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Letters__________________________________________________________________________________________

Efficient and Accurate Computation of an Annular Slot
on a Dielectric Half-Space

K. W. Leung

Abstract—An efficient and accurate method of analysis for an annular
slot radiating on a dielectric half-space is presented. The result involves
neither singularity nor any numerical integration and, therefore, is com-
putationally very efficient and easy to implement numerically. The method
is very rigorous and general and should find applications in other related
configurations.

Index Terms—Apertures, half-space, slot antennas.

I. INTRODUCTION

Slot antennas have been studied and used extensively because of
their inherent merits of low profile, lightweight, ease of fabrication, and
compatibility with monolithic-microwave integrated-circuit (MMIC)
integration. Recently, attention has been paid to the study of a slot on a
dielectric half-space [1], [2]. The problem is of practical interest since
the half-space can be used to model an electrically large dielectric lens,
which efficiently couples incident energy to an active device placed at
the antenna feed point. An annular slot antenna placed on a dielectric
half-space was studied by Tong and Blundell [2]. This configuration
can be easily modified to give a magic slot radiator, which can be used
in the design of a quasi-optical balanced mixer. Another advantage of
the configuration is that circularly polarized fields can be easily gener-
ated by adding a quadrature source displaced 90� in space, or simply
by shorting one point [3].

In [2], the Hankel transform was used to solve the problem. The
method was rigorous and elegant, but assuming a lossless dielectric
half-space, singular integrals were found which caused inconvenience
in numerical implementation. In addition, the upper limits of the inte-
grals were of infinite extent, making the implementation even more in-
convenient. Using the well-known spatial Green's function of the form
e�jkR=R the second problem can be avoided, but the first problem still
remains. A simple solution is to use the concept of equivalent radius
[2], [3] and utilize the well-established result for a circular loop an-
tenna [4]. This method, however, is not general, but limited to a narrow
slot only. In this letter, a simple result that requires no numerical in-
tegration is presented. It starts with the mode-matching method [5] in
spherical coordinates. The formulation is very rigorous and general,
though only the narrow slot case is considered here for simplicity. The
result is simply a regular series without any singularity, therefore, the
numerical implementation is very easy and straightforward. The result
is compared with previously calculated and measured results [2] and
excellent agreement are obtained.
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Fig. 1. Geometry of the configuration. (a) Top view. (b) Side view.

II. THEORY

Fig. 1 shows the geometry of the configuration, where the annular
slot has an inner radiusa, outer radiusb, and widthW = b � a,
and is excited atx = 0. The wavenumbers of regions 1 and 2 are de-
noted byk1 andk2, respectively. To begin with, the equivalence prin-
ciple is used, which enables each region to be considered separately.
Image theory is then invoked so that the equivalent magnetic current
in the slot can be solved in free-space conditions. The mode-matching
method [5] is used to obtain the Green's functions forH� in the two re-
gions. The Green's functions are common to both regions, except that
in each region the Green's function has its own constitutive parame-
ters. Employing the moment method, we expand the magnetic current
asM(�) = N

q=1 Vq cos(q�1)�, whereVq are expansion coefficients
to be determined. Because of the orthogonal property of the basis func-
tionscos(q�1)� the summation overm (azimuthal variation) vanishes
and only the summation overn (order of Bessel and Hankel functions)
remains. Moreover, the orthogonal property causes the admittance ma-
trix elementsYpq to vanish forp 6= q, resulting in a diagonal matrix.
Consequently, the expansion coefficientsVq are simply equal to1=Yqq,
where
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where the denominator is set to one whenn = m. In (1), for j = 1; 2
we get (3), shown at the top of the next page
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where forl = 1; 2

I(l)n (�; �) =
k �

k �

f̂ (l)n (x) dx (5)

with f̂
(1)
n (x) = Ĵn(x) and f̂

(2)
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(2)
n (x) being the

Schelkunoff-type [5] spherical Bessel function of the first kind
and Hankel function of the second kind, respectively.�TEj and
�TMj (j = 1; 2) are associated with the TE and TM modes of the
fields, respectively, and�j are dielectric wave impedances. Denote
f̂
(3)
n (x) = Ŷn(x) as the Schelkunoff-type spherical Bessel function

of the second kind, we haveI(2)n = I
(1)
n � jI

(3)
n . The integrals
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formula:
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It was found thatI(3)n could be calculated in a straightforward
manner, with initial valuesI(3)0 (x1; x2) = �(sinx2 � sinx1) and
I
(3)
1 (x1; x2) = �[Ci(x2)�Ci(x1)]+(cosx2�cosx1), whereCi(x)

is the cosine integral for which a simple formula is readily available
[6]. For I(1)n , however, backward recurrence should be used to obtain
stable results. This is not surprising, as it is well known that backward
recurrence is also required for̂Jn(x), the integrand ofI(1)n . It should
be mentioned that the summation in (3) converges very rapidly for
a narrow slot( ("r1 + "r2)=2k0W � 1), and only a few terms
are sufficient for accurate results. Note thatYqq can be calculated
without the need for any numerical integration. Furthermore, it is
a regular series that can be calculated easily and straightforwardly.
After Yqq are found, the input impedance can be easily obtained from
Zin = N

q=1 1=Yqq.

III. RESULTS

To validate the theory, the result is compared to that in [2]. Since six
azimuthal modes were used for the magnetic current in [2],N = 6
was used for the moment method in this letter. It was found thatYqq
converged very well in 70 modal terms for the parameters of [2]. Fur-
thermore, excellent convergence resulted by usingN1 = 4 in (3). The
program was written in Fortran 77 and run on a SunSPARC 20 Model
612 workstation. The average computational time for each frequency
point was extremely short, at only 6.9 ms. A comparison of the present
and previous calculation is shown in Fig. 2, along with the previous
measurement. It is interesting to note that the present result, in general,
has a better agreement with the measurement, especially fork0a > 1:3.
Part of the reason is that the singularity of the integrand has been han-
dled analytically in the present theory. Moreover, as the present theory

Fig. 2. Comparison of the present and previous results:a = 19:25 mm,b =
10:75 mm,W = 1:5 mm," = 4, and" = 1.

does not involve any numerical integration, errors arising from possible
convergence problems were avoided. Other results for"r1 = 2:1; 4:0;
and12:0 with "r2 = 1 were generated, which, again, agreed very well
with those of [2]. The results, however, are omitted here for brevity.
The approach can be extended to study a wide annular slot. In this case,
the radial current has to be included in the formulation and a total of
four Green's functionsGH�

M (�; � = r; �) are required, whereGH�
M

denotes the Green's function ofH� due to a magnetic point current
M� .

Finally, it should be mentioned that the result is useful for other con-
figurations as well, such as for the cavity-backed annular slot antenna
[3].
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