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Electromagnetic Modes in Conical Transmission
Lines with Application to the Linearly
Tapered Slot Antenna

Benoit Stockbroeckx and André Vander \oistllow, IEEE

Abstract—A transmission line analysis of bow-tie antenna
and linearly tapered slot antenna (LTSA) is presented. These
structures belong to the class of conical transmission lines defined
here in terms of conical coordinates. A complete set of solutions
of Helmholtz equation is obtained exhibiting TE and TM modes.
Modal fields are expressed by Lamé and Bessel-Schelkunoff
functions. TE and TM eigenmode analysis is particularized to the
bow-tie structure. Bow-tie antenna and LTSA are shown to be
dual conical transmission lines by the image method and Babinet's
principle. The modes of LTSA are calculated on the basis of the
results obtained for the bow-tie structure. The radiation pattern
of LTSA is computed as the integral of a closed-form expression
of the dyadic Green's function weighted by the modal electric Linear taper
field distribution over the slot aperture. The obtained dominant
mode radiation patterns are validated by measurements from the
literature. The radiation patterns of the first two-order modes are
calculated and compared.

Index Terms—Conical transmission lines, slot antennas.

|. INTRODUCTION Fig. 1. Linearly tapered-slot antenna (LTSA) with flare angle fed by

HE linearly tapered slot antenna (LTSA) is depicted ifjassical slot transmission line.

Fig. 1. It consists of one sector of flare anglg cut in a
metallic half-plane. The antenna is fed by a classical slot trans-
mission line at the sector apex. LTSA has been first proposed
in 1979 [1] for applications in short-range radar module and as
an element for phased-array antenna at 9 GHz. Several appli-
cations of LTSA have been proposed at increasing frequencies
like the broken line tapered-slot antenna (BLTSA), which is de-
rived from the original LTSA. BLTSA has been used in 1993 in
a radiometer operating at 802 GHz [2]. We have used [3]-[5]
the present LTSA analysis for modeling the Vivaldi antenna [4].
In the present paper, it is shown that LTSA and bow-tie (Fig. 2)
shapes are dual, using Babinet's principle and the image method.
So that the LTSA, BLTSA, and Vivaldi analyses are obtained
from the bow-tie analysis.

The electric current distribution on the bow tie is Calculate'ag' 2. Bow-tie antenna with flare angle, fed by balanced electric current

in [6] from results of [7] by applying two conformal mappings.source'

It yieldds _the8TfEM goTrgzt m do_de of th? s}ru_ctur(?r.hThis rnOd§nalysis of the LTSA and Vivaldi antenna is proposed in [9]
is used in [8] for the radiation calculation. The Compu\;vEere the electromagnetic fields are computed by using the

tation of such analytical results requires only a small central \+ ethod. Full numerical analyses and simulations with

processing unit (CPU) time. On the other hand, a full numeric mmercially available electromagnetic softwares are CPU
time consuming due to the large extent of the tapered antennas
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surfaces: two sets of bicones having an elliptical section and on
set of concentric spheres. Such a coordinate system is cons
tent with the conical waveguide boundary conditions (metallic
elliptical cone) [12] so that Helmholtz equation can be solved by
separating the variables. The two metallic sectors of the bow-ti
structure (Fig. 2) are obtained by degenerating the metallic el
liptical bicone of the conical waveguide into a flat conical wave-
guide having an elliptical cross-section of infinite eccentricity.
The so-obtained bow-tie structure is also called flat biconica
antenna. It is characterized by its flare angle natedFig. 2).
This method, using the conical transmission line theory, yields
all the eigenmodes of the bow-tie structure, not only the TEM
dominant mode.

The first part of the paper presents a complete set of solu
tions for Helmholtz equation in the conical coordinate system ’x‘/
They are obtained by separating the variables, and correspol
to TE and TM modes. They are particularized to the bow-tie
structure in the second part. The third part is dedicated to th
LTSA analysis. The duality between bow-tie and LTSA struc-
tures is shown. The electric field distribution across the slot is
calculated, as well as the radiation pattern of the TEM'Bhd
modes. The sensitivity of the radiation pattern to power losse
in the conductor is finally analyzed.

