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Inverse Obstacle Scattering for Homogeneous
Dielectric Cylinders Using a Boundary Finite-Element

Method
Stéphane Bonnard, Patrick Vincent, and Marc Saillard

Abstract—A method for reconstructing the shape and the
permittivity of a penetrable homogeneous cylinder is described.
It is the extension to penetrable cylinders of a previous work
dealing with perfectly conducting cylinders. A low-frequency
approximation is used to determine an initial guess. Then, a
rigorous boundary integral method permits us to reconstruct
arbitrary shapes and complex permittivities. It is based on an
iterative conjugate gradient algorithm requiring the solving
of two direct diffraction problems only. A simple and original
regularization scheme is presented, which ensures the robustness
of the algorithm. Numerical examples with lossy embedding media
and additional random noise for both and polarizations
are given.

Index Terms—Boundary integral equations, dielectric cylin-
ders, electromagnetic scattering inverse problems, finite-element
method.

I. INTRODUCTION

T HE use of electromagnetic waves for remote sensing,
medical imaging, or subsoil probing applications leads

to a wide variety of inverse scattering problems. Generally,
depending on the application domain, the pertinent parameters
are the location and shape of homogeneous objects or the
map of permittivity inside a test area. In this paper, we focus
both on the reconstruction of the shape of homogeneous
penetrable bodies and on the estimation of their permittivity
and conductivity. The geometrical and electromagnetic param-
eters are found separately through two different optimization
subroutines called several times alternatively. The set of data
available from measurements also plays an important role.
When a horizontal interface takes place between the operator
and the target, one must deal with a reduced set of data. Indeed,
the antennas are located along a vertical or a horizontal line,
depending on whether an invasive or a noninvasive technique
is used, respectively. The geometry under study in this paper,
referred as a cross-borehole configuration [1]–[3], consists in
two parallel wells typically separated by about 100 m. It is
devoted to the detection of deep inhomogeneities. The antennas
emit a time-harmonic electromagnetic field whose frequency
has to satisfy a compromise between penetration and resolution
as a result of the strong losses that may occur in the subsoil.
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Consequently, the size of the inclusions remains smaller than or
close to the wavelength in the embedding medium, in general.
This explains why in this paper a low-frequency approximation
is used for the derivation of an initial guess.

A great variety of methods have been developed to investi-
gate inverse problems. Most of them require a forward solver,
even though recent works have shown it is not needed to en-
sure the efficiency of an algorithm [4]–[6]. In addition, if the
nonlinear inverse problem is transformed into an optimization
process based on iterative methods, a large number of direct
diffraction problems must be solved. Therefore, the speed of re-
construction mainly depends on how fast the forward solver is
and on how many such computations are needed at each step.
From this numerical point of view, the most efficient methods
are those based on Born approximation, but they are restricted
to low contrasts of conductivity. A refinement based on a lo-
calized nonlinear approximation [7] has been applied to inverse
scattering [1], [2] in two and 2.5-dimensional problems, but it
also suffers some lack of generality since it requires a highly
conducting embedding medium to be accurate. Here, we have
already assumed that the various domains are homogeneous. As
far as we limit our investigations to cylindrical scatterers, using
a rigorous boundary integral formalism able to deal with arbi-
trary geometries and large contrasts of conductivity represents a
reasonable computational effort [8]–[10]. This is no longer true
for three-dimensional (3-D) electromagnetic problems. This ex-
plains why beyond Born approximation, only few studies exist
on this topic [11], [12].

