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High-Order Impedance Boundary Conditions for
Multilayer Coated 3-D Objects

Olivier Marceaux and Bruno Stupfel

Abstract—The scattering problem by a multilayer coated
three-dimensional (3-D) object where the coating is modeled by
an impedance boundary condition (IBC) is considered. First, the
exact boundary condition is obtained for an infinite planar coating
with an arbitrary number of layers. Then, various approxima-
tions for the pseudodifferential operators involved in this exact
condition are proposed. In the expressions of the resulting IBC’s,
all tangential derivatives of the fields of order higher than two
are suppressed. These IBC’s are compared, in terms of numerical
efficiency, by computing either the reflection coefficients on an
infinite planar metal-backed coating or the radar cross section
(RCS) of a perfectly conducting coated sphere using the tangent
plane approximation. In both cases, it is found that the highest
order IBC models the coating with a good accuracy. Finally, some
guidance is given on how this IBC may be numerically imple-
mented in an integral equation or a finite-element formulation for
an arbitrarily shaped object.

Index Terms—Impedance boundary conditions, nonhomoge-
neous materials.

I. INTRODUCTION

T HE numerical solution of the scattering problem by a mul-
tilayer coated 3-D object can be significantly simplified

if an impedance boundary condition (IBC) is used to model
the behavior of the coating. Implemented, e.g., in an integral
equation formulation defined on the outermost boundary of the
coating [1], the IBC may lead to substantial savings in com-
puting times and memory requirements since Maxwell's equa-
tions need not be solved in the inhomogeneous domain. An IBC
relates the tangential components of the electric fieldto those
of the magnetic field and constitutes a local, hence approxi-
mate, boundary condition. The simplest and most popular IBC
is the Leontovich IBC (LIBC) [2]. However, it is known to be
poorly efficient for, e.g., low index coatings [3]. Several im-
proved IBC’s have been proposed in the past [4]–[10] that in-
crease the order of the tangential derivatives ofand/or in-
volved in the relationship, and have been obtained either in the
space or in the spectral domain.

In the space domain, a generalized IBC (GIBC) was first
proposed in [5] for two-dimensional (2-D) problems where the
coefficients in the IBC were derived from the exact reflection
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coefficient calculated for a plane wave incident on an infinite
planar surface. It was extended later on to three-dimensional
(3-D) electromagnetic problems (see [8] and references in-
cluded therein). The determination of the coefficients in the
IBC from the exact reflection coefficient necessitatesad hoc
complicated approximations that are difficult to apply to a
multilayer coating. To date, no numerical implementation
of the GIBC for the solution of a 3-D problem is known. In
the spectral domain, a successful attempt to model bodies
of revolution with a metal-backed layer has been presented
in [7]. However, the application of this particular IBC to
objects of general shape is not straightforward. Recently, an
exact relationship between and has been obtained on the
outer surface of a metal-backed layer from which an IBC that
involves tangential derivatives of only has been derived [9].
Applications of the spectral domain methodology to multiple
layers have been discussed in [10].

The organization of this paper is as follows. First, we
consider an infinite planar coating for which we derive in
Section II the exact boundary condition in the space domain
by employing the method proposed in [11] for 2-D problems.
Section III is devoted to the derivation, from this exact re-
lationship and, without loss of generality, when the coating
is backed by a perfectly electric conducting (PEC) plane,
of various IBC’s which include most of the aforementioned
ones. The order of the tangential derivatives ofand/or
that appear in the final expressions is at most equal to two
in order to facilitate the numerical implementation of the
resulting IBC in an integral equation (or a finite element)
formulation. The numerical efficiency of these IBC’s is eval-
uated by computing the corresponding reflection coefficients.
In Section IV we investigate the performances of the IBC’s
for a perfectly conducting coated sphere, assuming that the
terms involving the surface curvatures are negligible (tangent
plane approximation). Finally, we indicate in Section V how
these IBC’s may be implemented in an integral equation (or
finite element) formulation for an object of arbitrary shape.

