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Abstract—The calculation of antenna has been an interesting
and a controversial topic for years. In this paper, we first give a rig-
orous study of antenna by introducing a complete description of
the complex power balance relation for an antenna system. Using
the complex Poynting theorem, we have shown that the antenna is
essentially equivalent to a one port lossy network. The Foster re-
actance theorem is usually stated for a lossless network. The main
purpose of this paper is to determine whether the Foster reactance
theorem holds for antennas. By making use of a complex frequency
domain version of the Poynting theorem, we have shown that the
Foster reactance theorem is valid for an antenna. Finally, the Foster
reactance theorem for the antenna has been applied to demonstrate
the widely held assumption 1 , provided 1, where

stands for the fractional bandwidth of an arbitrary antenna.

Index Terms—Antenna input impedance, energy storage,
factor.

I. INTRODUCTION

T HE quality factoror is used to describe the high-input
reactance and narrow bandwidth of small antennas. The

of a system is usually defined as [1]

(1)

where is the time average energy stored in the system and
is the average dissipated power. In most applications of this

definition, the is evaluated at the resonant frequency. In this
case the can be expressed as

(2)

where is either the average stored electric or magnetic
energy. For a nonresonant antenna, it is tacitly assumed that
the antenna system should be tuned to resonance. Resonance is
achieved by adding a capacitive or inductive energy storage ele-
ment depending on whether the stored energy is predominantly
magnetic or electric. In this case, is chosen as average stored
magnetic energy or the average stored electric energy
in the near-field zone around the antenna, whichever is larger,
and is the total radiated power. The parameter defined by (2)
has been referred to as antenna.

The evaluation of antenna can be traced back to the clas-
sical work of Chu [2] who derived the theoretical value offor
an ideal antenna enclosed in an imaginary sphere. Chu’s anal-
ysis is based on the spherical TE and TM mode expansions pro-
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duced by sources distributed on the surface of the imaginary
sphere. The major shortcomings of the Chu method are that it
is restricted to spherical modes and requires several approxima-
tions. Collin and Rothschild also presented a method for eval-
uating antenna . Their method is based on recognizing that
the total stored reactive energy can be calculated by subtracting
the radiated field energy away from the total energy in the field.
Such method has been successfully used by Fante and reexam-
ined by McLean to study antenna[5], [6].

Although the concept of antennawas proposed many years
ago, its definition, calculation, and relation to system bandwidth
have long been controversial topics [7]–[14]. Some authors even
questioned the applicability of the complex Poynting theorem in
the calculation of antenna [12]–[14].

In this paper, we try to give a more rigorous discussion of
antenna . In Section II, we present a complete description of
the complex power balance relation for electromagnetic fields,
hopefully removing the misunderstanding associated with the
complex Poynting theorem. To complete this paper we give
a derivation of the equivalent circuit of an antenna di-
rectly from the complex Poynting theorem. It is well known
that the Foster reactance theorem holds only for a lossless net-
work. From the point of view of circuit theory, an antenna is
a one-port network with loss. The loss represents the radiated
power from the antenna and this loss prohibits the direct use
of the Foster reactance theorem. A formula for the frequency
derivative of the input reactance of any linear, passive, time-in-
variant electromagnetic system has been derived by Rhodes [8],
[9]. The formula consists of five terms and has several frequency
derivatives of field quantities. So it is very difficult to figure
out how the frequency derivative of the input reactance changes
with the frequency. In Section IV, we make use of a complex
frequency domain approach to demonstrate that the Foster reac-
tance theorem (i.e., the frequency derivative of the input reac-
tance of the antenna is always greater than zero) still holds for
an arbitrary antenna system. Antenna engineers have used the
fact that the antenna fractional bandwidthis approximately
equal to the reciprocal of antennafor a high system, but
no explicit demonstration has been given. Wheeler has pointed
out that the common expression for bandwidth in terms of
is neither logical nor helpful in clear exposition [15]. It is be-
lieved that such a relationship must exist for any complete radi-
ating system, just as surely as it does for a nonradiating system.
Another common belief is that the relation cannot be proven.1