Fig. 3. Conical coordinate systefn, 6, \) related to rectangular coordinate
Il. CONICAL TRANSMISSIONLINE THEORY system(z, y, ) [10]. " 6,%)

A. Conical Coordinate System [10]

Conical coordinategr, 8, \) describe an orthogonal systenf complete set of ﬁn_dependent solutions of .Helmholtz_equation
(Fig. 3) [10] related to the classical rectangular system by 1S obtained by defining two classes of solutions. The first class
is obtained by imposing (2), while the second class is obtained

NN by imposing (3)
5= —-—
be A—0
N Gl " L 2)
¥y = B2(2 — 1?) F = fa;
22 _ 7’2(62 _ 92)(62 _ )\2)
~ e =19 A=oa, 3)
with 0 < A2 < b? < 6% < 2. The surfaces generated by F=0
imposings = constant are concentric spheres centered on ) )
(0,0,0). The surfaces generated By = constant are con- S0lving Helmholtz equation, one obtains
focal cones with elliptical section, vertex@, 0, 0), focal plane 9
(z, z), and focal angley = 2 arcsin(b/c) around Oz axis. The —jwed® = o
surfaces generated By= constant are confocal cones with el- a}
liptical section, vertex a0, 0, 0), focal plane(x, ), and focal —joud’ = 3

anglel180 — ¢¢ = 2 arccos(b/c) around Ox axis.
By inspection of (1) it is observed that, ¥, and z are Wwhich yields two second-order partial differential equations
functions ofr, 8, and A with parameterd and c. They can
. ! 92a
be rewritten so that, y, and z are functions ofr, 8/¢, and V x V X (aa,)], il (4)
A/c with parameted/c, respectively, in whicke appears as a ar?
normalization constant and can be set equal to one. Parameter
b is now related more clearly to the focal angle by writing 5
b = sin(po/2). V x V X (fag)|, — k2 f = va (5)
Modes are obtained by calculating the solutions of the first class,
Following Harrington [13], electromagnetic fields andising (2). The corresponding fields have no radial component
Helmholtz equation can be written in terms of the magnetaf electric field( £, = 0). These modes are consequently called
(A) and electric(F) vector potentials, and the electri@?) TE. Other modes are obtained by calculating the solutions of
and magneti¢®/) scalar potentials. As demonstrated in [13]the second class using (3). The corresponding fields have no

B. Solutions of Helmholtz Equation
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radial component of magnetic fie{dZ,. = 0). These modes are Ill. Bow-TIE ANALYSIS
consequently called TM. he b . is depicted in Fi h I
The curl operators in (4) and (5) are developed by using theT e bow-tie structure is depicted in Fig. 2. The two metallic

expression of the differential operators in conical coordinat8§°tors lay inthéz, z) plane with a sector angle around Ox axis.

[10]. Because (4) and (5) have the same form, only one SetFoqllowing Section II-A, this part of the structure corresponds to

general solution is developed by separation of variables ~ the Particular coordinate surfacas= +b = *sin(yy/2) of
Fig. 3. On the other hand, the two slot sectors lay in(the:)

plane with a sector angle around Oz axis. Following Section
[I-A, this part of the structure corresponds to the particular co-

ordinated = +b of Fig. 3.
which yields three second-order ordinary differential equations

a, f = R(r)0(0)A(N) (6)

