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The Foster Reactance Theorem for Antennas and
Radiation()
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Abstract—The calculation of antenna@ has been an interesting duced by sources distributed on the surface of the imaginary
and a controversial topic for years. In this paper, we firstgive arig-  sphere. The major shortcomings of the Chu method are that it
orous study of antennaQ by introducing a complete description of g resricted to spherical modes and requires several approxima-

the complex power balance relation for an antenna system. Using . . .
the complex Poynting theorem, we have shown that the antenna is tions. Collin and Rothschild also presented a method for eval-

essentially equivalent to a one port lossy network. The Foster re- uating antenna. Their method is based on recognizing that
actance theorem is usually stated for a lossless network. The main the total stored reactive energy can be calculated by subtracting
purpose of this paper is to determine whether the Foster reactance the radiated field energy away from the total energy in the field.

theorem holds for antennas. By making use of a complex frequency g,cjy method has been successfully used by Fante and reexam-
domain version of the Poynting theorem, we have shown that the . d by McL to stud t =1 16

Foster reactance theorem is valid for an antenna. Finally, the Foster INed by McLean to study antenra[s], [6].

reactance theorem for the antenna has been applied to demonstrate ~ Although the concept of antengawas proposed many years

the widely held assumption@ = 1/B, provided @ > 1, where ago, its definition, calculation, and relation to system bandwidth

B stands for the fractional bandwidth of an arbitrary antenna. have long been controversial topics [7]-[14]. Some authors even
Index Terms—Antenna input impedance, energy storage@ questioned the applicability of the complex Poynting theorem in
factor. the calculation of antenn@ [12]-[14].

In this paper, we try to give a more rigorous discussion of
antenna?. In Section Il, we present a complete description of
the complex power balance relation for electromagnetic fields,
HE quality factoror @ is used to describe the high-inputhopefully removing the misunderstanding associated with the

. INTRODUCTION

of a system is usually defined as [1] a derivation of theRLC equivalent circuit of an antenna di-
W rectly from the complex Poynting theorem. It is well known
Q= 5 (1) that the Foster reactance theorem holds only for a lossless net-

work. From the point of view of circuit theory, an antenna is
whereW is the time average energy stored in the system aacbne-port network with loss. The loss represents the radiated
P is the average dissipated power. In most applications of tifiswer from the antenna and this loss prohibits the direct use
definition, theQ is evaluated at the resonant frequency. In thisf the Foster reactance theorem. A formula for the frequency

case th&) can be expressed as derivative of the input reactance of any linear, passive, time-in-
~ variant electromagnetic system has been derived by Rhodes [8],
Q= 2wW; ) [9]. The formula consists of five terms and has several frequency
P derivatives of field quantities. So it is very difficult to figure

where W; is either the average stored electric or magnetﬂf‘t how the frequency derivative of the input reactance changes

energy. For a nonresonant antenna, it is tacitly assumed tHf! the frequency. In Section IV, we make use of a complex

the antenna system should be tuned to resonance. Resonang9&€ncy domain approach to demonstrate that the Foster reac-

achieved by adding a capacitive or inductive energy storage dfd1ce theorem (i.e., the frequency derivative of the input reac-

ment depending on whether the stored energy is predominaﬁﬂ ce Qf the antenna is always greater than zero) still holds for
magnetic or electric. In this casé; is chosen as average stored@" arbitrary antenna system. Antenna engineers have used the

magnetic energyV,, or the average stored electric eneigy fact that the antenna fractional bandwidghis approximately

in the near-field zone around the antenna, whichever is larggflu@l to the reciprocal of anteniiafor a high@ system, but

andP is the total radiated power. The parameter defined by (B €XPlicit demonstration has been given. Wheeler has pointed
has been referred to as antera out that the common expression for bandwidth in terms/of

The evaluation of antenn@ can be traced back to the clasS neither logical nor helpful in clear exposition [15]. It is be-

sical work of Chu [2] who derived the theoretical valuefor Ile_ved that suc_h a relationship r_nust exist for any cc_Jm_pIete radi-
. . . . ) atllng system, just as surely as it does for a nonradiating system.
an ideal antenna enclosed in an imaginary sphere. Chu’s anal-

sis is based on the spherical TE and TM mode expansions rn_other common belief is that the relation cannot be prdven.
y P P P Ighodes has shown that the reciprocal relationship between

and B does hold for a planar dipole [7]. Fante has tried to give
Manuscript received January 4, 1999; revised September 23, 1999.
The authors are with Research In Motion, Waterloo, ON, N2L 3W8 Canada.1D. R. Rhodes, “Author’s reply,JEEE Trans. Antennas Propagatol. 15,
Publisher Item Identifier S 0018-926X(00)02447-9. pp. 568-569, July 1967.