But the key point remains the number of direct problems
solved at each step of the iterative scheme. For recent years,
theoretical efforts have been achieved in applied mathematics to
provide means of determining the Frechet derivative of the cost
function from the solution of a few direct problems [13]–[15].
In [15] Hettlich proves that the determination of the functional
derivative of the operator mapping the boundary onto the
far-field pattern only requires the solving of another boundary
value problem. This result applies to acoustic scattering (scalar
Helmholtz equation) for any usual boundary conditions,
namely the Dirichlet, Neumann, and transmission problems.
Therefore, as far as one is concerned with two-dimensional
(2-D) electromagnetic inverse problems, algorithms devoted to
the reconstruction of a boundary can be built on this basis. Fol-
lowing these mathematical studies, iterative methods have been
proposed for numerical applications, using a quasi-Newton
minimization for the Dirichlet [16] and Neumann [17] prob-
lems, or a Landweber iteration for both the Neumann and the
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Fig. 1. The two diffraction problems used to compute the gradient formula.

transmission problem [15], [17]. In these latter papers, the
inverse problem is formulated in such a way that each iteration
step only requires the solving of two identical boundary value
problems just with different incident fields. This is exactly the
same conclusion Roger [18] has previously derived thanks to
the Lorenz reciprocity relation. Indeed, one can express the
variations of the field linked to boundary displacements from
the solution of two reciprocal direct diffraction problems. As
an advantage, this approach is based on Maxwell’s equations
instead of the scalar Helmholtz equation, thus remains valid
for 3-D problems. It has been successfully applied to shape
reconstruction of perfectly conducting gratings [19] and cylin-
ders with either complete [20] or reduced set of data [10]. The
present paper generalizes [10] to the case of penetrable objects.

II. THEORY

The mathematical model used in this paper is 2-D. The em-
bedding medium is assumed to be infinite and homogeneous
with relative permittivity , conductivity , and permeability

. The scatterers are homogeneous cylinders with rel-
ative permittivity , conductivity , and permeability

. The cross sections are arbitrary. For the sake of simplicity,
the equations are established with one cylinder and the boundary
of is denoted by but the generalization to several cylinders
is straightforward.

A right-handed Cartesian coordinate frame
is defined. The origin could be either inside or outside the
scatterer and the-axis is parallel to the axis of the scatterer.
When needed, cylindrical coordinates are also used
and the position vector is written

(1)

The unit normal vector to the scatterer is directed outwards the
cylinder and the unit tangential vector is defined by: .

The sources are assumed to be lines parallel to the-axis,
thus, the diffraction problem can be reduced to a 2-D one with
two fundamental cases of polarization: the case when the
electric field is parallel to the -axis and the case when
the magnetic field is parallel to the-axis. Taking into account
a time dependence in , in the case, the time-har-
monic incident electric field is written

(2)

where

strength of the electric source;
angular frequency;
Hankel function of zero order and second kind;
wavenumber in the surrounding medium;

.
In the case of polarization, the magnetic field component

used is

(3)

where is the strength of the magnetic source andis the
free-space permittivity. In a typical configuration, the sources
and the receivers are located in two parallel boreholes.

Taking into account the time-dependence factor, the complex
permittivity of each medium is given by

(4)

(5)

A. Integral Equation

The forward 2-D problem is solved thanks to a boundary in-
tegral equation using the Kirchhoff–Helmholtz formula.

Let us define a function , which satisfies a radiation
condition at infinity and

• the diffracted field in ;
• in (i.e., everywhere except on);
• is continuous across.

Let be the jump of the normal derivative of across the
boundary : this unknown function satisfies the boundary in-
tegral equation written in the operator form [21], [22]

(6)

where

• is the 2-D free-space Green integral operator defined by

with

• is defined similarly but with the wavenumberinside
the scatterer;

• is the normal derivative computed at;
• is the normal derivative computed at;
•

in the case of polarization,

in the case of polarization.
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Fig. 2. Layout of the boreholes and the target.

Then, the knowledge of the functionon the boundary allows
us to calculate the scattered field at any point of the embedding
medium by the formula

(7)

B. Boundary Finite-Element Method

The integral equation is transformed into a linear system
using a Galerkin scheme. First, the boundary is approximated
by a polygonal line composed of straight segments whose
vertices are on the true boundary. Then, the unknown function

is written as a sum of piecewise constant basis functions,
normed with respect to the scalar product

(8)

Each function is nonnull on a side of the polygon and zero
elsewhere and the equations are projected onto the same test
functions. The result is a dense linear system ofequations
solved by a classical LU decomposition. For typical examples,

varies from 50 to 100.