II. EXACT BOUNDARY CONDITIONS FOR AN INFINITE

PLANAR COATING

We consider a stratified isotropic medium infinite in theand
directions where each layeris characterized by its thickness
, dielectric permittivity and magnetic permeability . The

axis is directed along the increasing values of, and the assumed
time dependence is . We show in the Appendix that the
3-D transpose of the 2-D methodology proposed in [11] for a
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metal-backed layer yields the following exact relationships in
layer , viz.

(1)

, , , and the
operators , , are defined as

(2)

is an arbitrary vector in the plane and
. The pseudodifferential operators in (1) are defined by

their Taylor series in [see, e.g., definition (A.2) of
in the Appendix]. If we let in (1), then we

obtain the exact relationships that link the values of the fields
on the inner and outer boundaries of layer

(3)

with

(4)

The first two equations in (3) can be conveniently written as

(5a)

where (the superscript denotes
matrix transpose), and the transition matrixis defined as

(5b)

From (5a), we readily obtain the exact relationships that link the
values of the fields on both sides of a medium withlayers

(5c)

Now, we consider the case of a metal-backed medium. Let the
half-space be perfectly conducting. Then
and, for one layer, we get from (5a)

(6)

while, for two layers, we obtain from (5c) with

(7)

Similar relationships can be easily derived from (5c) for an arbi-
trary number of layers. Note that (6) is the space domain trans-
pose of [9, eq. (30)] that has been established in the spectral
domain.

III. D ERIVATION AND VALIDATION OF THE IBCS FOR A

METAL-BACKED PLANAR COATING

Without loss of generality, we consider in this section an infi-
nite planar metal-backed coating. First, from the exact relation-
ship in (6), we derive in Section III-A various IBC’s for a mono-
layer coating. For reasons that will be explained in Section V, we
drop in the expressions of these IBC’s all tangential derivatives
of and whose order is higher than two. Their numerical
efficiencies are evaluated by computing the corresponding re-
flection coefficients for an incident plane wave. Then, in Sec-
tion III-B, we proceed along the same lines for a two layers
coating, while the evaluation of the performances of the corre-
sponding IBC’s is postponed to Section IV. Let us mention here
that the methodology developed for two layers is easily appli-
cable to a larger number of layers.

A. Monolayer Coating

A numerical implementation of the exact relationship in (6)
is possible only if the pseudo-differential operatordefined in
(4) is approximated. For an incident plane wave

where is the free-space wave
number, the field inside the coating is

with where is the
optical index of layer . We get from (2)

. Hence, in the spectral domain,
as . If we let in (4), then we obtain

(8)

Dropping all tangential derivatives of in (6), we get the
LIBC

(9)

(8) is exact in normal incidence or in oblique incidence
when . We choose to enforce this property to all
of the approximations of that will be subsequently derived.
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Similarly to what has been done in [7] and [9], we approximate
by a rational fraction of , i.e., we let

(10)

Notice that the degrees of the polynomials in (10) are voluntarily
restricted to one since the choice of higher degrees would induce
tangential derivatives of the fields whose order is higher than
two. If the Taylor series expansions inof and of the rational
fraction are chosen to be identical at up to the second-
order derivatives, then we get a Padé approximation of
at , and the values of the coefficients, , in (3) are

(11)

An a priori less accurate approximation is the first-order Taylor
approximation of at , which yields

Taylor

(12)

Alternatively, we may enforce (10) at three values of, namely
, , and , which gives (13), shown at the

bottom of the page. Finally, inserting the approximation (10) of
in (6) and multiplying (6) by , we get

Noticing from the definitions in (2) that
and dropping in the above expression all tangential derivatives
of and whose order is higher than two, we obtain

(14)

This IBC has the same form and involves the same operators
than the high-order absorbing boundary condition (HOABC)
devised in [12]. If the values of the coefficients in (14) are those

given in (12), then we obtain the IBC defined by [9, eq. (35)] in
which the tangential derivatives of of order higher than two
are discarded. Also, it is important to note that the values of
and in (13) when and tend to 0 are actually those of
and in (11)

collocation

collocation (15)

We now proceed to the evaluation of the numerical efficien-
cies of the above IBC’s by computing their respective reflection
coefficients for a planar incident wave whose direction of inci-
dence makes the anglewith the axis and for the two polar-
izations: TM ( orthogonal to ) and TE ( orthogonal to ).
The exact reflection coefficients and are