A. TE Modes
2
@ + |:k2 — ”(le)} R=0 @) The electric field components of TE modes are given by (2),
dr ! (6), and (10)—(12). The boundary conditions are imposed by the
two metallic sectors on which the tangential component of the
electric field vanishes and by the two slot sectors on which the
. 420 ) ) dO normal component of the electric field vanishes due to sym-
(7 = 9)(6° = 1) gy + 0267 = (0" + 1)] metry. The solution for ordes = 0 is then
+[g(b* +1) —n(n+1)6%1© =0 (8)
E.=0
2 =0 1 1 (13)
d°A dA jhr —jkr
2 32 2 _ hadiiniel 2 2 o E:4_Ae»] +Be»]
(V= 0)(\ = 1)z +ARN = (0 + )] o5 A= )
+a®* +1) —nn+DNJA =0 ©9)
wheren andq are separation constants. H.=0
Equation (7) is the Bessel-Schelkunoff equation [13] . [e 1 1, ik
with as solutions the Bessel-Schelkunoff functions Hy = j\/;m;(fle’ = Be™™) (14)

B, (kr) krby, (kr) 7kt /2By 11/2(kr), where
B, 41/2(kr) is a cylindrical Bessel function of semi-integer
ordern 4 1/2 and b, (kr) is a spherical Bessel function of s zeroth-order mode is a TE mode which is degenerated into

integer order.. The Bessel functions are of the first, second, of TEM one. The solution for order = 1 and parametey = 1
third kind. Bessel functions of the first and second kindsu@d g

Y) are well suited for describing standing waves in a radially
bounded structure, while Hankel functions (or Bessel functions

Hy=0

of the third kind H(*-?)) are well suited for describing forward
and reverse traveling waves in a radially semi-infinite structure.
As we are interested with propagating modes in a semi-infinite
transmission line, the Hankel functions are used

wkr
R= =" [AHS:% (kr) + BH), (/w)] (10)

which degenerate to circular harmonics foe= 0.

Equations (8) and (9) are Lamé equations. Solutions are ex-
pressed in terms of Lamé polynomials of the first and second
kinds, of ordem and parametey (see Appendix for more de-
tails):

© = CE;(g.,6) + DF; (4, 0) (11)

A:GES(Qna)‘)"’_IFnC(Qna)‘) (12)

whereC is the class of the function, depending on the order

(E,.=0
_[rk [ =) (- N2
B = \/?9\/ 62 — \2
/" do
X
0

2% — RV - 1
[
-

1

Jr
7k (62— 2)(62 — 1)
TA{\/ 62 — N2

X[/Ob de

2% — RV - 1
¢
-

do
wmm]

X [AH;I)(/W’) + BH?(IW)]

1
wmm] B em}

df
« L [AH(I)(IW) + BH@)(kr)]
NG Z Z ’

\
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IV. LTSA ANALYSIS AND RADIATION CALCULATION
A. LTSA Definition

The electric current distribution on the right-hand sector of
the bow-tie antenna remains unchanged if a perfect electric
conductor is placed between the two sectors and if the balanced
feeder is replaced by an unbalanced one [Fig. 4(a)]. Using
Babinet's principle, such a structure is equivalent to the infinite
linearly tapered slot line fed by an unbalanced magnetic cur-
rent, as depicted in Fig. 4(b). The unbalanced magnetic current
} feeder can be realized by a slot transmission line, which yields

the linearly tapered slot antenna (Fig. 1). Bow-tie antenna and
LTSA are consequently dual by image method and Babinet's
principle.

The solution for order. = 1 and parameter = ¢; (A.9) cannot
satisfy boundary conditions. The solution for ordee= 1 and
parameter; = ¢» (A.10) is

(E. =0
2
INESNLE
2
—1I <b 7aurcsm( )
+

X [AH“)(k

Ey =

UCHD

)|

(2
3
2

)
= o
- <b2;arcsin <3>‘b2>}

BH

B. Field Distribution Calculation

Following Babinet's principle the electric field distribution
) A2 -1 across the slot of the LTSA is proportional to the magnetic
T (62 — \2)(62 — 1) field on the metallic sector of the bow-tie antenna (14) (Fig.
1 4). Across the slot of the LTSAX = b), the tangential elec-
X — [AHS)(A-T) + BH(;)(/W)} tric field can be expressed by linking the conical coordinate
. Vr ? ? system (1) and the polar coordinate system of Fig. 1, using
wherell is the elliptic integral of the third kind [14]. ¢ = arcsin(z/r) = arcsin(6):

