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Inverse Obstacle Scattering for Homogeneous
Dielectric Cylinders Using a Boundary Finite-Element
Method

Stéphane Bonnard, Patrick Vincent, and Marc Saillard

Abstract—A method for reconstructing the shape and the Consequently, the size of the inclusions remains smaller than or
permittivity of a penetrable homogeneous cylinder is described. close to the wavelength in the embedding medium, in general.

It is the extension to penetrable cylinders of a previous work ; ; ; ; _ ; ;

dealing with perfectly conducting cylinders. A low-frequency .Thls egp;lau:[ls W(;]y.m tthls pa]}per.a.ISV\{ frequency approximation
approximation is used to determine an initial guess. Then, a IS used for e.' erivation oran initial guess. . .
rigorous boundary integral method permits us to reconstruct A great variety of methods have been developed to investi-

arbitrary shapes and complex permittivities. It is based on an gate inverse problems. Most of them require a forward solver,
iterative conjugate gradient algorithm requiring the solving even though recent works have shown it is not needed to en-
of two direct diffraction problems only. A simple and original sure the efficiency of an algorithm [4]-[6]. In addition, if the

regularization scheme is presented, which ensures the robustness . . h . o
of the algorithm. Numerical examples with lossy embedding media nonlinear inverse problem is transformed into an optimization

and additional random noise for both E// and H// polarizations ~Process based on iterative methods, a large number of direct
are given. diffraction problems must be solved. Therefore, the speed of re-

Index Terms—Boundary integral equations, dielectric cylin- construction mainly depends on h_ow fast the forward solver is
ders, electromagnetic scattering inverse problems, finite-element and on how many such computations are needed at each step.
method. From this numerical point of view, the most efficient methods
are those based on Born approximation, but they are restricted
to low contrasts of conductivity. A refinement based on a lo-
calized nonlinear approximation [7] has been applied to inverse

HE use of electromagnetic waves for remote sensinggattering [1], [2] in two and 2.5-dimensional problems, but it

medical imaging, or subsoil probing applications leadsiso suffers some lack of generality since it requires a highly
to a wide variety of inverse scattering problems. Generallyonducting embedding medium to be accurate. Here, we have
depending on the application domain, the pertinent parametafi®ady assumed that the various domains are homogeneous. As
are the location and shape of homogeneous objects or theas we limit our investigations to cylindrical scatterers, using
map of permittivity inside a test area. In this paper, we focusrigorous boundary integral formalism able to deal with arbi-
both on the reconstruction of the shape of homogeneawsry geometries and large contrasts of conductivity represents a
penetrable bodies and on the estimation of their permittivitgasonable computational effort [8]-[10]. This is no longer true
and conductivity. The geometrical and electromagnetic parafor three-dimensional (3-D) electromagnetic problems. This ex-
eters are found separately through two different optimizatigiains why beyond Born approximation, only few studies exist
subroutines called several times alternatively. The set of dafia this topic [11], [12].
available from measurements also plays an important roleBut the key point remains the number of direct problems
When a horizontal interface takes place between the operasolved at each step of the iterative scheme. For recent years,
and the target, one must deal with a reduced set of data. Indeg@doretical efforts have been achieved in applied mathematics to
the antennas are located along a vertical or a horizontal lipgovide means of determining the Frechet derivative of the cost
depending on whether an invasive or a noninvasive technicfu@ction from the solution of a few direct problems [13]-[15].
is used, respectively. The geometry under study in this papkr[15] Hettlich proves that the determination of the functional
referred as a cross-borehole configuration [1]-[3], consists derivative of the operator mapping the boundary onto the
two parallel wells typically separated by about 100 m. It ifar-field pattern only requires the solving of another boundary
devoted to the detection of deep inhomogeneities. The antenpalsie problem. This result applies to acoustic scattering (scalar
emit a time-harmonic electromagnetic field whose frequene¢yelmholtz equation) for any usual boundary conditions,
has to satisfy a compromise between penetration and resolutiginely the Dirichlet, Neumann, and transmission problems.
as a result of the strong losses that may occur in the subs®iherefore, as far as one is concerned with two-dimensional

(2-D) electromagnetic inverse problems, algorithms devoted to
the reconstruction of a boundary can be built on this basis. Fol-
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The authors are with Laboratoire d'Optique Electromagnétique, CN'??oposed for numerical applications, using a quasi-Newton
UPRES A 6079, Campus de Saint-Jérdbme, F-13397 Marseille Cedex 20, . . . ..