(16)

where . For the LIBC in (9) we find

(17)

while, for the IBC in (14), we get

(18a)

with

(18b)

Collocation

(13)
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The IBC’s with the values of the coefficients given by (11), (12)
and (13) are termed PIBC, TIBC, and CIBC, respectively. Re-
garding the CIBC, it has been found that the best results are
obtained when the parametersand are such that

(19)

As a consequence, identity (15) is satisfied when .
Troughout this paper, we chose and . As a
comparison, we have also calculated the reflection coefficients,
as formulated in [8, eqs. (5.62)], that correspond to the second-
order GIBC defined by [8, eqs. (5.63)] and subsequently termed
GIBCSV. Fig. 1 plots the moduli of the various reflection coef-
ficients versus for and

. We note the poor performance of the LIBC in TM
polarization due to the low value of and the relative
inefficiency of the GIBCSV around for TE polarization,
while the TIBC, PIBC, and CIBC are in excellent agreement
with the exact results. To further investigate the behavior of the
IBC’s versus and , we have computed the following av-
erage error

where and denotes the IBC and exact reflection coeffi-
cient, respectively. In view of Fig. 2 that plots
versus and with , , we
may readily draw the following conclusions. First, as it has
been already observed in Fig. 1, the LIBC and GIBCSV per-
form poorly. For this reason, we will discard the latter in the
following, while keeping the former for the sake of comparison
as it is the most popular. Second, the efficiency of the IBC’s in-
creases as increases. This is not surprising since the IBC’s
in (9) and (14) are constructed in such a way as to be exact when

. Also, the PIBC and CIBC perform very similarly,
on account of the choice of the coefficients, in (19) and of
the result stated in (15), and yield the best results. This was to
be expected, since it is well known that a smooth function like

in the vicinity of is more accurately approximated by
a ratio of two polynomials of degree one in, as in the PIBC
and CIBC, than by a polynomial of the same degree as in the
TIBC or of degree zero as in the LIBC. Third, for a fixed value
of , the accuracy of the IBCs decreases as increases.
The reason for this is the following. The coefficients in (10) are
computed from a Taylor series expansion ofat which,
considering (4), necessarily involves the one of

As a consequence, the terms in the infinite Taylor series ex-
pansion of at contain powers of and of

that may not be negligible for large values of . Ac-
tually, the ridges observed for the TIBC in Fig. 2, which cor-
respond to a high level of error, are centered on the curves

. In short, is a func-
tion of twovariables, and and both should be considered,
which is beyond the scope of this paper.

B. Two Layers Coating

Here, we have to approximate the exact relationship in (7).
We choose to approximate and independently with the
representations that have been proposed in Section III-A. This
allows an easy derivation of the IBC’s for a larger number of
layers. The simplest approximation to (7) is obtained by letting

and discarding all tangential
derivatives of and

(20)

Alternatively, if we approximate and by rational fractions
as in (10), viz.,

(21)

and drop in the final result all tangential derivatives of order
higher than two, then (7) yields the following generic form for
the IBC

(22)

with

(23)

The coefficients , , are equal to those in (11), (12) or
(13), depending on the type of approximation that is employed,
and the expressions of , , are obtained from the same
formulas by substituting subscript 2 to subscript 1. In a number
of coatings, the index increases from the outer layer to the inner
layer and, consequently, the angle of refraction decreases as one
gets closer to the conducting surface. Consequently, it seems
reasonable to think that such a coating will be satisfactorily
modeled if the operator corresponding to the outermost layer
is approximated as in (10) while those related to the other layers
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Fig. 1. Modulus of the exact and IBCs reflection coefficients versus�.

are approximated as in (8). Proceeding as previously, we get (22)
for a two layers coating with

(24)

where the values of , , remain unchanged and
.

IV. COATED PEC SPHERE

Here, we solve analytically the scattering problem by a sphere
on the outermost boundary of which the various IBC’s defined
in the previous section are prescribed. This allows us to in-
vestigate their performances for a monolayer and a two layers
coating, successively.

