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High-Order Impedance Boundary Conditions for
Multilayer Coated 3-D Objects

Olivier Marceaux and Bruno Stupfel

Abstract—The scattering problem by a multilayer coated coefficient calculated for a plane wave incident on an infinite
three-dimensional (3-D) object where the coating is modeled by planar surface. It was extended later on to three-dimensional
an impedance boundary condition (IBC) is considered. First, the (3-D) electromagnetic problems (see [8] and references in-
exact boundary condition is obtained for an infinite planar coating - S . .
with an arbitrary number of layers. Then, various approxima- cluded therein). The deter_m|nat|0n_ Qf the coefﬂ_ments in the
tions for the pseudodifferential operators involved in this exact IBC from the exact reflection coefficient necessitateshoc
condition are proposed. In the expressions of the resulting IBC’'s, complicated approximations that are difficult to apply to a
all tangential derivatives of the fields of order higher than two multilayer coating. To date, no numerical implementation
are suppressed. These IBC'’s are compared, in terms of numerical of the GIBC for the solution of a 3-D problem is known. In

efficiency, by computing either the reflection coefficients on an th tral d . ful att tt del bodi
infinite planar metal-backed coating or the radar cross section € Spectral domain, a successiul attempt {0 model bodies

(RCS) of a perfectly conducting coated sphere using the tangent Of revolution with a metal-backed layer has been presented
plane approximation. In both cases, it is found that the highest in [7]. However, the application of this particular IBC to

order IBC models the coating with a good accuracy. Finally, some gbjects of general shape is not straightforward. Recently, an
guidance is given on how this IBC may be numerically imple- gyt relationship betweeli and H has been obtained on the
mented in an integral equation or a finite-element formulation for — "y .
an arbitrarily shaped object. _outer surface of a metal—b_acked layer from which an IBC that
involves tangential derivatives @& only has been derived [9].
Applications of the spectral domain methodology to multiple
layers have been discussed in [10].
The organization of this paper is as follows. First, we
|. INTRODUCTION consider an infinite planar coating for which we derive in
HE numerical solution of the scattering problem byamuf]ecnon I _the exact boundary condi_tion in the space domain
tilayer coated 3-D object can be significantly simplifie y employlr_lg the method proposc_ad n [11] for Z'P problems.
if an impedance boundary condition (IBC) is used to mod e.ct|on.III IS dev_oted to the der|vat|on., from this exact re-
the behavior of the coating. Implemented, e.g., in an integ .gponsmp and, without loss of generahty, yvhen the coating
backed by a perfectly electric conducting (PEC) plane,

equation formulation defined on the outermost boundary oftnfaj% various IBC’s which include most of the aforementioned
coating [1], the IBC may lead to substantial savings in coni- . o
g (1] y 9 1es. The order of the tangential derivativesffand/or A

puting times and memory requirements since Maxwell's eq i i the final . ‘s at i 1o tw
tions need not be solved in the inhomogeneous domain.AnIé appear In the final expressions 1s at most equal o two
in order to facilitate the numerical implementation of the

relates the tangential components of the electric fietd those . ) . . -
resulting IBC in an integral equation (or a finite element)

of the magnetic fieldd and constitutes a local, hence approxi:

mate, boundary condition. The simplest and most popular Iéermulatlon. The _numerlcal eff|C|enc_y of these_ IBC's 'S e_"a"
is the Leontovich IBC (LIBC) [2]. However, it is known to beuated by computing the corresponding reflection coefficients.

poorly efficient for, e.g., low index coatings [3]. Several im_In Section IV we investigate the performances of the IBC's

proved IBC'’s have been proposed in the past [4]-[10] that iﬁqr a perfec.tly conducting coated sphere, assgming that the
crease the order of the tangential derivativegatnd/orH in- terms involving the surface curvatures are negligible (tangent

volved in the relationship, and have been obtained either in tﬁll@ne ?chp,rommatlgn)_. Fl?ally, \,’[V% |_nd|cat¢ tm Selctlon Y how
space or in the spectral domain. ese s may be implemented in an integral equation (or

In the space domain, a generalized IBC (GIBC) was ﬁrgipite element) formulation for an object of arbitrary shape.

proposed in [5] for two-dimensional (2-D) problems where the
coefficients in the IBC were derived from the exact reflection

Index Terms—mpedance boundary conditions, nonhomoge-
neous materials.