Rhodes has shown that the reciprocal relationship between
and does hold for a planar dipole [7]. Fante has tried to give

1D. R. Rhodes, “Author’s reply,”IEEE Trans. Antennas Propagat., vol. 15,
pp. 568–569, July 1967.
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a study of antenna of general ideal antenna based on the fre-
quency derivatives of Maxwell’s equations, which has been the
standard way of deriving the Foster reactance theorem. How-
ever, such a study, if applied to an antenna system, may yield a
surface integral of the product between field and its frequency
derivative and require an assumption that either the terminal
voltage or the current is a constant [5]. An exact analysis for
such an integral is essentially difficult. In Section V, we apply
the Foster theorem for antenna system to give a simple demon-
stration of the widely held assumption .

II. POYNTING THEOREM AND EVALUATION OF USING FIELD

EQUATIONS

The differential form of the complex Poynting theorem for
time harmonic field in an isotropic medium is given by

(3)

where is the complex Poynting vector
and are the magnetic and electric

field energy densities.
Let be the volume occupied by the electric current source
and be the surface surrounding , take the integration

of the imaginary part of (3) over a volume containing , as
shown in Fig. 1, we obtain

(4)

where is the boundary of . Choosing , we have

(5)

and if we choose , where is the region enclosed by
a sphere with radius , where is sufficiently large so that
it lies in the far field region of the antenna system, we get

(6)

Since is a real vector in the far-field region, we have

(7)

From (4), (5), and (7), we obtain

(8)

(9)

Take the integration of the real part of (3) over the volume
containing the source region , we obtain the radiated power

(10)

Fig. 1. A volumeV containing source regionV .

As mentioned by McLean [6] and Grimes [13], some authors
implicitly define reactive power to be the imaginary part of the
surface integral of the complex Poynting vector. This is a mis-
leading definition. Actually (10) shows that the surface integral
of the real part of the Poynting vector is independent of the sur-
face as long as it encloses the source region. Equations
(8) and (9) show that the surface integral of the imaginary part
of the Poynting vector depends on the integration surfacein
the near field region (in the far field region it becomes zero).

Using (4), (10), and (7) we get

(11)

The above relation indicates that the complex power flowing out
of is equal to the radiation power plus the reactive power out-
side . This expression seems to be the most general form for
the Poynting theorem. Most of the writers directly explain the
third term on the second line of (11) as the reactive energy stored
around the antenna. In Collin’s and Rhode’s work [3], [7], the
second term of the right-hand side of (11) was missed. Collin
and Fante’s work [4], which is based on Collin’s method, have
been questioned by other authors [12]–[14]. These authors even
proposed that the complex Poynting theorem is intrinsically an
insufficient basis for a full description of power in a radiated
field and resorted to the time dependent Poynting theorem. Such
a misunderstanding is actually caused by an improper explana-
tion of the power balance relation (11).

To clarify this point, let ( ) and ( ) de-
note the stored (radiated) electric field and magnetic field energy
densities, respectively, we can then define

(12)

These calculations are physically appropriate since density is a
summable quantity. It is readily seen from (9) that
in the far field zone since the complex Poynting vector becomes
real as approaches . This observation indicates that the
electromagnetic field energy and the magnetic field energy for
the radiated field are identical everywhere. To be explicit, we
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cite the far-field expression generated by an arbitrary current
distribution as follows:

(13)

where is an observation point in the far-field region and
is a unit vector along. From the above expression, we easily
obtain

(14)

Hence, we have

(15)

and the total energy of the radiated fields is simply twice the
electric or magnetic energy density of the radiated fields. Math-
ematically, (15) holds everywhere. Therefore we obtain

(16)

from (8), (9), and (12). Here, and stand for the total
stored magnetic and electric energy in the volume surrounding
the radiator. From (12) the total stored reactive energy can be
expressed as

(17)

where is the radius of the sphere , and is the wave ve-
locity. Both terms in the curved bracket are divergent as

, but it can be shown that the net term in the curved bracket is
convergent [5]. The following has been used in deriving (17)

So the stored electric and magnetic field energy will be given by

(18)

The antenna can be calculated as

if

if

(19)

The above calculation has been used by McLean to calculate
directly from the fields of the TM spherical mode. This

approach is actually equivalent to Collin’s method.