0018-926X/00$10.00 © 2000 IEEE



402 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

a study of antenn& of general ideal antenna based on the fre- ov
guency derivatives of Maxwell’s equations, which has been the

standard way of deriving the Foster reactance theorem. How- oV
ever, such a study, if applied to an antenna system, may yield a 0
surface integral of the product between field and its frequency v

derivative and require an assumption that either the terminal
voltage or the current is a constant [5]. An exact analysis for
such an integral is essentially difficult. In Section V, we apply
the Foster theorem for antenna system to give a simple demon-
stration of the widely held assumptiéh~ 1/B. Fig. 1. A volumel” containing source regiobi.
Il. POYNTING THEOREM AND EVALUATION OF ¢} USING FIELD

EQUATIONS As mentioned by McLean [6] and Grimes [13], some authors
implicitly define reactive power to be the imaginary part of the
Surface integral of the complex Poynting vector. This is a mis-
leading definition. Actually (10) shows that the surface integral

The differential form of the complex Poynting theorem fo
time harmonic field in an isotropic medium is given by

v.§= —1 T E— F2w((w) — (we)) 3) of the real part of the Poynting vector is independent of the sur-
facedV as long as it encloses the source redignEquations
where$ = L E x H* is the complex Poynting vectdt,,) = (8) and (9) show that the surface integral of the imaginary part
pH - H* /4 and(w.) = eE - E* /4 are the magnetic and electricof the Poynting vector depends on the integration surddcen
field energy densities. the near field region (in the far field region it becomes zero).

_Let V; be the volume occupied by the electric current source Using (4), (10), and (7) we get
J and 9V} be the surface surroundifg,, take the integration

of the imaginary part of (3) over a volumié containingVy, as ﬁ.gdsz/ LT Edv - j2w /((wm>—<we>)dv
shown in Fig. 1, we obtain av v

-
0

1 = —
- oo =pdyg — J* - Edv—j2
Im/ ﬁ~Sds:Im/ -1 *~Edv—2w/ ({wn) AR M dv=J ‘”/V““”">
ov \% \4
o —{we.)) dv
~ (we)) dv @ o)
_ , =Py jow / ((wm)—(we))dv.  (11)
wheredV is the boundary of”. ChoosingV" = V{5, we have V-V

Im / 7-Sds =Im / 1 T Bdv— 2 / (W) The above relation indicates that the complex power flowing out
v, v, 2 Va of 9V is equal to the radiation power plus the reactive power out-

—{we)) dv (5) sidedV. This expression seems to be the most general form for
) ) i the Poynting theorem. Most of the writers directly explain the
and if we choos&” = V., whereV.. is the region enclosed by ¢4 term on the second line of (11) as the reactive energy stored
a sphere with radiug.,, wherer., is sufficiently large so that 44,0 the antenna. In Collin’s and Rhode’s work [3], [7], the
itlies in the far field region of the antenna system, we get  gacond term of the right-hand side of (11) was missed. Collin

L= A and Fante’s work [4], which is based on Collin’'s method, have
Im /av 7i-Sds =Im / —3J Edv—2w / ({(wm)  peen guestioned by other authors [12]-[14]. These authors even

_ <wV°>) dv v (6) proposed that the complex Poynting theorem is intrinsically an
¢ ' insufficient basis for a full description of power in a radiated
SinceS is a real vector in the far-field region, we have field and resorted to the time dependent Poynting theorem. Such

a misunderstanding is actually caused by an improper explana-
Im / L Edv=2w / ((wy) — (w))dv.  (7) tion of the power balance relation (11).
Vo Voo To clarify this point, let(«w, ) ((w:>?)) and () ((w:24)) de-

From (4), (5), and (7), we obtain note the stored (radiated) electric field and magnetic field energy

densities, respectively, we can then define
Im / 7 Gds = 2w / (wn) — (w))dv  (8)
Vo Voo —Vo