forn =0
. 1 1 1 . .
B. T™M Modes. . . E(,c = _ — _(Aegkp + Be—gkp) (15)
The magnetic field components of TM modes are given by sin (7) 1 - i) P
(3), (6), and (10)—(12). The boundary conditions are the same sin”(5)
as for the TE modes. The solution for ordet= 0 (zeroth-order
mode) is a TM mode which is degenerated into a TEM one g%r " and parametey
that theTE, and theT M, modes both refer to the same TEM _ sin(p) 1
mode. This particular TEM mode is the same as the one obtained P gin2 (30) 1 sin? ()
in [8] by applying two conformal mappings. sin2(52)
The solution for orden = 1 and parametey = 1 is .
) X | /g_p [AHg”(kp) + BHg”(kp)] (16)
— )2
)= \/ 1 ) forn = 1 and parametey = ¢ = (b2/b% + 1)
B cos(p) 1

[/ XZ\/W\/XZ—

dX
- /0 AT PN -1
1
B )\\/ﬁ\/)@—_}

AH<1> (kr) + BH<2> (kr )]

HA_\/>\/ —b2 1—92)

g [/o AQ\/W\/)\?——l

o d\
- /0 NV N -1

1
x — |AH (kr) +BH§2>(/W)] .
2 2

T

» =

sin (

) cos (F) []_ sin’(p)

0
an(Q)

x \/;’; [AH“)(kp) + BH§>(kp)] .an

The denominators of (15) to (17) vanish for= 4 /2 so that

the electric field goes to infinity for such a polar angle. This
characterizes mathematically the edge effect, which is expected
at the metallic edges. Modes given by (15) and (17) are even
while (16) is odd.

Equation (15) of the azimuthal field is equivalent to the trans-
verse and longitudinal expressions given by [8, eq. (1), (2)]. The
higher order modes however were not obtained in [8], while our
method is general enough to give all the modes propagating on
the structure.

For a long structure (typically more than two wavelengths)
the incident power at the end of the transmission line is strongly
reduced because of radiatioh/p term in (15)—(17)), and the
reverse traveling wave can be neglecteld= 0).
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a radial (parallel ta.) electric field source, respectively. The
closed-form expressions are

PEC

T eIkT
V2r v
X {J| sin ¢ |efk@ sin(8%) cos(e) PLa sin(9°)

4,06 ijka; sin 6°¢
X (1 +cos®)] +sin| — | —m———
( @] < 2 ) \/Wkatsinﬁe}

k COS(ee)ejkz cos 6°¢

kejkz cos 6°¢

G@,z —

X {:I:j Cos(goe)ejk’” sin(6%) C(’S(“ﬁe)F[/wc sin(6°)

e e—jka} sin 6°¢
@ () x (1 + cos ¢®)] + cos <£> —_—_— }
Fig. 4. (a) Antenna equivalent to bow-tie (Fig. 2). (b) Antenna equivalent to 2 ) Vrkwsin6°
LTSA [Fig. 4(a)]. T ke

[Fig. 4(@)] L C7e ¢ ' k Sin(ee)ejkz cos 6°¢ e]kac sin(#°) cos(x°)

GOt =Fi =
Electric field distributions in (15)—(17) are valid for LTSA x Fkz sin(6°)(1 + cos ¢©)] (20)

without dielectric substrate while most favorite in practice is

LTSA etched on a dielectric slab. The effect of the dielectrighereF is Fresnel's integral defined as
layer can be taken into account by using the present results to- '
gether with those of a variational method developed for multi- F(z) = /’” et g
layered structures [15]. The combination of these results is pre- o V2t
sented in [3] and [5].