minimization for the Dirichlet [16] and Neumann [17] prob-

France.
Publisher Item Identifier S 0018-926X(00)02448-0. lems, or a Landweber iteration for both the Neumann and the

I. INTRODUCTION

0018-926X/00$10.00 © 2000 IEEE



394 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

P strength of the electric source;

1
|
o 2 w  angular frequency;
% E H? Hankel function of zero order and second kind;
! k wavenumber in the surrounding medium;
A | r = |r|.
E Inthe H// case of polarization, the magnetic field component
! used is

problem a problemb i A . we L (2)
U(tr) =H*(r) =U'(r)ey = MIHO (kr) 3)
Fig. 1. The two diffraction problems used to compute the gradient formula.
where M is the strength of the magnetic source agds the

transmission problem [15], [17]. In these latter papers, tﬁreee—space permittivity. In a typical configuration, the sources

inverse problem is formulated in such a way that each iterati 'Iqtl?ii r(?;:f:wers arﬁtlglcatti?: mdtwo Egrf\llel fbo:e?otlr(]as. mplex
step only requires the solving of two identical boundary value axing Into accou € ime-dependence factor, the comple

problems just with different incident fields. This is exactly thgermltnvny of each medium is given by

same conclusion Roger [18] has previously derived thanks to jo

the Lorenz reciprocity relation. Indeed, one can express the € =¢cotp — U (4)
variations of the field linked to boundary displacements from jo

the solution of two reciprocal direct diffraction problems. As € = 0%, — 7T (6)

an advantage, this approach is based on Maxwell's equations
instead of the scalar Helmholtz equation, thus remains valid
for 3-D problems. It has been successfully applied to shafe Integral Equation
reconstruction of perfectly conducting gratings [19] and cylin- The forward 2-D problem is solved thanks to a boundary in-
ders with either complete [20] or reduced set of data [10]. Thggral equation using the Kirchhoff-Helmholtz formula.
present paper generalizes [10] to the case of penetrable objectget us define a functiod'(z, z), which satisfies a radiation
condition at infinity and
II. THEORY « F = U* the diffracted field inD;
The mathematical model used in this paper is 2-D. The em- * AF+EF = 0in DUD; (i.e., everywhere except ofl);
bedding mediun® is assumed to be infinite and homogeneous * £ is continuous acrosd.
with relative permittivitye,., conductivitys, and permeability Let ¢ be the jump of the normal derivative df across the
i = po. The scatterer®; are homogeneous cylinders with relboundaryA: this unknown function satisfies the boundary in-

ative permittivitye,. ;, conductivityo;, and permeability;; = tegral equation written in the operator form [21], [22]
it0. The cross sections are arbitrary. For the sake of simplicity,
the equations are established with one cylinder and the boundary [(1 _ dG; ) G+ @ <1 @)} ¢
of D, is denoted by but the generalization to several cylinders 2 dn T\ 2  dn
is straightforward. 1 4G , dUt
A right-handed Cartesian coordinate fraf@, e, ey, ;) - <§ T dn ) Ul — i dn ®)

is defined. The origirO could be either inside or outside the

scatterer and thg-axis is parallel to the axis of the scatteremwhere

When needed, cylindrical coordinatés 6, ) are also used  « @isthe 2-D free-space Green integral operator defined by
and the position vecta@ M is written

Gop= | Gl v)pr')ds
OM = zen+yey+2es =7+ yey. ) ¢ /A (r, 7)(r') ds

The unit normal vectos to the scatterer is directed outwards the Wit
cylinder and the unit tangential vector is definedby: n x e,,. 72
The sources are assumed to be lines parallel tasthgis, G(r, ') = ZH(S (klr — ')
thus, the diffraction problem can be reduced to a 2-D one with
two fundamental cases of polarization: thg/ case whenthe  * G; is defined similarly but with the wavenumbkyinside
electric field is parallel to thg-axis and theH// case when the scatterer;
the magnetic field is parallel to theaxis. Taking into account  * dG/dn is the normal derivative computedat
a time dependence ixp (jwt), in the E// case, the time-har- ~ * dG;/dn’ is the normal derivative computedsf
monic incident electric field is written .

Ui(r) = Ei(r) = Ui(r)e, = —P%Hé”(kr) @) = intheE// case of polarization,
; =

where — intheH// case of polarization.