C. Cost Functional

The aim of the computation is to determine the shape and the
constitutive parameters of the diffracting cylinder assuming that
the permittivity of the embedding medium, the incident field
and the values of the diffracted field measured in the receiving
boreholes are known. The shape and the permittivity are alter-
natively determined in an iterative manner in order to minimize
a cost functional, which gives the normalized deviation between
the computed field and the measured field. In both cases of po-
larization, this cost functional is defined by

(9)

Fig. 3. Example of reconstruction ins polarization (E==) without noise in the
measured field.

where
number of measurements in different points along the
boreholes;

th measured field value;
th calculated field from the estimated profile or

from the estimated complex permittivity.

D. Shape Reconstruction

The minimization of the above cost functional is performed
by a conjugate gradient method with linear search of the min-
imum in the conjugate direction. In order to find a new shape at
each step of the iterative algorithm, the functional derivative of

is needed. If is a given change in the computed field,
a simple differentiation yields

(10)

where the overbar denotes complex conjugate.
The adjoint state method [18], already used by the authors

of this paper for infinitely conducting cylinders [10], is used
here to calculate as a function of the shape. For that,
two diffraction problems and depicted in Fig. 1 are defined.
For problem with an electric source at point Maxwell’s
equations yield

(11)

(12)

where is the Dirac distribution and equals inside the
cylinder and outside. For a magnetic source, these equations
are changed into

(13)

(14)
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Fig. 4. Example of reconstruction inp polarization (H==) without noise in the
measured field.

The diffraction problem is defined with the same polarization
and the same permittivitiesand , but with a different cylinder
shape and a different source location . Assuming that there
is no incoming wave at infinity, the Lorentz reciprocity relation
can be written as

(15)

Taking into account Maxwell’s equations and changing the di-
vergence integral into a boundary integral, for the case of
polarization, a classical computation yields

(16)

Note that the integration domain for the right-hand member is
the region where . In the following, it is assumed that

, , and , thus

(17)

Let us define a new diffraction problem by exchanging the
source and the receiver in. Hence, the classical reciprocity
theorem applies

(18)

Noting that problems and differ only by the cylinder shape
and introducing , (16) can be rewritten as

(19)

Now let us introduce , the field in the diffraction problem
defined by exchanging the source and the receiver in problem.
Assuming that the shape is close to , we note the shift
measured along the normal. It comes out that

(20)

Noting that and

if

if

it is possible to write, up to first order in , the functional
derivative as a simple boundary integral of the solution of two
forward diffraction problems

(21)

The value of the electric field on the boundary is obtained from
the solution of the integral equation by the following formula
[22]:

(22)

where is the value of the electric incident field on.
In the case of polarization (16) is changed into

(23)

and (19) replaced by

(24)

In this case, the electric field is perpendicular to the cylinder
axis. Hence, it can be written and we get

(25)

where the superscript denotes that the limit of the function
is calculated in the exterior domain and is the tangential
derivative. As a result, (21) is changed in a more complicated
relation

(26)

In this case of polarization, the normal and tangential derivative
are computed from the solutionby [22]

(27)

(28)

E. Constitutive Parameters

The determination of the complex permittivity is also
achieved by minimizing the cost functional described in
Section II-C. This time, the profile of the cylinder is fixed
and a different iterative gradient method is used because the
computation of the components of the gradient with respect to
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Fig. 5. Same as in Fig. 3, but with 30% noise added.

the permittivity gives a complicated result. More precisely, it
is easily shown that

(29)

but the computation of yields a rather complicated
formula. Hence, taking into account the small number of un-
known parameters (two real parameters per cylinder:and