Il. EXACT BOUNDARY CONDITIONS FOR AN INFINITE
PLANAR COATING
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metal-backed layer yields the following exact relationships in Now, we consider the case of a metal-backed medium. Let the
layerl, viz. z;_1 < 2 < z1 = Ei’:l d; half-space: < zo be perfectly conducting. Thenx E(z) =0
and, for one layer, we get from (5a)

z X E(z) ,
_ v 2
= COS[k'l(Zl — z)\/l +tl] |:§ X E(zl) zZ X E(zl) = _I{;_%Pl (kl - LR) ﬂtg(zl) (6)
im sanfki(z — 2)v1+t] o while, for two layers, we obtain from (5¢) with = 2
5 ki — Lr) H, () ’ yers,
N
H, () {1 —~ nQZ;kQ PPy (k} — Lg) (k3 + Lp) } 2% E(z)
12
=coslki(z; —2)V1+t [ﬂ 2
k(e — 29T 8] | Hogl2) .y {Z—P (= L) + 2P, (12 - Lg) } H, ()
¢ tan[ki(z — 2)VI+ ], 1 2
ki + L 2 X E(z 7
+ nlle m ( 7+ D) [zX_(7l)] ( )

@) similar relationships can be easily derived from (5c) for an arbi-

B B B trary number of layers. Note that (6) is the space domain trans-
ke = wy/Epnm = e, By = —zxzx H, and the pose of [9, eq. (30)] that has been established in the spectral
operators;, Lgr, Lp are defined as domain

tr= Vi ki=(07+)/k
Lr(Y) =NV x{z(¥ x V).}, Lp(V) =V (V- Vi)
2
@) Without loss of generality, we consider in this section an infi-
V is an arbitrary vector in thézy) plane andV = zd, + nite planar metal-backed coating. First, from the exact relation-
yd,+20.. The pseudodifferential operators in (1) are defined hiP in (6), we derive in Section Ill-A various IBC’s for a mono-
their Taylor series ir [see, e.g., definition (A.2) ofos[k;(z — layer coating. For reasons that will be explained in Section V, we
2)v/T+1;] in the Appendix]. If we letz = 2,1 in (1), then we drop in the expressions of these IBC’s all tangential derivatives

obtain the exact relationships that link the values of the fiel® £ andH whose order is higher than two. Their numerical
on the inner and outer boundaries of layer efficiencies are evaluated by computing the corresponding re-

flection coefficients for an incident plane wave. Then, in Sec-

z X E(z1—1) = cos[kidiv/1 + ] [g x E(z1) +T1{3gtg(zl)] tion 111-B, we proceed along the same lines for a two layers

Ill. DERIVATION AND VALIDATION OF THE IBCS FOR A
METAL-BACKED PLANAR COATING

H (2 ) = Erdi/T 0 [T 2 % E(2 coating, while the evaluation of the performances of the corre-
Higlz—1) = coslhidi/1+1] [ ple x Ez)] sponding IBC'’s is postponed to Section IV. Let us mention here
Jf ﬂtg(zl)] that the methodology developed for two layers is easily appli-
?
Th = %Pz (le _ LR) cable to a larger number of layers.
l
3 A. Monolayer Coatin
Th= P (h + Lp) ®) yerosms S
mk; A numerical implementation of the exact relationship in (6)
with is possible only if the pseudo-differential operatgrdefined in
(4) is approximated. For an incident plane waxe[—i(ko,x +
P tan[kidiv/1 + 4] 4 koyy — kozcos6)] wherekg = 2r /)¢ is the free-space wave
L= VIt ) ) number, the field inside the coatingys = Q exp[—i(ko.z +

. . . . . kOyy — klz COs 91)] + SeXp[—i(kom.T + kOyy + klz COs 91)]
The first two equations in (3) can be conveniently written as with sing;, = sin#/N; where N, = \/eyur/(coo) is the
optical index of layer. We get from (2)t;vp = —(k3, +

-1 _ plgql
vr=TU (5a) k3,)/k = —1psin® 6/N7. Hence, in the spectral domain, —

wherelU! = [z x E(z), H,y()]" (the superscript denotes 0 as|N;| — oo. If we let¢; = 0in (4), then we obtain
matrix transpose), and the transition mattiis defined as Py = tan(kidy). ®)

1 T

T' = cos[kidiv/1+ ] <Tl 1R> . (5b) Dropping all tangential derivatives &, in (6), we get the
D
LIBC

From (5a), we readily obtain the exact relationships that link the .
values of the fields on both sides of a medium witkayers 2 x E(z1) = —in tan(kidi ) H ,(21) 9)

P (8) is exact in normal incideng@ = 0) or in oblique incidence
-t = l_IT’Jf"*1 el (5c) when|N;| — oo. We choose to enforce this property to all
j=1 of the approximations of; that will be subsequently derived.
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Similarly to what has been done in [7] and [9], we approximatgiven in (12), then we obtain the IBC defined by [9, eq. (35)] in
P; by arational fraction oty, i.e., we let which the tangential derivatives éf,, of order higher than two
are discarded. Also, it is important to note that the values, of