(W) = (win) — (w})
(@) = {we) — (w;™). (12)

Im /av ii-Sds=2w /VOQ_V ((wn) — (we)) dv.  (9)

Take the integration of the real part of (3) over the volurhe
containing the source regidry, we obtain the radiated power

These calculations are physically appropriate since density is a

summable quantity. Itis readily seen from (9) that,,) = (w.)

in the far field zone since the complex Poynting vector becomes

real asV approached’,,. This observation indicates that the
rad . B - electromagnetic field energy and the magnetic field energy for

P =Re o S ds = Re /VO 27 Edv. (10) e adiated field are identical everywhere. To be explicit, we
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ci_te f[he _far-field expression generated by an arbitrary current +i Im / §.n ds)
distribution as follows: 2w v,
By = 22 e [ (7 (T s w3 ({[ )+ wpas
47{’7’00 Vo Voo —Vo
ﬁrad(;oo) =y Jwe e*jkroo/ [7Ao<> % j]ejkf’oof" dv —T;.oRe / § nds
47{’7’00 Vo c A%
1 -
(13) 5 m / g. ﬁds) . (18)
1) r
wherer,, is an observation point in the far-field region afd ovo

is a unit vector along’. From the above expression, we easilyhe antenna) can be calculated as
obtain

. o Qme — ~
E (7)) = nH™ (7)) X fo. (14) Q= —Fpna> TWn>We
. (29)
2wW, . - .
Hence, we have 0= ;rad,’ it W, > W,

<wrad> _ 1 Eﬁrad . Erad* _ 1 uﬁrad . ﬁrad* — <wrad>

¢« /1 e B (15) The above calculation has been used by McLean to calculate

@ directly from the fields of the TN, spherical mode. This
and the total energy of the radiated fields is simply twice tHPProach is actually equivalent to Collin’s method.
electric or magnetic energy density of the radiated fields. Math-

ematically, (15) holds everywhere. Therefore we obtain [1l. THE ANTENNA AS A ONE-PORT DEVICE
- - } } In the following, we choos&}, in such a way thadVj, is co-
Wi =W = / i [(tDn) — (We)] dv incident with the antenna surface (except for a portiowhere
Voe =¥ dV, crosses the antenna feed plane), as shown in Fig. 2.
= / [(wm) — (w.)] dv Taking the integration of (3) and using the divergence the-
1V<>o —Va orem over the regiolr., — ¥, we get
:2—Im/ S.7ds (16) o o
@ Ve %/ (ExH*)-d§+§/ (Ex H*).-d5
from (8), (9), and (12). Herd},, and W, stand for the total O ove
stored magnetic and electric energy in the volume surrounding = —j2w / ({(wn) — (we)) dv
the radiator. From (12) the total stored reactive energy can be Vo= V0
expressed as -1 / oE - E*dv (20)
- - Voe—Vo
Wﬁ + W’I’n, . .. . .
ol ol wheres is the conductivity of the medium i, — VQ. If we
= / . (we) — (W) + (wm) — (w);)) dv assume the antenna surface is perfectly conducfihg, H*
VooV vanishes everywhere @i, except over the input terminal.
= {/ ((we) + (wpm)) dv — / ((wr™) For a single-mode transmission line we have
Voo —Vo Voo —Vo
rad — — — ~
+Hwi?)) dv} L / (Ex H*).dg=1 / (Ex H")-dg=-1vI* (21)
A A

)t wade-=ne [ 5 aas)
Voo =0 ¢ Vo whereV and! are equivalent voltage and current at the feeding

(17) plane respectively. Ingoducing (21) into (20) and using the fact

rad _ 1 7 AT ]
wherer is the radius of the sphetd/,, andc is the wave ve- that P = 3 fan (E x H*) - dg, we find

locity. Both terms in the curved bracket are divergent.as—
oo, but it can be shown that the net term in the curved bracket ig VI* = P!+ P+ j2u / ((wm) —(we)) dv (22)
convergent [5]. The following has been used in deriving (17) Vo mVo

