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Electromagnetic Modes in Conical Transmission
Lines with Application to the Linearly

Tapered Slot Antenna
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Abstract—A transmission line analysis of bow-tie antenna
and linearly tapered slot antenna (LTSA) is presented. These
structures belong to the class of conical transmission lines defined
here in terms of conical coordinates. A complete set of solutions
of Helmholtz equation is obtained exhibiting TE and TM modes.
Modal fields are expressed by Lamé and Bessel–Schelkunoff
functions. TE and TM eigenmode analysis is particularized to the
bow-tie structure. Bow-tie antenna and LTSA are shown to be
dual conical transmission lines by the image method and Babinet's
principle. The modes of LTSA are calculated on the basis of the
results obtained for the bow-tie structure. The radiation pattern
of LTSA is computed as the integral of a closed-form expression
of the dyadic Green's function weighted by the modal electric
field distribution over the slot aperture. The obtained dominant
mode radiation patterns are validated by measurements from the
literature. The radiation patterns of the first two-order modes are
calculated and compared.

Index Terms—Conical transmission lines, slot antennas.

I. INTRODUCTION

T HE linearly tapered slot antenna (LTSA) is depicted in
Fig. 1. It consists of one sector of flare angle cut in a

metallic half-plane. The antenna is fed by a classical slot trans-
mission line at the sector apex. LTSA has been first proposed
in 1979 [1] for applications in short-range radar module and as
an element for phased-array antenna at 9 GHz. Several appli-
cations of LTSA have been proposed at increasing frequencies
like the broken line tapered-slot antenna (BLTSA), which is de-
rived from the original LTSA. BLTSA has been used in 1993 in
a radiometer operating at 802 GHz [2]. We have used [3]–[5]
the present LTSA analysis for modeling the Vivaldi antenna [4].
In the present paper, it is shown that LTSA and bow-tie (Fig. 2)
shapes are dual, using Babinet's principle and the image method.
So that the LTSA, BLTSA, and Vivaldi analyses are obtained
from the bow-tie analysis.

The electric current distribution on the bow tie is calculated
in [6] from results of [7] by applying two conformal mappings.
It yields the TEM dominant mode of the structure. This mode
is used in [8] for the LTSA radiation calculation. The compu-
tation of such analytical results requires only a small central
processing unit (CPU) time. On the other hand, a full numerical
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Fig. 1. Linearly tapered-slot antenna (LTSA) with flare angle' fed by
classical slot transmission line.

Fig. 2. Bow-tie antenna with flare angle' fed by balanced electric current
source.

analysis of the LTSA and Vivaldi antenna is proposed in [9]
where the electromagnetic fields are computed by using the
TLM method. Full numerical analyses and simulations with
commercially available electromagnetic softwares are CPU
time consuming due to the large extent of the tapered antennas
and do not yield any modal description of the fields in the
structure.

The present analysis of the bow-tie structure is based on the
conical coordinate system [10], also called sphero-conal coor-
dinate system [11]. This system depicts three sets of coordinate
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surfaces: two sets of bicones having an elliptical section and one
set of concentric spheres. Such a coordinate system is consis-
tent with the conical waveguide boundary conditions (metallic
elliptical cone) [12] so that Helmholtz equation can be solved by
separating the variables. The two metallic sectors of the bow-tie
structure (Fig. 2) are obtained by degenerating the metallic el-
liptical bicone of the conical waveguide into a flat conical wave-
guide having an elliptical cross-section of infinite eccentricity.
The so-obtained bow-tie structure is also called flat biconical
antenna. It is characterized by its flare angle noted(Fig. 2).
This method, using the conical transmission line theory, yields
all the eigenmodes of the bow-tie structure, not only the TEM
dominant mode.

The first part of the paper presents a complete set of solu-
tions for Helmholtz equation in the conical coordinate system.
They are obtained by separating the variables, and correspond
to TE and TM modes. They are particularized to the bow-tie
structure in the second part. The third part is dedicated to the
LTSA analysis. The duality between bow-tie and LTSA struc-
tures is shown. The electric field distribution across the slot is
calculated, as well as the radiation pattern of the TEM and
modes. The sensitivity of the radiation pattern to power losses
in the conductor is finally analyzed.

II. CONICAL TRANSMISSIONLINE THEORY

A. Conical Coordinate System [10]

Conical coordinates describe an orthogonal system
(Fig. 3) [10] related to the classical rectangular system by

(1)

with . The surfaces generated by
imposing are concentric spheres centered on

. The surfaces generated by are con-
focal cones with elliptical section, vertex at , focal plane

, and focal angle around Oz axis. The
surfaces generated by are confocal cones with el-
liptical section, vertex at , focal plane , and focal
angle around Ox axis.