III. T HE ANTENNA AS A ONE-PORT DEVICE

In the following, we choose in such a way that is co-
incident with the antenna surface (except for a portionwhere

crosses the antenna feed plane), as shown in Fig. 2.
Taking the integration of (3) and using the divergence the-

orem over the region we get

(20)

where is the conductivity of the medium in . If we
assume the antenna surface is perfectly conducting,
vanishes everywhere on except over the input terminal.
For a single-mode transmission line we have

(21)

where and are equivalent voltage and current at the feeding
plane respectively. Introducing (21) into (20) and using the fact
that , we find

(22)

where

(23)

is the power loss.
The antenna impedance is defined by

(24)
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Fig. 2. An arbitrary antenna and its equivalent circuit.

and by using (16), we can rewrite (22) as

(25)

where

(26)

Hence, the equivalent circuit for the antenna is shown in Fig. 3.

IV. FOSTERREACTANCE THEOREM FORANTENNAS AND

EVALUATION OF ANTENNA USING EQUIVALENT CIRCUITS

The Foster reactance theorem is a very important tool for
the synthesis of networks. In standard textbooks, the Foster re-
actance theorem is usually stated for a loss-free network. It
has been shown that an antenna system is equivalent to a one
port lossy network ( ). So the question may be raised
whether the Foster reactance theorem could apply for an antenna
system. In the following section, we will attempt to answer this
question. First, we introduce a complex frequency
and all calculations will be confined to the complex frequency
plane. For clarity, all quantities in the complex frequency plane
will be embellished using this symbolto distinguish them from
the corresponding quantities in the frequency domain. Taking
the Laplace transform of the time-domain Maxwell’s equations
in a lossless medium we have

Fig. 3. Impedance of an arbitrary antenna.

(27)

All the frequency-domain quantities can be recovered by letting
in (27). From (27) a relation similar to (3) can be obtained

in the region outside

(28)

If we take the integration of (28) over the connected region
, as shown in Fig. 2, we find the relation

(29)

where

(30)

The above quantities have no physical interpretations except
when . Following a discussion similar to the previous
section, we have

(31)

for a single-mode transmission line. Define

and substitute it
into (29) to get

(32)

If is sufficiently small so that we can make a first
order approximation and derive directly
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from the Maxwell equations, defined in the complex plane as
shown in (33) at the bottom of the page. So we have

(34)

where , previously defined in (10), is radiated power in the
frequency domain which is independent of. Substituting (34)
into (32) we obtain

(35)

The impedance in the complex frequency plane can then be ex-
pressed as

(36)

If is sufficiently small, we can make the first order approx-
imation which is independent of . So (36) can be
rewritten as

(37)

Now we decompose the complex impedance into the sum
of its real and imaginary parts, i.e.,

(38)

where

(39)

(40)

and the definitions of and are similar to and , re-
spectively. Since is an analytic function its real and imag-
inary parts satisfy the Cauchy–Riemann conditions, i.e.,

(41a)

(41b)

By direct calculation we have

(42)

where use of (17) has been made. From (41a) and (42) we obtain

(43)

which is the Foster reactance theorem for an antenna system.
A formula for the frequency derivative the of input reactance

of any linear, passive, time-invariant electromagnetic system has
been derived by Rhodes [8], [9]. This formula contains four in-
tegrals of frequency derivatives of field quantities, making it dif-
ficult to obtain any useful information from it.

The above discussion can be easily generalized to an antenna
array system with input ports. In this case (35) should be
changed to

(44)

where and are the voltage and current vectors at
the antenna array terminals. Introducing the impedance matrix
of the antenna array

(45)

(33)
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and following a similar discussion we have

(46)

(47)

Instead of (42) we have

(48)

for a lossless system. So the Foster reactance theorem for the
antenna array will take the form

(49)

The above derivation is also applicable to a bounded one port
lossless microwave system where [17]. The advantage
of such an approach is that we do not need to assume that either
the terminal voltage or the current is a constant, as most of the
textbooks do to get the same result as (43) or (49).