R R where
Re S-iids =Re S - iids. .
Vo SN Ploss —_ = / O'E N E* dU (23)
So the stored electric and magnetic field energy will be given by 2 Ve
- L is the power loss.
Wi =3 A v ((we) + (wm)) dv The antenna impedancg, is defined by
oc YO0
T =
I=Re [ §. ﬁds} _Y
c oV Za=7 (24)
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I
Vo =Vo
v, \oov,
'z
¢,
A
Fig. 3. Impedance of an arbitrary antenna.
V x H(7, 5) =3¢E. (27)
All the frequency-domain quantities can be recovered by letting
a = 0in(27). From (27) a relation similar to (3) can be obtained
in the region outsidé}
Fig. 2. An arbitrary antenna and its equivalent circuit.
\% (% E(7, ) x H*(7, 5))
and by using (16), we can rewrite (22) as . .
. . =—1iq Hﬁ§2+557,32
P 2Prad 2ploss . 4W(Wrn _ We) 2 . (N| (i , )| i2| ( )| )
ATTIE TR YT — i bw(ulHP ~ <|EP). (28)
_ prad loss ,~
=R+ RS 45X If we take the integration of (28) over the connected redion-
:R?d + Rﬁss T <wLA _ 1 ) (25) Vo, as shown in Fig. 2, we find the relation
wC’A
where [ sEGex )-8
Vo +0Vae
Rrad _ 2Prad Rloss _ 2PIOSS it _2a(Wnl + We) - 2jw(Wrn - We) (29)
A T T 112 A T 112
112 [1]?
1 4w(Wm _ We) where
XA :wLA - = > o
) wCy | ] W, :% / N|H|2 dv > 0
AW, |7]? Ve—Vo
Ly= e A= (26) . <
1] 42 W, W, =1 / e|B2dv > 0. (30)
Voo —Vo

Hence, the equivalent circuit for the antenna is shown in Fig. 3.
The above quantities have no physical interpretations except
IV. FOSTERREACTANCE THEOREM FORANTENNAS AND whena = 0. Following a discussion similar to the previous
EVALUATION OF ANTENNA @ USING EQUIVALENT CIRCUITS section, we have

The Foster reactance theorem is a very important tool for L S .
the synthesis of networks. In standard textbooks, the Foster re- 2 /av (E(7, 8) x H(7, 8)) - d3
actance theorem is usually stated for a loss-free network. It ’ - <
has been shown that an antenna system is equivalent to a one =1 . (E(7, 3) x H*(7, 8)) - d§

port lossy network R4 # 0). So the question may be raised
whether the Foster reactance theorem could apply for an antenna
system. In the following section, we will attempt to answer this ) . i o
guestion. First, we introduce a complex frequegey o + jw for a S|lee-mode tr3n5m|SS|on line. Defing

and all calculations will be confined to the complex frequency foy. (E(7a, 3) X H*(7, 3)) - d3 and substitute it
plane. For clarity, all quantities in the complex frequency plarigto (29) to get

will be embellished using this symbdb distinguish them from .~ o g g o g

the corresponding quantities in the frequency domain. Taking ¥ ($)17(8) = P 4 2a(Wi, + We) + 2jw(Wy, — We).
the Laplace transform of the time-domain Maxwell's equations (32)
in a lossless medium we have

= -3 V(HI*(3) (31)

5 N If « is sufficiently small so thatr <« ¢/, we can make a first
V x E(7, §) =—suH order approximation™*"=/¢ ~ 1 — ar../c and derive directly
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from the Maxwell equations, defined in the complex plane asd the definitiorls oﬁA andéA are similar toL 4 andC 4, re-
shown in (33) at the bottom of the page. So we have spectively. SincéZ(s) is an analytic function its real and imag-
inary parts satisfy the Cauchy—Riemann conditions, i.e.,

v 2
Pl = P (11 0 <1 — oo 2—“) P (34) ) .
¢ ¢ ORA(a, w) 08X (o, w)
5 = 3 (41a)
(8% w
whereP*»d, previously defined in (10), is radiated power in the
frequency domain which is independentofSubstituting (34)
into (32) we obtain . .
ORA(w, w) X ala, w)
o . . - = - . (41b)
LV (3) = P 4 20 (Wi + W, — 722 pod] Ouw da
C . .
+ 2jw(W,, — ). (35) By direct calculation we have
The impedance in the complex frequency plane can then be ex- R (c, w) 4 (Wrn +We — Teo Prad)
pressed as T = Tk =
a=0
i i Too Ta 7 m 7 e
. ~ 2Prad 4ex |:Wrn + We — 7 P d:| — M (42)
ZA(S):V~2+ 7 N2 |I|
[1(3)] [1(3)]
n djw(Wp, — We) (36) where use of (17) has been made. From (41a) and (42) we obtain
1) S
X, 09X, 4W,, + W,