BONNARD et al. INVERSE OBSTACLE SCATTERING FOR HOMOGENEOUS DIELECTRIC CYLINDERS 395

L B L RN ies Mt e e 0 T T T T T T T
100 | i
-5 | 4
50 | E -10 | i
-15 | 4
L target i
0 g ] 20 ]
-25 .
-50 }F i
-30 - 4
BT - target
-~~~ initial guess
sources sources 1 -35 -~ optimal circle 4
-100 e e——o reconstructed
n 1 L 1 L L i 1 n n " 1 n
0 50 100 -~40 L 1 1 4 1 L L

10 15 20 25 30 35 40 45 50

Fig. 2. Layout of the boreholes and the target.
Fig. 3. Example of reconstruction inpolarization &/ /) without noise in the
measured field.

Then, the knowledge of the functiahon the boundary allows

us to calculate the scattered field at any point of the embeddin

medium by the formula where S .
N,, number of measurements in different points along the

boreholes;

Umes mth measured field value;

U<k mth calculated field from the estimated profil or
from the estimated complex permittivity.

Ulr) = Gp = A Glr, v)p(r') ds. 7

B. Boundary Finite-Element Method

The integral equation is transformed into a linear system. Shape Reconstruction
using a Galerkin scheme. First, the boundary is approximate
by a polygonal line composed df straight segments whose
vertices are on the true boundary. Then, the unknown functiﬁﬁ
¢ is written as a sum of piecewise constant basis functigns
normed with respect to the scalar product

dThe minimization of the above cost functional is performed
a conjugate gradient method with linear search of the min-
um in the conjugate direction. In order to find a new shape at
each step of the iterative algorithm, the functional derivative of
Fis needed. IBUS¢ is a given change in the computed field,
a simple differentiation yields

(90717 90771) = /AQOn(S)(Pnl(S) ds.

N
m Ucalc _ [Jmes 6Uca1c
Each functiony,, is nonnull on a side of the polygon and zero o =2 Z Re < = [Jmes = ) l/'lees (10)
. . m=1 m m
elsewhere and the equations are projected onto the same test

functions. The result is a dense linear systenNoequations \ynere the overbar denotes complex conjugate.

soIveq by a classical LU decomposition. For typical examples, The adjoint state method [18], already used by the authors

N varies from 50 to 100. of this paper for infinitely conducting cylinders [10], is used

here to calculaté/<?! as a function of the shap#. For that,

two diffraction problems: andb depicted in Fig. 1 are defined.
The aim of the computation is to determine the shape and ther problema with an electric source at poirft, Maxwell's

constitutive parameters of the diffracting cylinder assuming thatjuations yield

the permittivity of the embedding medium, the incident field

and the values of the diffracted field measured in the receiving Vx E, = —jwpuoH, (12)

boreholes are known. The shape and the permittivity are alter- V x H, = jweE, + PS(r — S,) (12)

natively determined in an iterative manner in order to minimize

a cost functional, which gives the normalized deviation betweghere § is the Dirac distribution and, equalse; inside the

the computed field and the measured field. In both cases of pginder ande outside. For a magnetic source, these equations

C. Cost Functional

larization, this cost functional is defined by are changed into
N
2 US(A, ) — Umes|? V x E, = — jupoH, + Mo§(r — S, 13
A =y O BT ) ~ dui (=8 13
—= |Uxee] V x H, = jwe, Eq. (14)
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0 T T T T T T T NOt'ng thatdQ = |6A d8| and
-5+ - . if 6A>0: € —¢g=¢€ —¢
I ,” if 6A<0: e —¢cg=c—¢
=10 I/ i
r K it is possible to write, up to first order ihA, the functional
-5 - 1 derivative as a simple boundary integral of the solution of two
i '.‘ forward diffraction problems
-20 | \ 4
‘\ . ~ 7 - )
s | \ ) S8Eq(r3) P~ jw(e; —¢) " E,E, 6§Ads. (21)
r \{
a0 b --- ::n?a?‘tguess e i The value of the electric field on the boundary is obtained from
— — optimal circle., - ; ; ; ;
i o onatctod === the solutionyp of the integral equation by the following formula
-35 . [22]:
—40 L ) 1 L 1 T | E= e + Gd) (22)

10 15 20 25 30 35 40 45 50 ) .
whereg; is the value of the electric incident field ah

Fig.4. Example of reconstruction jnpolarization {Z//) withoutnoiseinthe ~ In the H// case of polarization (16) is changed into
measured field.
H( H.(Sy) M