We consider a PEC sphere of radius, illuminated by a plane
wave . is the thickness of the coating on the out-
ermost boundary of which the IBC (22) is prescribed. Note that
this formulation of the IBC obtained for two layers is general
and includes formulations (9) and (14) established for one layer.
In spherical coordinates the scattered field may be expressed for

as

(25)

The notations are those defined in [12]. Substituting these forms
of , in (22) with , , we get
after some algebra the following expressions for the coefficients

and :

(26)

Employing (22) implies that the terms involving the surface cur-
vatures are not taken into account and we refer to [7] for a
discussion on the validity of this approximation. The bistatic
radar cross section (RCS), defined at as

with

(27)

( is the Legendre function of orders 1 and) is computed
versus the observation angleusing (26), and compared to the
exact one, first for a monolayer and then for a double layer
coating. m in the numerical examples that follow.

The results displayed in Fig. 3 are obtained at GHz for
a dielectric layer of thickness cm with rela-
tive permittivity and permeability . The
values of the coefficients in (26) are obtained by iden-
tifying (22) with (9) for the LIBC, or with (14) for the PIBC,
TIBC and CIBC. For the latter we use (19) with

. As it has been already observed in Section III-A,
the PIBC and CIBC yield the same results which are superim-
posed on the exact ones. We have actually verified in various
numerical experiments that the CIBC, as defined by (13) and
(19), performs very similarly to the PIBC. For this reason, we
will consider only the latter in the following. On the other hand,
on account of the low value of the index , the error
committed when employing the LIBC or the TIBC can be quite
large. An other illustration of the efficiency of the PIBC is the
following. Let us assume that we want to minimize the backscat-
tered RCS of the sphere with a low index dielectric material. On
account of Weston's theorem [16], one may think that this will



434 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

Fig. 2. Error versusjN j andd =� ; 0 � d =� � 1, with � = � ; Im(N ) = �0:1.

be achieved if the material is such that its relative impedance
with is equal to unity since a

zero backscattered RCS is obtained if the LIBC is employed. For
a given value of , say cm, the solution of equation
with the lowest value of yields
( ) at 2 GHz. Fig. 4 plots the exact RCS and the RCS
computed with the LIBC and the PIBC. It demonstrates the high
efficiency of the PIBC and shows that a low index material sat-
isfying is less efficient for RCS reduction than a high
index material with that will be correctly modeled by the
LIBC.

Now, we consider a two layers dielectric coating of thickness
. The calculation frequency is 2 GHz and the param-

eters of the coating are cm , for
the inner layer , and cm ,

for the outer layer . The bistatic RCS
is calculated with the LIBC (20) and the IBC defined as in (22)
and (23) where the values of the coefficients in (23) correspond
either to the Padé or to the Taylor approximation employed for
both layers. These IBC’s are termed PPIBC and TTIBC, re-
spectively. In addition, since the index increases when going in-
wards, we have computed the RCS with the LIBC for the inner
layer and the PIBC for the outer one. The corresponding values
of the coefficients in (22) are those given in (24) and the re-
sulting IBC is termed LPIBC. The results displayed in Fig. 5
emphasize, once again, the superior efficiency of the Padé ap-
proximation over the other ones. Also, we note that for this par-
ticular coating the LPIBC and the PPIBC yield very similar re-
sults. We may further observe, by comparing Figs. 5 and 3, that
these IBC’s are less accurate for a two layers coating than for a
monolayer coating. Considering, e.g., the PPIBC, the reason for
this is the following. Although the operators and in the
exact relationship (7) are approximated by the rational fractions
defined in (21) and, consequently, induce high-order tangential
derivatives of the fields in the IBC, more of these derivatives are
dropped in the final derivation of the IBC for two layers than

Fig. 3. Bistatic RCS versus� for the monolayer PEC sphere.

Fig. 4. Bistatic RCS versus� for the monolayer PEC sphere withZ = 1.
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for one layer, on account of the self-imposed constraint that all
derivatives of order higher than two must be suppressed.