P = ubaltl. (10) andb; in (13) wheng; andg; tend to O are actually those of
L4 0ity andb, in (11)
Notice that the degrees of the polynomials in (10) are voluntarily . Lo .
restricted to one since the choice of higher degrees would induce ,al}blzn_)o ax(collocation) = a(Padé)
tangential derivatives of the fields whose order is higher than lim b (collocation = b; (Padé). (15)

two. If the Taylor series expansiongtinof P; and of the rational Pr,f2—0

fraction are chosen to be identicaltat= 0 up to the second- We now proceed to the evaluation of the numerical efficien-

order derivatives, then we geta 1) Padé approximation df, ~ cies of the above IBC’s by computing their respective reflection

att; = 0, and the values of the coefficients, a1, b; in (3) are coefficients for a planar incident wave whose direction of inci-
dence makes the anglewith the ~ axis and for the two polar-

Padé: ag = tan(kid;) izations: TM (H orthogonal taz) and TE E orthogonal taz).
o — 1 — 4k2d3 — cos(2k1d1 +2k1d; tan(kid;) The exact reflection coefficients?, (6) andr$3,(6) are
1= 4[—2]€1d1 + Sill(2]€1d1)] 7,%)31(9) _

—6]%‘1 dl + [3 + 4]%%6[%4—3 COS(2k1d1)]ta11(k1d1)

by = A2k ds 1 sin(2kydy)] —cos O+ing,/1—sin® 6 /N? tan{kldm/l—siHQQ/Nf}
(11)
cos O+in,4/1—sin? 6 /N? tan{kldm/ 1—sin® 6 /N? }

An a priori less accurate approximation is the first-order Taylor
approximation ofP; att; = 0, which yields rTe(f) =

Taylor  ap = tan(kyd; ) —\/1—sin® 0 /N? iy Coseta“{kldl /1 —sin® 0 /N }
kldl — tan(kldl) + kldl ta112 (kldl)
a3 = 5 \/1—sin? 6 /N? —i—im,,cosﬁtan{kld“/1—Sin29/N12}

by = 0. (12)

(16)
Alternatively, we may enforce (10) at three valueg.Qnamely wherey,, = m /0. For the LIBC in (9) we find
t1 = 0,t; = 1, andt; = [, which gives (13), shown at the 0+ in tan(k d
bottom of the page. Finally, inserting the approximation (10) of rom(6) = — oo +. e tan(kydi)
Py in (6) and multiplying (6) by(1 + by ¢, ), we get cos t9 +(Z71¢; t)am(keldl)1
i1 tan(k1a1 ) cost —
re(f) = 17
(14 bit1)z x E(21) rre(6) in1 tan(kidy) cos € + 1 (17)
— _’]%1(@0 +at) (B2 — L) Hey(21). while, for the IBC in (14), we get
! gy — —O(8) cos 8+ iorni(6)
Noticing from the definitions in (2) that, = (Lp — Lg)/k? rrm(f) = 8§(6) cos B + iory (6)
and dropping in the above expression all tangential derivatives —8(0) 4 iorE(8) cos b
of E and H whose order is higher than two, we obtain ror(f) = 8(0) + iorp(6) cos b (18a)
Lp—1L with
10 2R B L
1 S1n
. Lp Lg 60) =1 -ty
= —in ao—i—al? —(ao—i—al)? H,(z1). (14) L 20
1 1 S11
, . orm(f) = n1r {ao —(ao+a1)—= }
This IBC has the same form and involves the same operators Ny
than the high-order absorbing boundary condition (HOABC) 0 — sin” 6 18b
devised in [12]. If the values of the coefficients in (14) are those ore(f) = mr | a0 — a1 N2 | (18b)

Collocation ag = tan(kyd;)
_ =BPi(B)(P1(Br1) — ao) + BiPr(B)(Pi(B2) — ao)
B Prp2(PL(BL) — PL(B2))
—B2(PL(P1) — ao) + FL(Fr(f2) — ao)

b= BrBa(Pi(Br) — Pi(B2)) -
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The IBC’s with the values of the coefficients given by (11), (12%,d; that may not be negligible for large values/afd;. Ac-
and (13) are termed PIBC, TIBC, and CIBC, respectively. Raésally, the ridges observed for the TIBC in Fig. 2, which cor-
garding the CIBC, it has been found that the best results aespond to a high level of error, are centered on the curves

obtained when the parametgtsand 3, are such that |tan(k1dy)| = |tan(27 N1d; /Ao)| = oo. In short, Py is a func-
tion oftwovariablest; andk; d; and both should be considered,
By =—-v/Ni, 0<y <1, j=1.2 (19) which is beyond the scope of this paper.