By inspection of (1) it is observed that, , and are
functions of , and with parameters and . They can
be rewritten so that , , and are functions of , , and

with parameter , respectively, in which appears as a
normalization constant and can be set equal to one. Parameter

is now related more clearly to the focal angle by writing
.

B. Solutions of Helmholtz Equation

Following Harrington [13], electromagnetic fields and
Helmholtz equation can be written in terms of the magnetic

and electric vector potentials, and the electric
and magnetic scalar potentials. As demonstrated in [13],

Fig. 3. Conical coordinate system(r; �; �) related to rectangular coordinate
system(x; y; z) [10].

a complete set of independent solutions of Helmholtz equation
is obtained by defining two classes of solutions. The first class
is obtained by imposing (2), while the second class is obtained
by imposing (3)

(2)

(3)

Solving Helmholtz equation, one obtains

which yields two second-order partial differential equations

(4)

(5)

Modes are obtained by calculating the solutions of the first class,
using (2). The corresponding fields have no radial component
of electric field . These modes are consequently called
TE. Other modes are obtained by calculating the solutions of
the second class using (3). The corresponding fields have no
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radial component of magnetic field . These modes are
consequently called TM.

The curl operators in (4) and (5) are developed by using the
expression of the differential operators in conical coordinates
[10]. Because (4) and (5) have the same form, only one set of
general solution is developed by separation of variables

(6)

which yields three second-order ordinary differential equations

(7)

(8)

(9)

where and are separation constants.
Equation (7) is the Bessel–Schelkunoff equation [13]

with as solutions the Bessel–Schelkunoff functions
, where

is a cylindrical Bessel function of semi-integer
order and is a spherical Bessel function of
integer order . The Bessel functions are of the first, second, or
third kind. Bessel functions of the first and second kinds (and

) are well suited for describing standing waves in a radially
bounded structure, while Hankel functions (or Bessel functions
of the third kind ) are well suited for describing forward
and reverse traveling waves in a radially semi-infinite structure.
As we are interested with propagating modes in a semi-infinite
transmission line, the Hankel functions are used

(10)

which degenerate to circular harmonics for .
Equations (8) and (9) are Lamé equations. Solutions are ex-

pressed in terms of Lamé polynomials of the first and second
kinds, of order and parameter (see Appendix for more de-
tails):

(11)

(12)

where is the class of the function, depending on the order.

III. B OW-TIE ANALYSIS

The bow-tie structure is depicted in Fig. 2. The two metallic
sectors lay in the plane with a sector angle around Ox axis.
Following Section II-A, this part of the structure corresponds to
the particular coordinate surfaces of
Fig. 3. On the other hand, the two slot sectors lay in the
plane with a sector angle around Oz axis. Following Section
II-A, this part of the structure corresponds to the particular co-
ordinate of Fig. 3.

A. TE Modes

The electric field components of TE modes are given by (2),
(6), and (10)–(12). The boundary conditions are imposed by the
two metallic sectors on which the tangential component of the
electric field vanishes and by the two slot sectors on which the
normal component of the electric field vanishes due to sym-
metry. The solution for order is then

(13)

(14)

This zeroth-order mode is a TE mode which is degenerated into
a TEM one. The solution for order and parameter
is
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The solution for order and parameter (A.9) cannot
satisfy boundary conditions. The solution for order and
parameter (A.10) is

where is the elliptic integral of the third kind [14].

B. TM Modes

The magnetic field components of TM modes are given by
(3), (6), and (10)–(12). The boundary conditions are the same
as for the TE modes. The solution for order (zeroth-order
mode) is a TM mode which is degenerated into a TEM one so
that the and the modes both refer to the same TEM
mode. This particular TEM mode is the same as the one obtained
in [8] by applying two conformal mappings.

The solution for order and parameter is

IV. LTSA A NALYSIS AND RADIATION CALCULATION

A. LTSA Definition

The electric current distribution on the right-hand sector of
the bow-tie antenna remains unchanged if a perfect electric
conductor is placed between the two sectors and if the balanced
feeder is replaced by an unbalanced one [Fig. 4(a)]. Using
Babinet's principle, such a structure is equivalent to the infinite
linearly tapered slot line fed by an unbalanced magnetic cur-
rent, as depicted in Fig. 4(b). The unbalanced magnetic current
feeder can be realized by a slot transmission line, which yields
the linearly tapered slot antenna (Fig. 1). Bow-tie antenna and
LTSA are consequently dual by image method and Babinet's
principle.