The diffraction problend is defined with the same polarization — jw // to— ) E, - Ey dQ2- (23)
and the same permittivitiesande;, but with a different cylinder Q

shapeB and a different source locatidf. Assuming that there 4 (19) replaced by

is no incoming wave at infinity, the Lorentz reciprocity relation

can be written as SH o = jw / / €q — €)Eq - By dS2. (24)

//auspaCe V- (Hy x By — Hy x Ep) d2 =0, 1915 this case, the electric field is perpendicular to the cylinder

axis. Hence, it can be writte® = E't 4 E™n and we get
Taking into account Maxwell's equations and changing the di-

vergence integral into a boundary integral, for #i¢/ case of E,-E, ~E!-E!, + E-E},
polarization, a classical computation yields 1 e; dH, YdH, v dH, dH,
~ — — (25)
€ dn dn dt dt

wleze

Ey( «(Sy) - Py
_ where the superscript denotes that the limit of the function
=Jw // & = €a) B Bl d2 (16) is calculated in the exterior domain ardgddt is the tangential

derivative. As a result, (21) is changed in a more complicated
Note that the integration domain for the right-hand member i ation

the regiort wheree;, # ¢,. In the following, it is assumed that

rl:Sa:Rb,m:Sb:Ra,andP:Pa:Pb,thus SH (’I’)MIL/ 1(2_1) dHa+dHa'+
a2 Jw JA L€ Ve dn dn
Ey(S,) Py — E,(Sy) - Py = [Ey(r1) — Eo(r2)]- P. (17) 1 /e, dH, dH,
— (1) == } §A ds.
Let us define a new diffraction problei by exchanging the €€
source and the receiver i Hence, the classical reciprocity (26)
theorem applies In this case of polarization, the normal and tangential derivative
Ey(r1)- P = Ey(rs) - P. (18) are computed from the solutiahby [22]
dHT  dh; 1 dG
Noting that problemsg and¥’ differ only by the cylinder shape o 4 - <— d_) ¢ (27)
and introducingg &, = E,, — E,, (16) can be rewritten as ZZLH d/? Ja "
T Ty 2
dt dt dt ¢ (28)

6B, (rs) - P = ju / / (e — ea)En BydQ.  (19)
Q
Now let us introduce,-, the field in the diffraction problem’ E. Constltutlve. Pa.rameters o
defined by exchanging the source and the receiver in problem The determination of the complex permittivity is also

Assuming that the Sha@ is close toA’ we noted A the shift achieved by mlnlleIng the cost functional described in
measured a|0ng the normal It comes out that Section II-C. This time, the prOfIleﬁ of the Cylinder is fixed

and a different iterative gradient method is used because the
L, E,=E,E, +0(6A). (20) computation of the components of the gradient with respect to
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A =35 - —> reconstructed

target
a5 L ---- initial guess | —40 | . \ . | , \

——~- optimal circle 10 15 20 25 30 35 40 45 50

o—— reconstructed

=405 15 20 28 20 a5 20 5 50 Fig. 6. Same as in Fig. 4, but with 30% noise added.

Fig. 5. Same as in Fig. 3, but with 30% noise added. In fact, a two-level iteration is performed; having determined
the constitutive parameters corresponding to a given shape, a

the permittivitye; gives a complicated result. More precisely, if€W cycle is started beginning with a new shape reconstruction
is easily shown that iteration until the global stabilization is achieved.

F. Initial Guess

calc
8U (r) _/ G(r, ,_/)@ (') ds' = G@ (29) A low-frequency approximation method to find an initial
be; A be; oei guess for the location, size, and permittivity of the cylinder is

. . . described in this section. This method is based on the isotropy
but the computat|on'o(f6<.7))/(6q) yields a rather complicated of the scattered field for low frequencies in t#&// case of
formula. Hence, taking into account the small number of un-

known parameters (two real parameters per cylinder:and polarization when only one object is located between the two
T boreholes. This isotropy occurs independently of the shape

Wéacﬂlé?:é'c:ﬁ;zrg:én?)t'ct)i?n?;::; gra(rj(lge?;:;aclsﬂza:achl)i?% the scatterer. Therefore, we look for a circular shape with
P Prog centerC, radiusrg and complex permittivity; .