) a numerical determination of the gradient is a logical choice.
We choose a standard optimization program called PRAXIS
based on Brent’s method [23], i.e., an inverse parabolic inter-
polation. To avoid negative values forand it has been nec-
essary to impose the positivity of the unknown parameters. This
is done by a change of variables: the new unknowns
are defined by

(30)

(31)

This choice has proven to be very efficient chiefly concerning
. The PRAXIS procedure also uses two auxiliary input pa-

rameters called and requiring an adequate choice. is
a tolerance such as , where is the true local
minimum and the value that PRAXIS attempts to return.
is the maximum step size which should be about the maximum
distance from the initial guess to the minimum. Numerical ex-
periments have shown that for the typical examples described
in the following section, the optimum values are about 10for

and 10 for . It is worth noticing that these two parameters
do not change the values of the results but have a strong effect
on the velocity of convergence of the program, which reaches a
stable value after about 1 min on a 25 Mflops desktop worksta-
tion.

Fig. 6. Same as in Fig. 4, but with 30% noise added.

In fact, a two-level iteration is performed; having determined
the constitutive parameters corresponding to a given shape, a
new cycle is started beginning with a new shape reconstruction
iteration until the global stabilization is achieved.

F. Initial Guess

A low-frequency approximation method to find an initial
guess for the location, size, and permittivity of the cylinder is
described in this section. This method is based on the isotropy
of the scattered field for low frequencies in the case of
polarization when only one object is located between the two
boreholes. This isotropy occurs independently of the shape
of the scatterer. Therefore, we look for a circular shape with
center , radius and complex permittivity .

Assuming that the incident field is a cylindrical wave centered
at the point , according to Graf’s formula [24],
the scattered field outside the object in the directioncan be
expanded as

(32)

When the profile is circular, the coefficients can be written
in close form using the continuity conditions at . In our
case, the term is dominating and we have

(33)

For a given abscissa of the receivers, the maximum of the
modulus of the measured scattered field coincides with the depth
of the object. This depth gives the ordinate of the center of the
circle.

The computation of the abscissa of the center of the circle
is performed with the values of the diffracted field measured in
two different points and , with
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Fig. 7. Reconstruction without noise, ins polarization (E==), in a single-well
configuration.

. Using the asymptotic expan-
sion of Hankel’s functions, this leads to an implicit equation in

(34)

where for , .
The determination of the radius and the complex permit-

tivity requires two steps because it can be shown that for small
arguments

(35)

thus, the diffracted field only depends on the parameter

(36)

The optimal value of found by minimizing the cost
function

(37)

is

(38)

It is possible to write explicitly the relative permittivity and
the conductivity as functions of , but, in fact, the formula
giving leads to bad results if the radius of the circle is not the
true one and a good choice is simply to take . Noticing

that in the low-frequency range the imaginary part ofcan be
neglected, the initial guess for the conductivity is finally

(39)

The last parameter needed to start the iteration is the radius
of the circle. Two cases must be distinguished according to the
sign of

• if , the conductivity of the scatterer is
smaller than the conductivity of the embedding medium
and gives a good choice for ;

• if , the preceding criterion does not apply
and we start from a radius equal to half the distance from
the center of our initial guess to the nearest borehole.

G. Regularization

In the shape reconstruction process, the profile is first approx-
imated by a polygonal closed line of segments with vertices
on the true profile, then the cost functionalis minimized by
computing the displacement of the middle of each segment
along the normal. At each step of the iteration, new vertices
must be determined from the position of the middle of the
th side of the polygon. It is easy to see that the solution of this

problem is undetermined if the number of vertices is even,
thus, we take an odd value for. In that case, a straightforward
calculation gives

and (40)

In fact, we noted that the instability of the inverse method con-
centrates essentially in the above formula and that after few iter-
ations the middle points remain regularly located, but the polyg-
onal shape become very irregular. The method used to avoid
these instabilities is very simple and purely geometrical [10]. It
is logical to think that if the diffracting object is well represented
by a polygon, the slight change made by taking the middle points
as vertices, i.e., to write

(41)

must not change significantly the diffraction pattern. Hence, at
each step of the iteration we compare the perimeter of two poly-
gons with vertices from (40) or (41). If the difference is less than
5% (40) is used; if not, (41) is used and the conjugate gradient
is reinitialized. This geometrical regularization has proven to be
efficient and, as simulated annealing methods do, gives an op-
portunity to get out of local minima. Contrary to a Tikhonov
regularization, it is not worth looking for a judicious value of
the parameter which balances the error term and the regulariza-
tion one in the cost functional.