V. NUMERICAL IMPLEMENTATION OF THE IBC’S

We investigate in this section how the generic expression of
the high-order IBC defined by (22) can be numerically imple-
mented in an integral equation (IE), or a finite-element (FE), for-
mulation for an arbitrarily shaped object. If an IE is employed
to solve the scattering problem, then we may proceed as in [7],
viz. the combined field integral equation (CFIE) [13] is imple-
mented on the outermost surface of the coating, and (22) pro-
vides the additional equations that permit to solve the problem.
Alternatively, we may model some part of the coating with a FE
formulation and use (22) to represent the remaining part. In both
cases, we consider the following variational formulation derived
from (22)

(28)

where designates the outward normal to the surfacewhere
the IBC is prescribed and is a test vector. Integration by parts
yields

(29)

Let us consider first the FE formulation where we assume,
without loss of generality, that the unknown is the magnetic
field . The corresponding variational formulation applied to
the computational domain exterior toinvolves a surface inte-
gral on of (see, e.g., [12]). If this domain is meshed
with tetrahedrons and the standard first-order edge-based func-
tions [14] are employed, then we use these same functions to
represent and on . Furthermore, to discretize the surface
divergence terms , , and in (29), we use the
technique indicated in [12]. As a result, we obtain from (29) the
linear system of equations where the matrices

and are symmetric.
Conversely, if the problem is solved by employing the CFIE,

then the unknowns are and defined on .
We assume that is meshed with triangles. A possibility is
to represent , , and ( is now a vector tangent to )
by the standard Rao–Wilson–Glisson (RWG) basis functions
[15]. We substitute to in (28), use the identities

, [12],
and integrate by parts to get

Fig. 5. Bistatic RCS versus� for the two layers PEC sphere.

This time, the difficulty consists in discretizing the terms
, , and . Again, we may use a similar

technique to the one proposed in [12] to finally get
where the matrix is symmetric.

It is important to note at this point that the introduction in (22)
of tangential derivatives whose order is higher than two would
imply the use of higher order basis functions and complicate se-
verely the special treatment needed for the correct discretization
of the surface divergence terms (FE formulation) or of the curl
terms (IE formulation).

VI. CONCLUSION

In this paper, we have derived an exact boundary condition
for an infinite planar coating with an arbitrary number of layers
that involves pseudodifferential operators. Various approxima-
tions for these operators have been proposed with the following
constraints: 1) they must be exact in normal incidence or when
the index of the material tends to infinity and 2) the order
of the tangential derivatives of the fields that appear in the
final expressions of the IBC’s must be at most equal to two
in order to facilitate their numerical implementation. Notice
that the derivation of IBC’s involving higher order tangential
derivatives is straightforward. For a metal-backed layer, we
have demonstrated the superior performances of the Padé and
collocation approximations over the standard LIBC, as well
as over the GIBC presented in [8], when the thickness of
the coating is not too large in terms of the wavelength. Also,
we have shown that a Taylor approximation may yield poor
results. We have proceeded along the same lines for a double
layer coating, and the methodology developed to this end is
easily applicable to a larger number of layers, especially when
the index increases from the outer layer to the inner layer.
The numerical evaluation of the IBC’s performances when
implemented on a perfectly conducting coated sphere using the
tangent plane approximation yields the same conclusions than
those previously derived for the planar case. It is well known
(see, e.g., [7], [12]) that this approximation is all the more
justified as the radii of curvature are large compared to the
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wavelength. More generally, the computation of the reflection
coefficients for a planar surface, as given in (16)–(18b), or
of the RCS of the coated sphere [(26), (27)], may serve in
practical applications to determine the limitations of the various
IBCs derived in Section III. Finally, we have pointed out some
guidances on how the generic expression of the high-order IBC
may be numerically implemented in an integral equation or
a finite-element formulation for an arbitrarily shaped object,
while employing standard first-order RWG or edge-based
functions for the surface or volume unknowns, respectively.

APPENDIX

Here, we establish (1) by extending to the 3-D case the 2-D
technique presented in [11] for a metal-backed layer. In layer

, we represent by its Taylor Series
expansion

(A.1)

The Cartesian components of satisfy the Helmholtz equa-
tion in medium . Hence, , and

. Consequently

(A.2)

Also, we have
and, from Maxwell's equations,

. Because satisfies Helmholtz equation
and , we get

. Hence

(A.3)

Finally, inserting (A.2) and (A.3) in (A.1), we obtain

(A.4)

Similarly, we obtain for

(A.5)

The first equation in (1) is the compact vector form of (A.4)
and (A.5). Following along the same lines, we derive the second
equation in (3).
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