Some comments on these expressions can be found in [5]. In
C. Radiation Calculation particular, the practical case where the conductor half-sheet is

The radiated fields are calculated from the azimuth‘leﬁr_]%??j'gfgéﬂi:'tt: Irsa;jlsi%uss:r?t;r;:t?elii;i];egetzcae.sin le one I8
electric field distribution across the slot (15)—(17). This gral (18) 9 (8]

vetor el can be. decomposed o two componerts (5°25€.8 &l re angle and dominant e exctalon
E,a, = cos(p)E a. + sin(p)F,a,, wherea. is the unit 9 P ’ y

vector parallel to the edge aad the unit vector perpendicular numerically.

to the edge (Fig. 1). Using Green's formalism, the radiated fieldl) Vahd_at!on by Measured Resul;s:l:’he'5|mulated TEM
is given as mode radiation pattern of the LTSA is validated by measure-

ments previously published in [8]. The antenna5is long

and the flare angle is 15 Simulations and measurements are

compared in Fig. 5 for (a) thél/-plane and (b) thez-plane.

] _ ] The agreement is good. The accuracy obtained with our model

wheresS'is the tapered slot aperture a6uis the dyadic Green's s the same as the one obtained in [8]. Nevertheless our model

function. Green's function and radiated field are expressed in Eh@lds the copolar and cross-polar radiated fields for all the

spherical coordinate systefm 6°, o) linked to the rectangular modes (Figs. 6 and 7), which cannot be computed with the

system(z, y, z) of Fig. 1. Superscript indicates that the system nqqe| proposed in [8]. The cross-polar radiation levels cannot

is bound to the edge of the structure. In reference to the dorgks yajidated because such measured results are not available

nant mode field distribution, the half-plage = 180° is called  for | TSA without substrate. Nevertheless the crosspolar field

the E-plane and the plang® = 90° is called thef/-plane. In \4jidation is presented for Vivaldi antennas on dielectric

reference to the dominant mode radiation (Section IV-C.2), tRgpstrate in [5].

#¢-component of the radiated electric field is the copolar field 2) Dominant Mode and Higher Order Mode Radiatiofihe

and thep®-component is the cross-polar field. dominant TEM mode radiation patterns are obtained by using
The analytical expression of the Green's function is caIcuIat(eps) and (18)—(20), while the TiEmode radiation patterns are

in [16] for the copolar field in théz and H-planes. We calculate gpiained by using (16) and (18)—(20). The radiation properties

it for both copolar and cross-polar fields for any direction [3]yf the two modes are compared in terms of polarization and

E® = // E,G - [cos(p)a. + sin(p)a,]dS (18)
s

[5]. Green's dyadic is given as isotropy. Fig. 6 depicts the copolar radiated fields of the TEM
- Qo> 0 and TE modes in theF-plane. The main lobe of th€EM
G= < Ges G ) (19) copolarradiation is centered in the endfire directigti = 90°),

while the main lobe of th&'E, copolarradiation is oriented in
where G?~ yields the copolar radiated field due to a longituanother direction, which is abodt = 70°. In the E-plane,
dinal electric field source (parallel #,), while G¥-* andG#:* there is no cross-polar radiation for both modes. Fig. 7 depicts
yield the cross-polar radiated field due to a longitudinal arttie H-plane radiation patterns of both modesgolarfor TEM
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Fig. 6. CopolatE-plane radiation pattern of TEN+—) and TE (—-) modes,

LTSA without substrate.
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Fig. 7. H-plane radiation pattern of TEN+) mode, copolar, and TE—-)
mode, cross-polar LTSA without substrate.
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(b) power losses are low. Then the attenuation along the taper is
Fig.5. Measured [8]—) and calculated-) (a) H- and (b)E-plane radiation low when compared to the/ p attenuat'(_)n In (15)_(:_'-7)_ and is
patterns, LTSA without substrafe\, long and 15 flare angle. neglected. The second consequence is a nonvanishing tangen-

tial component of the electric field on the conductor surface.