As a consequence, identity (15) is satisfied whaf| — co. B Two Layers Coating

Troughout this paper, we chose = 0.5 andy; = 0.9. As a Here, we have to approximate the exact relationship in (7).
comparison, we have also calculated the reflection coefficieni¥e choose to approximat®, and P, independently with the

as formulated in [8, egs. (5.62)], that correspond to the secomépresentations that have been proposed in Section IlI-A. This
order GIBC defined by [8, egs. (5.63)] and subsequently termaffows an easy derivation of the IBC’s for a larger number of
GIBCSV. Fig. 1 plots the moduli of the various reflection coeflayers. The simplest approximation to (7) is obtained by letting
ficients versud for e;/eg = p1/po = N1 = 2 —i/2 and P, = tan(kyd;), P» = tan(kado) and discarding all tangential
kod; = 0.15. We note the poor performance of the LIBC in TMderivatives ofz x £ andH,,

polarization due to the low value @V, | = 2.06 and the relative

inefficiency of the GIBCSV around = 0 for TE polarization,

m
while the TIBC, PIBC, and CIBC are in excellent agreement 1- - tan(kyd) tan(kads) | z X E(z2)
with the exact results. To further investigate the behavior of the = il tan(kydy) — ns tan(kad)]H,y(22).  (20)

IBC’s versusN; andd;, we have computed the following av-

erage error Alternatively, if we approximaté” andP; by rational fractions

as in (10), viz.,

/2
Ny,dy) =log 2 (8, Ny, d
o ) =low L—%\})’(TE/O |7J( P, da) _aol +ant: _ap2 + a12ts
2 T l4buts T L4biot

de

(21)

— 50, Ny, dy1)

and drop in the final result all tangential derivatives of order
higher than two, then (7) yields the following generic form for

wherer; andr$* denotes the IBC and exact reflection coeffithe IBC

cient, respectively. In view of Fig. 2 that plotsror(N, dy)

versus|N;| andd; /Ao with p3 = po, Im(N7) = —0.1, we [CL + CoLp — C3Lglz X E(2)

may readily draw the following conclusions. First, as it has =i[D1 + DaLp — D3Lp]|H,,(22) (22)

been already observed in Fig. 1, the LIBC and GIBCSV per-

form poorly. For this reason, we will discard the latter in theyith

following, while keeping the former for the sake of comparison

as it is the most popular. Second, the efficiency of the IBC’sin- ¢, — 1 _ 77_1%1@02
creases alV; | increases. This is not surprising since the IBC’s 712

in (9) and (14) are constructed in such away as to be exactwhen bii bz m [ a11002 I @(a + ags)
|N1| — oc. Also, the PIBC and CIBC perform very similarly, TR TR | R g2
on account of the choice of the coefficiefts /3 in (19) and of bii bie m [amal? ag2

= 32 + k_f(all + am)}

the result stated in (15), and yield the best results. This was to Cs = k_f k2
be expected, since it is well known that a smooth function like  p _— —m1ao1 — Tl2ags
P inthe vicinity oft; = 0is more accurately approximated by a1 aoibi a3 aoabii
a ratio of two polynomials of degree onefn as in the PIBC Dy =—n [? + 12 } —n [? + 12 }
and CIBC, than by a polynomial of the same degree as in the mlam 7722%2 2 L
TIBC or of degree zero as in the LIBC. Third, for a fixed value =~ D3 = D2 — T g2

of Ny, the accuracy of the IBCs decreasesiaé)\ increases. L 2

The reason for this is the following. The coefficients in (10) a$he coefficientsiy
computed from a Taylor series expansioddfatt; = 0 which, ’
considering (4), necessarily involves the ond?f

(23)

a11, b11 are equal to those in (11), (12) or
(13), depending on the type of approximation that is employed,
and the expressions af, a;2, by are obtained from the same
formulas by substituting subscript 2 to subscript 1. In a number
Pl = tan[krdiv1+ 4] = tan [kidi (1+4/2+ 0 (t))]  of coatings, the index increases from the outer layer to the inner
tan(kidy) + tan [kydit1 /2 + O (¢3)] layer and, consequently, the angle of refraction decreases as one
—1_ tan(kyd; ) tan [kydit, /2 + O (£])] gets closer to the conducting surface. Consequently, it seems
reasonable to think that such a coating will be satisfactorily
As a consequence, the terms in the infinite Taylor series axodeled if the operataf; corresponding to the outermost layer
pansion ofP] att; = 0 contain powers ofan(k;d;) and of is approximated as in (10) while those related to the other layers
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1.0‘