III. N UMERICAL RESULTS

To point out the versatility of the method, we vary the po-
larization and the number of boreholes for a given non convex
object. The background conductivity is set to Sm ,
while the real part of the permittivity is equal to one. First, we
consider two boreholes 100 m far from each other. Along each
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Fig. 8. Reconstruction without noise inp polarization (H==) in a single-well
configuration.

borehole, 11 locations of the emitters and receivers are regularly
spaced between m and m. The operating fre-
quency is 5 MHz corresponding to a wavelength in the embed-
ding medium about 40 m, i.e., approximately twice the distance
between two consecutive points of measurement.

The size of the object is approximately 22 m10 m and its
shape is looking like a bean (Fig. 2); it is given by

(42)

(43)

The constitutive parameters of this dielectric “bean” are
and Sm . The initial guess is found with a

lower frequency of 10 kHz. It is represented in Figs. 3 and 4
by the dashed curve.

Using simulated data at 5 MHz without noise, we have found,
in both cases of polarization, an optimal circle well centered on
the target represented by the long-dashed curve (Figs. 3 and 4).
For each optimal circle, we found , S/m in
polarization, and and S/m in polarization.
Going on with an arbitrary boundary, we are lead to the curve
marked with white circles, close to the true one and the new
estimated electromagnetic parameters , S/m
in polarization and , S/m in polarization.

The same experiments are repeated by introducing some
noise in the data. The field calculated by solving the
forward diffraction problem is perturbed according to

(44)

where and is a random set equally distributed in
. Results in Figs. 5 and 6 show a good robutness of the

method against noise.
Now, let us consider a single-well configuration. We have

chosen to keep the left borehole ( m). From simulated
data without noise, the reconstruction in both cases of polariza-
tion are depicted in Figs. 7 and 8.

We notice a better reconstruction inpolarization than po-
larization and also a better reconstruction of the illuminated part
of the object. In both cases, the lack of information due to the
absence of the second borehole leads to a less accurate recon-
struction of the boundary. In the same way, the conductivity is
found to be S/m in polarization and
S/m in polarization.

IV. CONCLUSION

The method presented in this paper has permitted us to recon-
struct both the boundary and the complex permittivity of a ho-
mogeneous cylindrical object with reduced set of data. Thanks
to rapid computation of the functional derivative of the cost
function, the whole process typically requires a few minutes
on a desktop workstation. However, in the present state, several
shortcomings still exist. First, the regularization process, though
efficient, is not fully satisfactory because it leads to frequent
reinitialization of the conjugate gradient algorithm. To over-
come this drawback, we plan to implement an other representa-
tion of the boundary based on a Fourier representation, in order
to ensure its smoothness. Second, boundary integral methods
may encounter some difficulties in reconstructing several dis-
connected objects if the number of scatterers is not knowna
priori . With this aim, a treatment of the data called decomposi-
tion of the time reversal operator [25], [26] is studied. The eigen-
values and eigenvectors of this operator contain a lot of infor-
mation about the number of scatterers and their location. Other
methods to seek for the support of disconnected penetrable as
well as impenetrable objects can also be considered [27], [28].

Nevertheless, the robustness and the efficiency of the algo-
rithm have been successfully tested against experimental data in
an other geometrical configuration. The measurements achieved
in our anechoic chamber concern a metallic cylinder placed in
air, illuminated by a horn antenna. Future experimental work
will deal with one or several penetrable objects.
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