based on Brent's method [23], i.e., an inverse parabolic inter- . o o S

olation. To avoid negative values farando: it has been nec- Assuming that the incident field is a cylindrical wave centered
P " gative v 9 i at the pointS = (rg, 8s), according to Graf’s formula [24],
essary to impose the positivity of the unknown parameters. This

is done by a change of variables: the new unkno@is, ¥;) ;Xe ;gg’ggr:g field outside the object in the directioran be
are defined by P

€ri =1+ X7 (30) E(r, ) = ; by H (klrs —rc)
o, =Y7 (31) CHO(klr — re|) =), (32)

This choice has proven to be very efficient chie_ﬂ_y co_ncernir\g/hen the profile is circular, the coefficienks can be written
¢r,i- The PRAXIS procedure also uses two auxiliary input p ¢oqe form using the continuity conditions7at= 7. In our
rameters called’0 and H0 requiring an adequate choicg0 is case, the term, is dominating and we have

atolerance such 4& — X0| < 70, whereX0 is the true local
minimum andX the value that PRAXIS attempts to retusio
is the maximum step size which should be about the maximum E*(r, §) ~ by Hé”(kh‘s —rc|) Hé”(lﬂr —rc|).  (33)
distance from the initial guess to the minimum. Numerical ex-

periments have shown that for the typical examples describlédr a given abscissag of the receivers, the maximum of the

in the following section, the optimum values are aboutlfbr modulus of the measured scattered field coincides with the depth
70 and 10 forHO0. It is worth noticing that these two parametersf the object. This depth gives the ordinate of the center of the
do not change the values of the results but have a strong effeictle.

on the velocity of convergence of the program, which reaches alhe computation of the abscissa of the center of the circle
stable value after about 1 min on a 25 Mflops desktop workstia-performed with the values of the diffracted field measured in
tion. two different pointsR; = (zg, z1) andRy = (zrg, 22), With



398 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

0 : . ; . . . . that in the low-frequency range the imaginary parfbtan be
neglected, the initial guess for the conductivity is finally

- 5’120<1—w> (39)

2
7o

5}

The last parameter needed to start the iteration is the raglius
of the circle. Two cases must be distinguished according to the
sign of Re( Poyin)

o if Re(Pnin) > 0, the conductivity of the scatterer; is
smaller than the conductivity of the embedding medium
andRe(Puin)) == 73 gives a good choice farp;

o if Re(Puin) < 0, the preceding criterion does not apply
and we start from a radius equal to half the distance from

target the center of our initial guess to the nearest borehole.
---- initial guess

=35 | — —~ optimal dircle G. Regularization
o——o reconstructed

.-

Inthe shape reconstruction process, the profile is first approx-
#0015 20 25 30 85 40 a5 5o imated by a polygonal closed line 8f segments with vertices
on the true profile, then the cost functionflis minimized by
Fig. 7. Reconstruction without noise, rpolarization &/ /), in a single-well  computing the displacemetid,, of the middle of each segment
configuration. along the normal. At each step of the iteration, new vertiges
must be determined from the position of the middie of the
Emes(xp, 21) # E™(xp, 22). Using the asymptotic expan-+th side of the polygon. It is easy to see that the solution of this
sion of Hankel’s functions, this leads to an implicit equation iproblem is undetermined if the numbat of vertices is even,

Lo thus, we take an odd value féf. In that case, a straightforward
calculation gives
E'IlleS > 1 -
In ‘M =-In <7—2> + Smlk(rs — )] (34) N
E'Ines(:L.R7 22) 2 1 i1
v = Z (-1)"*m; and w;y1 =2m; —v,. (40)
where fori = 1, 2, 7, = \/(zc — 2r)? + (2¢ — 2)?. i=1

~ The determination of the radius and the complex permit- | fact, we noted that the instability of the inverse method con-
tivity ¢; requires two steps because it can be shown that for smahtrates essentially in the above formula and that after few iter-
arguments ations the middle points remain regularly located, but the polyg-
- : onal shape become very irregular. The method used to avoid
by ~ jZ (kro)? <1 - f) (35) these instabilities is very simple and purely geometrical [10]. It
is logical to think that if the diffracting object is well represented

thus, the diffracted field only depends on the parameter by apolygon, the slight change made by taking the middle points
as vertices, i.e., to write

_2( _ ¢
P=r; <1 C). (36) v = m; (41)
The optimal value of? = P,;, found by minimizing the cost must not change significantly the diffraction pattern. Hence, at
function each step of the iteration we compare the perimeter of two poly-
gons with vertices from (40) or (41). If the difference is less than