—-——- GIBCSV

0.6 : : ‘ -
0 20 40 60 80
6

Fig. 1. Modulus of the exact and IBCs reflection coefficients vefsus

are approximated as in (8). Proceeding as previously, we get (

for a two layers coating with

m b2 miaol
Ci=1—- —aotapn, Cr=-—5 — a2 + ao2
n2 k3 mek3 ( )
b1o Taopi1ai2
G3=—15————5—
k2 772/%2

1
Dy = —maor —n2ag2, D2 = —ﬁ(mambm + n2a21)
5

2002

D3:D2_ kQ
2

(24)

where the values afg2, a12, 12 remain unchanged ang; =
tan(kldl).

IV. CoATED PEC $HERE

Here, we solve analytically the scattering problem by a sphee(
on the outermost boundary of which the various IBC’s define

433

The notations are those defined in [12]. Substituting these forms
of E°, H* in(22) withE = E"™+E°, H = H"+ H’, we get
after some algebra the following expressions for the coefficients
i, andb,,:

ay = ——‘Z"(x)

N ED)

o i, 5t o)

X

oS, S (|
Bn _ ln(i)

N ED)

Dy = "Dy = i (0 - MG )|

X

D (01
|:D1 _ n(n:zl)kg D3 — ) (01 B n(ni_izl)kgcg)} )
T =

zlh,, (z)
ko(R+d). (26)

Employing (22) implies that the terms involving the surface cur-
vatures are not taken into account and we refer to [7] for a
jscussion on the validity of this approximation. The bistatic
ar cross section (RCS), definedyat= 0 asRCS(6) =
10log(o(6)) with

CAr | (-D)"(2n+ 1) [_ Pr(cosb)
o(0) = k2 nE::l n(n+1) T ing
2
— bpde P (cos 9)} :TM

CAr = (=D)"(2n+ 1) [ P(cosb)
k2 nz::l n(n+ 1) bn sin @
2

'TE

— GpdgPt(cos 9)} (27)

(P} is the Legendre function of orders 1 andlis computed
versus the observation andlaising (26), and compared to the
act one, first for a monolayer and then for a double layer
ating.R = 1 m in the numerical examples that follow.

in the previous section are prescribed. This allows us to in--l-he results displayed in Fig. 3 are obtained at 2 GHz for
vestigate their performances for a monolayer and a two Iay%r%ielectric layer of thicknesé = 2.5 cm = Ao/6 with rela-

coating, successively.

We consider a PEC sphere of radiisilluminated by a plane

tive permittivity e, = 1.2 — 0.5¢ and permeability.,. = 1. The
values of the coefficient§’;, D; in (26) are obtained by iden-

wave(E™, H™). d s the thickness of the coating on the outgis i o) with (9) for the LIBC, or with (14) for the PIBC,

ermost boundary of which the IBC (22) is prescribed. Note th
this formulation of the IBC obtained for two layers is genera
and includes formulations (9) and (14) established for one Iayéfe

BC and CIBC. For the latter we use (19) with = 0.5,
= 0.9. As it has been already observed in Section IlI-A,
PIBC and CIBC yield the same results which are superim-

In spherical coordinates the scattered field may be expressedﬂ%ed on the exact ones. We have actually verified in various

r> R+ das

—n(n+ 1)(bnM_y,(r) — anN_y,(r))]. (25)

numerical experiments that the CIBC, as defined by (13) and
(19), performs very similarly to the PIBC. For this reason, we
will consider only the latter in the following. On the other hand,
on account of the low value of the indé)xV| = 1.14), the error
committed when employing the LIBC or the TIBC can be quite
large. An other illustration of the efficiency of the PIBC is the
following. Let us assume that we want to minimize the backscat-
tered RCS of the sphere with a low index dielectric material. On
account of Weston's theorem [16], one may think that this will
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1f W £ 5 & -
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 05 1
LIBC TIBC PIBC CIBC GIBCSV

Fig. 2. Error versus|Ny| andd; /Ao, 0 < dq /Ao < 1, with gy = po, Im(N;) = —0.1.

be achieved if the material is such that its relative impedance 40

Z = itan(kodN)/N with N = /¢, is equal to unity since a

zero backscattered RCS is obtained if the LIBC is employed. For 30 t

agiven value ofl, sayd = 3 cm, the solution of equatiof = 1 —— exactT™ oxact TE
with the lowest value of V| yieldse, = 1.958135707—1.5163i by | i—aTBOTM | e
(|N| = 1.574) at 2 GHz. Fig. 4 plots the exact RCS and the RCS g iraly I Ghote

RCS (dB)

computed with the LIBC and the PIBC. It demonstrates the high
efficiency of the PIBC and shows that a low index material sat-
isfying Z = 1 is less efficient for RCS reduction than a high
index material withZ7 = 1 that will be correctly modeled by the
LIBC.