If ais sgfﬁciently small, we can make the first order approx- 8; = 8—; = % >0 (43)
imation I(s) ~ I which is independent aof. So (36) can be =

rewritten as
which is the Foster reactance theorem for an antenna system.

) gprad Ao [Wm T W, - oo Prad} A formula for the frequency derivative the of input reactance
ZA(3) = 5+ 5 ¢ of any linear, passive, time-invariant electromagnetic system has
] . . ] been derived by Rhodes [8], [9]. This formula contains four in-
djw(W,, — We) (37) tegrals of frequency derivatives of field quantities, making it dif-
|42 ficult to obtain any useful information from it.

The above discussion can be easily generalized to an antenna
Now we decompose the complex impeda#dé) into the sum array system withV input ports. In this case (35) should be

of its real and imaginary parts, i.e., changed to
Z4(3) = Ra(a, w) + jXa(a, w) (38) VR N
NONZOIEE D PR AGIHE)
where =t 5 .
— pra +2a|: nl+W€_;’0Prad:|
2Prad dev |:Wm + WF — 7;.0 Prad:| . ¥ ¥ ¢
A(a7 CU) |I|2 + |I|2 ( )
where[V (s)] and[I(s)] are the voltage and current vectors at
the antenna array terminals. Introducing the impedance matrix
y dw(Wp, — W, y 1 of the antenna arra;
Xala, w) = w(—z)) =wlha(, w) = ———— g
] wCa(a, w)

(40) [Za()] = [Ra(e, )] + j[Xa(e, )] (45)

Erad(Fm7 5’) ~ — (]_ — Too %) % C_jk’l’oo /VO [j_ (f foo)]c_jkf‘”'ﬁ do

Fo €OV (33)

A L ay jwe o ) kb
Hmd(TOOv 3)%_77(1_7’002) ;TTOCG ka/vo [7’oo><j]6 kit T gy
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and following a similar discussion we have whereW = W,, or W, whichever is larger. Substituting (51)
and (52) into (53) we have

T Roa(c, )[I] = 2P + da | W, + W, — 122 prad
[ R, )] | = prod] X

(46) L e

[ l1Za] + ZAF] %)

where either thet or — value is chosen to give the highér.

[ [ X aler, @)][I] = dw(W,, — We). (47) For a single antenna system (54) is simplified to
Instead of (42) we have " d(-;(A 4 X,
Q= ——. (55)
OR4(a, w) r 2RY
[I*]t 677 [1]24(Wnl+We_ﬁPrad)
(87 C
a=0 N N The term obtained fromy(dX ,, /dw) is usually larger than that
=4(Wp, + We) (48)  obtained fromx 4 for a highQ system [19]. IfQ is large, it

is assumed that it is related to the frequency bandwidth of the
for a lossless system. So the Foster reactance theorem foraftenna as follows. Consider the antenna to be resonated with a
antenna array will take the form suitable reactive network at the frequency of intetgsiThe fre-
quency at which the normalized inpf, | is equal toy/2 times
09X 4 . . its value at resonance, is the half-power point. At this point the
[ [ 3 } ] =4(W,, + W,) > 0. (49) average power delivered from the antenna is one-half that de-
@ livered at resonance. Letw be defined as the frequency incre-
ment,Aw is the distance in frequency between the half-power

The above derivation is also applicable to a bounded one pgfints (3-dB points) of the antenna. The fractional bandwiglth
lossless microwave system wheéf&d = 0[17]. The advantage is then defined as

of such an approach is that we do not need to assume that either
the terminal voltage or the current is a constant, as most of the B— Aw' (56)
textbooks do to get the same result as (43) or (49). Wy

Now the antenng} can be calculated from the correspondin
equivalent circuit using the Foster reactance theorem. For si
plicity, we assume that the antenna system is losslg$s (=
0). The impedance of the antenna array for this case will be

the @ is high the following relationship, which holds for a
nonradiating system, is assumed