. . This causes a radial electric field component on the conductor,
andcrosspolarfor TE,). The TEM mode radiates in the end- P

RN . . which is perpendicular to the azimuthal component across the
f|re d|rgct|on(_<p€_' = 180°), while the TE. mode exhibits a more lot. Sucrﬁ)a rpadial field causes cross polarizatipon. The tangential
'EOUOP'C rad@ﬂorr p?]t.ter:nbthi?. thf TE'\Q rTIIOd(T.fCOI;]SQ(Z{uent ectric field component on the metal can be calculated by a per-
:ng:jeelslr?tﬁzgf:;;rze I?her:(i:s ::(gpcr:sg-gogﬁagi;ioixs thtu.rbation method. Assuming that the magnetic field calculatgd
TEM rﬁode and no co,polar radiation for the Tiode. The TE Without losses (14) remains unchanged when Iowllosses are in-

: o g troduced, and assuming that the metal thickness is much larger
mode radiated field |s_conse_que_ntly crosspolarized with respﬁ%n the skin depth, the tangential electric field is related to the
to the TEM mode radiated field in that plane. tangential magnetic field (14) by the metal impedance. The ratio
between the tangential electric field amplitude on the metal and
the electric field amplitude across the slot is then given as the

Taking into account the finite conductivity of the metal yieldproduct of the metal impedance and the free-space admittance.
two consequences. The first is an exponential field amplitu®r copper at 24 GHz this ratio is 0.1510 The radial field is
attenuation along the taper. This attenuation is taken into aonsequently negligible when compared to the azimuthal field.
count in the term&, of the integrand in (18), which affects As a consequence, the radiation pattern of LTSA is not sen-
the result of the integral. In the case of a good conductor thiive to the power losses in the conductor.

D. Power Losses in Conductor
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V. CONCLUSION

The electromagnetic fields of the eigen modes propagating T =tf(t*)

in conical structures made of lossless conductors in a homo- II T = /2 — b2 f(?) (A.4)
eneous lossy dielectric medium have been calculated analyt-

J J Y T=Vt2—c2f(t)

ically. TE and TM modes yield a complete set of solutions of
Helmholtz equations.

The bow-tie antenna is shown to be a conical transmission T =t\/12 — B2 f(t7)
line with a degenerated elliptical section and the conical eigen S a2
mode theory is particularized to that structure. The bow-tie an- 1 T=tvt? - f({t") (A.5)
tenna and the LTSA are dual structures, as shown by application T =12 —b2\/12 — 2 f(+?)
of Babinet's principle and the image method. The electric field
distribution in the slot aperture of LTSA is obtained for the first
P IV T =t/12 —b2\/t2 — 2 f(t?). (A.6)

three-order modes by using duality. This yields the edge effect

atthe metallic edges, the curvature of the field across the tapeﬁ%jefﬁcientsdi (A.2) of the power series in (A.3)—(A.6) are cal-

slot, and all the modes propagating in the structure. Moreovgyjateq by inserting (A3)—(A.6) in (A.1) and identifying coeffi-
the accuracy of the method is sufficient for radiation calculatiopiants oft of equal power. Lamé polynomials are a set of Lamé

The calculated copolar radiation patterns of a TEM LTSA ha¥gnctions based on particular values pguch that the series
been compared to measurements published in the literature. m.ez) reduces to a polynomial itf. The value of; is obtained
accuracy of the simulation is good. The first two-order mod_e "By imposing the vanishing of,, /241 for class |,d,_1) /241
diation patterns have peen_ compgred. Inth_aIang, th_e main ¢or class ,d(n_2) /241 fOr class Ill, andd,, _s)/24, for class
lobe of the TEM mode is oriented in the endiire direction, whil, This imposition is called the characteristic equation. It has a
that of the Tk mode is oriented in the directigh=70°. Inthe  ,;mper of solutions depending on ordeand on the class con-
H-plane, the TE mode radiation is cross polarized relatively tQjqered. Each solution of the characteristic equation yields a
the TEM mode radiation. Th&/-plane radiation pattern of the hey | amé polynomial so that there is a number of solutions of
TE, mode is more isotropic than the TEM mode and exhibits, A.1) depending on the class considered. The question of nota-
high backfire level. The power losses due to the conductor f'”'i%n is troublesome since there are almost as many notations as
conductivity are shown to have a negligible effect on radiatiofhvestigators. We adopt here a notation such that Lamé polyno-
Those results are obtained without using time consumipgais are denoted b€ (¢,) wheren is the order and the
computational methods. No numerical difficulties have begflsss of the polynomial (1 for class I, 21 to 23 for class Il 31 to
observed during computation, which is remarkable. 33for class Ill or 4 for class 1V), parametgbeing the solution
of the characteristic equation. The first Lamé polynomials cor-
responding to values ef (the order) from zero to two are listed