Now, we consider a two layers dielectric coating of thickness 10 0 100 180 o 50 100 150
d = d; +d>. The calculation frequency is 2 GHz and the param- 0 )
eters of the coatingak = 1.5cm= A\y/10,¢,.; = 1.8 —ifor o
the inner Iaye(|N1| —9 06) andd, = 2.5 cm= )\0/6 g = Fig. 3. Bistatic RCS versus for the monolayer PEC sphere.
= 2.06), =2, = T

1.2 — 0.5¢ for the outer laye(|N;| = 1.14). The bistatic RCS

is calculated with the LIBC (20) and the IBC defined as in (22)
and (23) where the values of the coefficients in (23) correspond
either to the Padé or to the Taylor approximation employed for
both layers. These IBC’s are termed PPIBC and TTIBC, re-
spectively. In addition, since the index increases when going in-
wards, we have computed the RCS with the LIBC for the inner
layer and the PIBC for the outer one. The corresponding values
of the coefficients in (22) are those given in (24) and the re-
sulting IBC is termed LPIBC. The results displayed in Fig. 5
emphasize, once again, the superior efficiency of the Padé ap-
proximation over the other ones. Also, we note that for this par-
ticular coating the LPIBC and the PPIBC yield very similar re-
sults. We may further observe, by comparing Figs. 5 and 3, that
these IBC'’s are less accurate for a two layers coating than for a
monolayer coating. Considering, e.g., the PPIBC, the reason for
this is the following. Although the operatof§ and P in the
exact relationship (7) are approximated by the rational fractions -100 : ‘ : :

defined in (21) and, consequently, induce high-order tangential 0 S0 €0 960 120150 180
derivatives of the fields in the IBC, more of these derivatives are

dropped in the final derivation of the IBC for two layers tharfig. 4. Bistatic RCS versusfor the monolayer PEC sphere with= 1.

50 —

RCS (dB)
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for one layer, on account of the self-imposed constraint that all 40

derivatives of order higher than two must be suppressed.

V. NUMERICAL IMPLEMENTATION OF THEIBC’S

We investigate in this section how the generic expression of
the high-order IBC defined by (22) can be numerically imple-

30 -

20 +

exact TM

——- LIBCTM

—— TTIBCT™
~=== PPIBC TM
—-— LPIBCTM

exact TE
——-LIBCTE
e TTIBC TE
---- PPIBCTE
—-— LPIBCTE

RCS (dB)

mented in an integral equation (IE), or a finite-element (FE), for-
mulation for an arbitrarily shaped object. If an IE is employed
to solve the scattering problem, then we may proceed as in [7],
viz. the combined field integral equation (CFIE) [13] is imple- 0F

10

mented on the outermost surface of the coating, and (22) pro- o e
vides the additional equations that permit to solve the problem. -10 ‘ T

100 150 0 50
] 6

Alternatively, we may model some part of the coating with a FE 0 50

formulation and use (22) to represent the remaining part. In both
cases, we consider the following variational formulation derivedy. 5. Bistatic RCS versufor the two layers PEC sphere.
from (22)

:i/{Dl(ﬂXQ) S~ Do(V - GYY X D)
S

+ D3(V X G)n(V - J)} dS.
(28)  This time, the difficulty consists in discretizing the terfs x

) Gy (¥ x K),,, and(V x J),.. Again, we may use a similar
wheren designates the outward normal to the surfdoghere technique to the one proposed in [12] to finally gt K =

;r;éekljlzc is prescribed and is a test vector. Integration by partsMJJ where the matrix\Z}. is symmetric.

Itis important to note at this point that the introduction in (22)
of tangential derivatives whose order is higher than two would
imply the use of higher order basis functions and complicate se-
verely the special treatment needed for the correct discretization
of the surface divergence terms (FE formulation) or of the curl
terms (IE formulation).