[Z4] = [RE] + [ X4l (50)
) _ This widely held assumption has never been explicitly proven
From (47) and (49) we obtain the stored magnetic and electfly distributed systems. As pointed by Wheeler [15], the

field energy as follows common expression for the bandwidth in terms 10fQ is
neither logical nor helpful in clear exposition. Most writers
W —l[l*]t <d[XA] M) U state that ifQ is large compared with unity, it is equal to
™ dw w B~!. Rhodes demonstrated that this relation does hold for the
. 1 (dXa]  [X4] planar dipole by computing) and bandwidth independently
We =2 [I] <W - T) [Z] (51) [7] and he firmly believed that such a relation must exist for

any complete radiating system, just as surely as it does for
nonradiating systems.

A discussion of the relation betwed and @ was given
by Fante. His approach was based on the frequency derivatives

The radiated power of the antenna array is

P4 =L Re[I*]'[V] of Maxwell's equations, which has been the standard way of
= L Re[I"]"[Z4][]] deriving the Foster reactance theorem. For an antenna system,
:%L [1[[Z.4] + [Z5]A1]. (52) howc_aver, a surface m_tegral between the product be_twe_en field
and its frequency derivative must appear in the derivation and
an assumption that either the terminal voltage and the current
So the antenng will be given by is a constant must be made. An exact analysis for such an inte-
gral is essentially difficult [4]. In the next section, we will give
20W a simple demonstration of this observation using the Foster re-
Q= praa (53)  actance theorem for an antenna system.
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V. ANTENNA Q AND ANTENNA BANDWIDTH

In this section, we consider a high system. Letv,. denote
one of the resonant frequencies of a single antenna system; then

by definition we have

X4(w,)=0. (58)
We rewrite (40) at the resonant frequengyas follows:
% 4w,,(Wm — We)
AA(a, w,,) = T
. 1
=wLalo, wp) — —/——
wCy(a, wy)
1
~wpl g — =Xa(w,)=0. (59)
Wl g

407

Introducing the above into (63) and using (58), we find

4prad
dX 4
dw
B 4prad
8w, W |T2X 4.,
_ 4prad
8w W,

1

B =
w12

W

HereW = W,, or W, whichever is larger.

VI. CONCLUSION

Here we assume thatis sufficiently small so we can make the

first-order approximation

¢ b~

A(
al

By (41b) we have

a, wr) :f/A(Ov wr) =La
a? T

dR4
dw o Jda

Wr

=~ 0.

(60)

Thus, as one moves off resonanZg, can be written as

dX
Zam R4 jw—w) =2 4., (61)
dw -
The half-power points occur when
dX 4
R = (o= w,) =2 62
A (w—w,) dw B (62)

so that the fractional bandwidtf can be written

Aw 2R 4prad
B = — A =
W dX 4 dX 4 (63)
w, | oA wo|I2 |52
dw . dw .

So the problem is to evaluateX 4 /dw. To do this, Fante em-
ployed the frequency derivative of Maxwell’'s equations and ex- [g]
tended the treatment of Harrington’s work [19, pp. 394—-396].

As a result, he obtained an integral defined on an infinitely Iarge[9
surface for which an asymptotic analysis is very difficult. In ad-[10]
dition, he had to assume that either the terminal voltage or the
current is a constant. In fact, this can be easily done using tHé

Foster reactance theorem. From (51) we get

dX. 8W. X4
do — |IJ? w
dXs  SW. Xa

dw 2w

(64)

Although the concept of antenn@ was proposed many
years ago, its definition, calculation and relationship to system
bandwidth have long been controversial topics. A recent
discussion focuses on the applicability of the well-known
complex Poynting theorem to the calculation of anteigha
[1], [12]-[14]. In this paper, we have shown that the complex
Poynting theorem can be used in the calculation of antéhna
and one does not need to revert to the time domain Poynting
theorem as suggested by references [12]-[14].

The central theme of this paper has been to show that the tra-
ditional Foster reactance theorem holds for an arbitrary antenna
system using the Poynting theorem in the complex frequency
domain. The Foster reactance theorem has then been used to
demonstrate the widely held assumpti@rr 1/B is valid for
an arbitrary antenna system, provideds- 1.
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