2 37) 5% (40) is used; if not, (41) is used and the conjugate gradient
is reinitialized. This geometrical regularization has proven to be
efficient and, as simulated annealing methods do, gives an op-

N,
Fe(P)= Y |En(P) - En

m=1

is portunity to get out of local minima. Contrary to a Tikhonov
N, regularization, it is not worth looking for a judicious value of
Z HSQ)( Forp, ) Emes the parameter which balances the error term and the regulariza-

4 — tion one in the cost functional.
-Pmin = j,]er m,;rl (38)
m 5
> ‘Hé”(krm) 1. NUMERICAL RESULTS

m=1

To point out the versatility of the method, we vary the po-
It is possible to write explicitly the relative permittivigy. ; and larization and the number of boreholes for a given non convex
the conductivitys; as functions of,;,,, but, in fact, the formula object. The background conductivity is sebte= 102 Smi !,
giving ¢, ; leads to bad results if the radius of the circle is not thehile the real part of the permittivity is equal to one. First, we
true one and a good choice is simply to take = 1. Noticing consider two boreholes 100 m far from each other. Along each
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0 . r . - - - ' We notice a better reconstructiondipolarization tham po-
larization and also a better reconstruction of the illuminated part
5 | 4 of the object. In both cases, the lack of information due to the
absence of the second borehole leads to a less accurate recon-
10l _ struction of the boundary. In the same way, the conductivity is
found to bes; = 0.022 S/m ins polarization andr; = 0.015
sl i S/m inp polarization.
20 F . IV. CONCLUSION
The method presented in this paper has permitted us to recon-
-25 1 1 struct both the boundary and the complex permittivity of a ho-
mogeneous cylindrical object with reduced set of data. Thanks
-30 r e . .- target to rapid computation of the functional derivative of the cost
"""" -~~~ initial guess function, the whole process typically requires a few minutes
-35 | — —= optimal dircle ] on a desktop workstation. However, in the present state, several
+——e reconstructed . . . . . .
shortcomings still exist. First, the regularization process, though
40 . . . s s ' . efficient, is not fully satisfactory because it leads to frequent

10 15 20 25 30 35 40 45 50

reinitialization of the conjugate gradient algorithm. To over-
come this drawback, we plan to implement an other representa-
tion of the boundary based on a Fourier representation, in order
to ensure its smoothness. Second, boundary integral methods
borehole, 11 locations of the emitters and receivers are regulem y encountgr some difficulties in reconstructmg several dis-
spaced between — —80 m and» = 85 m. The operating fre- C .nn.ecte.zd ob.jects if the number of scatterers is not knawn'
quency is 5 MHz corresponding to a wavelength in the embddfion- With this aim, a treatment of the data called decomposi-

ding medium about 40 m, i.e., approximately twice the distan£@" of the time reversal operator [25], [26]is studied. The eigen-
between two consecutivé poi’nts of measurement values and eigenvectors of this operator contain a lot of infor-

The size of the object is approximately 22510 m and its mation about the number of scatterer_s and their location. Other

shape is looking like a bean (Fig. 2); it is given by method; to seek for the_ support of dlsconnecFed penetrable as
well as impenetrable objects can also be considered [27], [28].

Nevertheless, the robustness and the efficiency of the algo-
rithm have been successfully tested against experimental data in
an other geometrical configuration. The measurements achieved

The constitutive parameters of this dielectric “bean” an@ our anechoic chamber concern a metallic cylinder placed in
e = 1ando; = 0.1 Sm!. The initial guess is found with a air, illuminated by a horn antenna. Future experimental work
lower frequency of 10 kHz. It is represented in Figs. 3 and will deal with one or several penetrable objects.
by the dashed curve.

Using simulated data at 5 MHz without noise, we have found,
in both cases of polarization, an optimal circle well centered on
the target represented by the long-dashed curve (Figs. 3 and 451.]
For each optimal circle, we fourid ; = 1, 5; = 0.16 S/Imins
polarization, and,. ; = 1 ands; = 0.022 S/m inp polarization.
Going on with an arbitrary boundary, we are lead to the curve
marked with white circles, close to the true one and the new(3
estimated electromagnetic parametgrs= 1,0; = 0.104 S/m
in s polarization and,. ; = 1, o; = 0.085 S/m inp polarization.

Fig. 8. Reconstruction without noise jnpolarization //) in a single-well
configuration.

xr =

35410 cos 6 — 2.5 sin 26 (42)
2z =-18+ 3 sin 6 — 3 cos 26. (43
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