/ G-[Cy + CaLp — CsLgln x EdS
S

= L/ G- [Di +DsLpy — D3Lg]H,, dS
S

J OG0 x B) = Y- Gyl¥ - (nx E)
— C4(Y X @)Y X (n x E)), }dS
—i [DiGyy Hyy~ DaY GV B,
- D3(VxG),(Vx H),}dS. (29)

Let us consider first the FE formulation where we assume, ] ] »
without loss of generality, that the unknown is the magnetic I this paper, we have derived an exact boundary condition

field H. The corresponding variational formulation applied T @ infinite planar coating with an arbitrary number of layers
the computational domain exterior involves a surface inte- that involves pseudodifferential operators. Various approxima-

gralonS of K = nx F (see, e.g.,[12]). Ifthis domainis meshedions for these operators have been proposed with the following

with tetrahedrons and the standard first-order edge-based fuffR2straints: 1) they must be exact in normal incidence or when

tions [14] are employed, then we use these same functiondll§ index of the material tends to infinity and 2) the order

represents andX on S. Furthermore, to discretize the surfac@f the tangential derivatives of the fields that appear in the

divergenc_e term_v-Gt V.K,andV.H,, in (29), we use the final expressions of the IBC’'s must be at most equal to two
—_ = g’ — 22 . == g 1 .

technique indicated in [12]. As a result, we obtain from (29) tf@ order to facilitate their numerical implementation. Notice
linear system of equation®;c K = My H where the matrices that the derivation of IBC’s involving higher order tangential
Mpy and My are symmetric. derivatives is straightforward. For a metal-backed layer, we

Conversely, if the problem is solved by employing the CF|Eh,ave demonstrated the superior performances of the Padé and
then the unknowns ar& andJ = n x H defined ons. Ccollocation approximations over the standard LIBC, as well

We assume thaf is meshed with triangles. A possibility is2S Over the GIBC presented in [8], when the thickness of
to representk, J, and G (G is now a vector tangent t6) the coating is not too large in terms of the wavelength. Also,

by the standard Rao-Wilson-Glisson (RWG) basis functio}¢€ have shown that a Taylor approximation may yield poor
[15]. We substitute-n x J to H,, in (28), use the identities results. Wg have proceeded along the same lines for. a douple
Lr(nxJ)=—nx Lp(J), Lp(n x J) = —n x Lr(J) [12], layer coating, and the methodology developed to this end is
easily applicable to a larger number of layers, especially when
the index increases from the outer layer to the inner layer.
The numerical evaluation of the IBC’s performances when
implemented on a perfectly conducting coated sphere using the
tangent plane approximation yields the same conclusions than
those previously derived for the planar case. It is well known
(see, e.g., [7], [12]) that this approximation is all the more
justified as the radii of curvature are large compared to the

VI. CONCLUSION

and integrate by parts to get
Jee k-aE-oF-K
— C3(V x G)n(V x K)n} dS
=i [ D10 x @)L~ Da(T (0 X G)(T % D,
—Ds[V-(nx D)V - J)}dS
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wavelength. More generally, the computation of the reflectiofhe first equation in (1) is the compact vector form of (A.4)
coefficients for a planar surface, as given in (16)—(18b), and (A.5). Following along the same lines, we derive the second
of the RCS of the coated sphere [(26), (27)], may serve @guation in (3).

practical applications to determine the limitations of the various
IBCs derived in Section Ill. Finally, we have pointed out some
guidances on how the generic expression of the high-order IBGy
may be numerically implemented in an integral equation or
a finite-element formulation for an arbitrarily shaped object,
while employing standard first-order RWG or edge-based
functions for the surface or volume unknowns, respectively.

[2

3]
APPENDIX [4]
Here, we establish (1) by extending to the 3-D case the 2-Di5)
technique presented in [11] for a metal-backed layer. In layer
I (zio1 € z £ z), we represent,.(z) by its Taylor Series
expansion [6]

aQnE ( )

+§f

n=0

(7]

(z - Zl) et 2+l

(2n+1)! * 2(z). (A1)

(8]

The Cartesian components éf satisfy the Helmholtz equa- [9]

tion in mediumi. Hence 92 E,.(» ) = —(k} + Vi,)E.(z), and
O?"E,(z) = (—1)"(k} + Vtg) (7). Consequently 10
> Co o) = conlller — WIFAE,(). B2
n
=0 [12]
(A.2)
Also, we haved?"t' E,(z) = (—1)*(kj + Vi) "0.E.(z)  [13]
and, from Maxwell's equations). F..(z) = —L(82 2(z) —
92H,(2))/(we;). BecauseH, (=) satisfies Helmholtz equation (14
andV - H = 0, we getd. E, () = —i(k} H,(#) — 0%, H. () +
92H,(2))/(we). Hence [15]
o _ 2n+1
> (2(2 7—21)1— 2B, (21) [16]
n=0 n '
1 sinfki(zm — 2)V1+ ]
werky V1i+t
x [k{H, — 0, H, +7H,| ().  (A3) o0

Finally, inserting (A.2) and (A.3) in (A.1), we obtain
E.(z) = coslki(z1 — 2)vV1 + 4| Ex (1)

REFERENCES

L. N. Medgyesi-Mitschang and J. M. Putnam, “Integral equation for-
mulations for imperfectly conducting scattered§EE Trans. Antennas
Propagat, vol. AP-33, pp. 206-214, 1985.