Now the antenna can be calculated from the corresponding
equivalent circuit using the Foster reactance theorem. For sim-
plicity, we assume that the antenna system is lossless (
). The impedance of the antenna array for this case will be

(50)

From (47) and (49) we obtain the stored magnetic and electric
field energy as follows

(51)

The radiated power of the antenna array is

(52)

So the antenna will be given by

(53)

where or whichever is larger. Substituting (51)
and (52) into (53) we have

(54)

where either the or value is chosen to give the higher.
For a single antenna system (54) is simplified to

(55)

The term obtained from is usually larger than that
obtained from for a high system [19]. If is large, it
is assumed that it is related to the frequency bandwidth of the
antenna as follows. Consider the antenna to be resonated with a
suitable reactive network at the frequency of interest. The fre-
quency at which the normalized input is equal to times
its value at resonance, is the half-power point. At this point the
average power delivered from the antenna is one-half that de-
livered at resonance. Let be defined as the frequency incre-
ment, is the distance in frequency between the half-power
points (3-dB points) of the antenna. The fractional bandwidth
is then defined as

(56)

If the is high the following relationship, which holds for a
nonradiating system, is assumed

(57)

This widely held assumption has never been explicitly proven
for distributed systems. As pointed by Wheeler [15], the
common expression for the bandwidth in terms of is
neither logical nor helpful in clear exposition. Most writers
state that if is large compared with unity, it is equal to

. Rhodes demonstrated that this relation does hold for the
planar dipole by computing and bandwidth independently
[7] and he firmly believed that such a relation must exist for
any complete radiating system, just as surely as it does for
nonradiating systems.

A discussion of the relation between and was given
by Fante. His approach was based on the frequency derivatives
of Maxwell’s equations, which has been the standard way of
deriving the Foster reactance theorem. For an antenna system,
however, a surface integral between the product between field
and its frequency derivative must appear in the derivation and
an assumption that either the terminal voltage and the current
is a constant must be made. An exact analysis for such an inte-
gral is essentially difficult [4]. In the next section, we will give
a simple demonstration of this observation using the Foster re-
actance theorem for an antenna system.
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V. ANTENNA AND ANTENNA BANDWIDTH

In this section, we consider a high system. Let denote
one of the resonant frequencies of a single antenna system; then
by definition we have

(58)

We rewrite (40) at the resonant frequencyas follows:

(59)

Here we assume thatis sufficiently small so we can make the
first-order approximation

By (41b) we have

(60)

Thus, as one moves off resonance, can be written as

(61)

The half-power points occur when

(62)

so that the fractional bandwidth can be written

(63)

So the problem is to evaluate . To do this, Fante em-
ployed the frequency derivative of Maxwell’s equations and ex-
tended the treatment of Harrington’s work [19, pp. 394–396].
As a result, he obtained an integral defined on an infinitely large
surface for which an asymptotic analysis is very difficult. In ad-
dition, he had to assume that either the terminal voltage or the
current is a constant. In fact, this can be easily done using the
Foster reactance theorem. From (51) we get

(64)

Introducing the above into (63) and using (58), we find

(65)

Here or , whichever is larger.

VI. CONCLUSION

Although the concept of antenna was proposed many
years ago, its definition, calculation and relationship to system
bandwidth have long been controversial topics. A recent
discussion focuses on the applicability of the well-known
complex Poynting theorem to the calculation of antenna
[1], [12]–[14]. In this paper, we have shown that the complex
Poynting theorem can be used in the calculation of antenna
and one does not need to revert to the time domain Poynting
theorem as suggested by references [12]–[14].

The central theme of this paper has been to show that the tra-
ditional Foster reactance theorem holds for an arbitrary antenna
system using the Poynting theorem in the complex frequency
domain. The Foster reactance theorem has then been used to
demonstrate the widely held assumption is valid for
an arbitrary antenna system, provided .
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