrication tolerances
and uncertainty in the dielectric constant values.

IV. CONCLUSION

We presented a general analysis of multilayer structure where
the layers may have different lattice structures, cell sizes, and
array axis orientations. Each layer is analyzed locally using Flo-
quet modal expansion and GSM approach. The local GSM’s are
then converted to a global GSM associated with a global coor-
dinate system and the global unit cell structure. All individual
layer global GSM’s are cascaded to characterize a multilayered
structure. The methodology has the following advantages.

• It is a modular approach, layers are analyzed indepen-
dently (easy to handle a multilayer structure).

• The method is numerically more efficient as compared to
a “brute-force” approach, where a global cell is considered
as a unit cell and the currents in all the elements in a unit

Fig. 13. Computed and measured return loss of a 4� 4 slot-fed patch subarray
loaded with a two-layer strip-line polarizer screen. Patch substrate thickness=

0:091 cm, dielectric constant= 2:56. Polarizer is at 0.22 cm above the patch
surface. Polarizer grid spacing= 0:35 cm. Polarizer thickness= 0:496 cm.
---- computed; — measured.

cell are solved simultaneously with increasing number of
unknowns.

• A lesser number of modes can be used to obtain the local
GSM’s, because individual layers have smaller cell di-
mensions than the global cell.

The patch array structure, loaded with a polarizer screen exhibits
several interesting characteristics. Some of them are outlined
below.

• Electrical performance (especially the axial ratio) can be
tuned by adjusting the distance between the patch layer
and the polarizer layer.

• Both meander-line polarizer and strip-line polarizer ex-
hibit several blind spots. These blind spots are due to dif-
ferent type of guided modes that couple to the Floquet
modes. Raising the distance between the polarizer and the
patch surface can eliminate some of the blind spots.

• Between the two polarizers considered, the meander-line
polarizer has a better scanning capability than the
strip-line polarizer, because the strip-line polarizer shows
blind spots near the boresight scan angle. However, by
adjusting the patch-array cell size, the blind spots can be
moved away from the boresight direction.

APPENDIX

SUBARRAY IMPEDANCE MATRIX

Suppose there are identical elements in a subarray of
an infinite array structure. We first consider rectangular lattices
for the subarray and the elements within the subarray. At the
end, we will outline the procedure for a general subarray struc-
ture. Suppose be the input voltage of theth element of the
subarray, where . Also we assume that theth
element is placed at th row and th column of the subarray
where and . Therefore, the index represents
a set of two indexes , which we symbolically denote as

. Any arbitrary voltage vector of elements can
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be expressed as a linear combination of independent vec-
tors. Suppose we choose the independent vectors as the Floquet
excitation3 vectors as follows:

(25)

where is the voltage excitation of theth element where
. The index is associated to a scan angle. We

choose the scan angles such that thevectors become mutu-
ally orthogonal. This will allow us to find the coefficients

directly by means of orthogonal relations.
To that end we choose the following differential phasing for the
th Floquet excitation:

(26)

with periodicity . Therefore, an element in the
vectors in (25) is given by

(27)

with . Equation (25) can be
expressed in terms of the matrix notations

(28)

where is a square matrix, with vectors as columns. The
Floquet coefficient vector can be determined as

(29)

Now, , because vectors are orthog-
onal. So far, we have shown that any arbitrary excitation can be
expressed as a superposition of several Floquet excitations. This
Floquet excitation allows us to treat the entire array as an infi-
nite periodic structure with periodicity . For each

3A Floquet excitation is equivalent toeigen vectorexcitation, because
the active input impedances are identical for all elements. Such an active
impedance (here the Floquet impedance) essentially is equal to theeigenvalue
of the impedance matrix.

Floquet excitation, we can find the Floquet current for each el-
ement, which is related via Floquet admittance as follows:

(30)

The total current vector is the superposition of the individual
Floquet current vector. Mathematically,

(31)

Combining (29)–(31), we obtain

(32)

where is a diagonal matrix, the diagonal elements being the
Floquet admittances associated with different scan angles. The
admittance matrix of the subarray elements then becomes

(33)

The impedance matrix, therefore, becomes

(34)

where is the Floquet impedance matrix (diagonal). Equa-
tion (20) is a special case of (34). Expanding (34), we obtain the
mutual impedance between two elements as

(35)

Substituting and using (27), we obtain (36), shown at
the bottom of the page. For large and we write

(37)

Using integral notation

(38)

where , , and repre-
sents the differential-phase pair with respect to a scan angle. The
above integral relation between Floquet impedance and mutual
impedance of array elements was derived independently using
Fourier series approach [16].

The above formulation is applicable for rectangular subar-
rays with inside elements arranged in rectangular lattice. How-
ever, the results can be extended for an arbitrary element-lattice
structure and for a general subarray shape. It can be shown that

(36)
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any subarray geometry is reducible in the form of a parallelo-
gram without altering the inside elements. Consider the array
in Fig. 3. Temporarily imagine the thick-line parallelogram as
a general subarray geometry. For analyzing this subarray, the
Floquet excitation vectors required in (25) can be constructed
following the procedure in Section II-C. Theth element of the
th excitation vector is given by

(39)

where varies from 1 to ( number of elements in a
subarray), is the coordinate of theth element in

coordinate system of Fig. 3, and are the wave
numbers given in (19a). The procedure in Section II-C yields

distinct sets of wave numbers. The excitation vectors
thus formed are mutually orthogonal, therefore, (34) can be used
directly to find the mutual impedance of the subarray elements
for a given scan angle.
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