M. Leontovich, Investigation on Radiowave Propagation—Part I
Moscow, USSR: Academy of Sciences, 1948.

D. S. Wang, “Limits and validity of the impedance boundary conditions
on penetrable surfacedEEE Trans. Antennas Propagatol. AP-35,

pp. 453-457, 1987.

S. M. Rytov, “Calcul du skin-effect par la méthode des perturbations,”
J. Phys. USSRol. 2, pp. 233-242, Oct. 1940.

S.N. Karp and F. C. Karal Jr., “Generalized impedance boundary condi-
tions with applications to surface wave structures,Elactromagnetic
Wave TheoryJ. Brown, Ed. New York: Pergamon, 1967, pt. 1, pp.
479-483.

D. J. Hoppe and Y. Rahmat-Samii, “Scattering by superquadric
dielectric-coated cylinders using higher order impedance boundary
conditions,”|EEE Trans. Antennas Propagatol. 42, pp. 1600-1611,
1994.

, “High order impedance boundary condition applied to scattering
by coated bodies of revolution|EEE Trans. Antennas Propagatol.

40, pp. 1513-1523, 1992.

T. B. A. Senior and J. L. Volakis, “Approximate boundary conditions
in electromagnetics,Inst. Elect. Eng. Electromagn. Waves Series 41
1995.

R. Cicchetti, “A class of exact and higher-order surface boundary condi-
tions for layered structures|EEE Trans. Antennas Propagatol. 44,

pp. 249-259, 1996.

D. J. Hoppe and Y. Rahmat-Sanlimpedance Boundary Conditions in
Electromagnetics Bristol, PA: Taylor Francis, 1995.

J. M. Bernard, “Diffraction by a metallic wedge covered with a dielectric
material,”Wave Motionvol. 9, pp. 543-561, 1987.

B. Stupfel and M. Mognot, “Implementation and derivation of conformal
absorbing boundary conditions for the vector wave equatidnZlec-
tromagn. Waves Applicatvol. 12, pp. 1653-1677, 1998.

J. R. Mautz and R. F. Harrington H'-field, E-field, and combined
field solutions for conducting bodies of revolutiolAEU, vol. 32, pp.
156-164, 1978.

J. C. Nédélec, “Mixed finite elements iR®
35, pp. 315-341, 1980.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shapdEEE Trans. Antennas Propagatol.
AP-30, pp. 409-418, 1982.

V. H. Weston, “Theory of absorbers in scattering;EE Trans. Antennas
Propagat, vol. AP-11, pp. 578-584, Sept. 1963.

,” Numerische Math.vol.

Olivier Marceaux received the Diplome d'Ingénieur degree from the Ecole Na-
tionale Supérieure d'Electronique et de Radioélectricité de Bordeaux, France, in

He joined COFRAMI in November 1998.

Bruno Stupfel received the Dipléme d'Ingénieur degree from the Ecole des
Mines de Nancy, France, in 1977, and the Ph.D. degree in solid-state physics
from the University of Strasbourg, France, in 1980.

From 1980 to 1982, he was with the Division Tubes Electroniques of

i sin[ki(z — 2)vV/1+46
werky VI+t
x [kiHy, — 03, Hy + 07H,] (). (A.4)
Similarly, we obtain forE, (=)
Ey(z) = COS[/%‘](Z] — Z)\/ 1+ tl]Ey(Zl)
i sinfk(z - 2)VI+
werky VI+i
x [k{Hy — 03,H, + 02H,| ().  (A5)

Thomson-CSF where he worked on the development of traveling wave tubes.
From 1982 to 1988 he was with the Acoustics Laboratory, Institut Supérieur
d'Electronique du Nord, France, where he worked on integral equation methods
and on the finite-element modeling of hydrophones. In 1988 he joined the
Commissariat & I'Energie Atomique, first at the CEL-V, France, where he was
engaged in the development of computer codes and, since 1996, at the CESTA,
France. During the academic year 1993-1994, he was a Visiting Scholar at
the Electromagnetic Communication Laboratory, University of lllinois at
Urbana-Champaign. His research interests include numerical methods in
electromagnetics.