APPENDIX L . .
below. The series is normalized by puttidg = 1

LAME EQUATION AND FUNCTIONS

- - 1 -
Lamé equation is obtained when expressing Laplace equation n=0 ¢=0 E(0#)=1 (A7)
in ellipsoidal and conical coordinates and Helmholtz equation in
conical coordinates. It is given as
n=1 ¢g=1 E?(1,t)=t¢t (A.8)
d>T dT
(= ?)(#* - CQ)W + 217 — (B2 + &2) o )
__c _ 22 _
+[q(t? + ) = n(n + VAT = 0. (A1) 1=prz-0 Eflat=ve-ut (A9
The functions, solutions of (Al), have been introduced by )
Gabriel Lameé in 1837 [17] while solving Laplace equation in q= _ =q EX(q@t)=V2- (A.10)
ellipsoidal coordinates for calculating heat distribution in a b + ¢
homogeneous ellipsoid. They are classically based on series of
increasing powers of VIEF & — 232
n=2 ¢=242—— ——=a
+o0 b2+ + Vbt 4 ¢t — 22
F) = Y7 dit*, (A.2) Byl t)=1- R £ (e
:=0
Four classes are distinguished [18] Vbt 4 ¢t — b2c?
q=2-2——5——5——=@q
b2 + 2

I -y gy 7
I T=f#) (A.3) Ey(gut) =1~ 32 £ (A12)




454

b? + 4c? — 1]
TRre b E(gs,t) = tV$2 =02 (A13) 2
4h2 4 2 3]

T Rie =g E5(qgs,t) = tV2 — (A.14)
[4]
(5]

g=1 EP(Lt)=Vt2 -0/ - (A.15)

General theory of second-order differential equations shows thal®!
if one solution of the equation is known, then a second solution
independent of the first one can be obtained by integration [19]
This is particularized here as

C _ C
FS(0t) = AES(0.t) [ e |

whereA is an arbitrary constant. Lamé functions of the second
kind £ (q,1), linearly independent ot (¢, t), have been cal-

dt (8]

&) [ES(a, )

culated and are listed below far= 0 and1 [11]

_ _o p _E AN
n=0 ¢g=0 Fy(0,¢)=F |arcsin AR [12]
whereE|-] is the elliptic integral of the first kind with amplitude [13]
arcsin(t/b) and modulug/c [14] [14]
[15]

dt
n=1 ¢=1 F(1,¢t :t/
4 v (L) 2/ =) (12 — 2)
[16]
2 [17]
e

F 2 P21 i el

2(q,t) = - [ 7aurcsm<b> 02}
[19]

wherell[-] is the elliptic integral of the third kind with parameter |2
1, amplitudearcsin(t/b) and modulus/c [14]

b2
=prac®
b2 b2
F (q2, t) = 2—cQH{ 27arcsln<b>‘ 02}.

It can be shown [20] that Lamé polynomials (¢, t) of same
class, same order, and differgnare linearly mdependent. The
general solution of (A.1) is then expressed as

+oo

S [AnES (g0 t) + BaFS (g.1)]

n=0

T(t) =

A

planar
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