B. Field Distribution Calculation

Following Babinet's principle the electric field distribution
across the slot of the LTSA is proportional to the magnetic
field on the metallic sector of the bow-tie antenna (14) (Fig.
4). Across the slot of the LTSA , the tangential elec-
tric field can be expressed by linking the conical coordinate
system (1) and the polar coordinate system of Fig. 1, using

:
for

(15)

for and parameter

(16)

for and parameter

(17)

The denominators of (15) to (17) vanish for so that
the electric field goes to infinity for such a polar angle. This
characterizes mathematically the edge effect, which is expected
at the metallic edges. Modes given by (15) and (17) are even
while (16) is odd.

Equation (15) of the azimuthal field is equivalent to the trans-
verse and longitudinal expressions given by [8, eq. (1), (2)]. The
higher order modes however were not obtained in [8], while our
method is general enough to give all the modes propagating on
the structure.

For a long structure (typically more than two wavelengths)
the incident power at the end of the transmission line is strongly
reduced because of radiation ( term in (15)–(17)), and the
reverse traveling wave can be neglected .
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(a) (b)

Fig. 4. (a) Antenna equivalent to bow-tie (Fig. 2). (b) Antenna equivalent to
LTSA [Fig. 4(a)].

Electric field distributions in (15)–(17) are valid for LTSA
without dielectric substrate while most favorite in practice is
LTSA etched on a dielectric slab. The effect of the dielectric
layer can be taken into account by using the present results to-
gether with those of a variational method developed for multi-
layered structures [15]. The combination of these results is pre-
sented in [3] and [5].

C. Radiation Calculation

The radiated fields are calculated from the azimuthal
electric field distribution across the slot (15)–(17). This
vector field can be decomposed into two components as

, where is the unit
vector parallel to the edge and the unit vector perpendicular
to the edge (Fig. 1). Using Green's formalism, the radiated field
is given as

(18)

where is the tapered slot aperture andis the dyadic Green's
function. Green's function and radiated field are expressed in the
spherical coordinate system linked to the rectangular
system of Fig. 1. Superscript indicates that the system
is bound to the edge of the structure. In reference to the domi-
nant mode field distribution, the half-plane is called
the -plane and the plane is called the -plane. In
reference to the dominant mode radiation (Section IV-C.2), the

-component of the radiated electric field is the copolar field
and the -component is the cross-polar field.

The analytical expression of the Green's function is calculated
in [16] for the copolar field in the and -planes. We calculate
it for both copolar and cross-polar fields for any direction [3],
[5]. Green's dyadic is given as

(19)

where yields the copolar radiated field due to a longitu-
dinal electric field source (parallel to ), while and
yield the cross-polar radiated field due to a longitudinal and

a radial (parallel to ) electric field source, respectively. The
closed-form expressions are

(20)

where is Fresnel's integral defined as

Some comments on these expressions can be found in [5]. In
particular, the practical case where the conductor half-sheet is
longitudinally finite is discussed in this reference.

The double integral (18) can be reduced to a single one [8]
in case of a small flare angle and dominant mode excitation.
Otherwise the double integral has to be performed, normally
numerically.

1) Validation by Measured Results:The simulated TEM
mode radiation pattern of the LTSA is validated by measure-
ments previously published in [8]. The antenna is long
and the flare angle is 15. Simulations and measurements are
compared in Fig. 5 for (a) the -plane and (b) the -plane.
The agreement is good. The accuracy obtained with our model
is the same as the one obtained in [8]. Nevertheless our model
yields the copolar and cross-polar radiated fields for all the
modes (Figs. 6 and 7), which cannot be computed with the
model proposed in [8]. The cross-polar radiation levels cannot
be validated because such measured results are not available
for LTSA without substrate. Nevertheless the crosspolar field
validation is presented for Vivaldi antennas on dielectric
substrate in [5].

2) Dominant Mode and Higher Order Mode Radiation:The
dominant TEM mode radiation patterns are obtained by using
(15) and (18)–(20), while the TEmode radiation patterns are
obtained by using (16) and (18)–(20). The radiation properties
of the two modes are compared in terms of polarization and
isotropy. Fig. 6 depicts the copolar radiated fields of the TEM
and TE modes in the -plane. The main lobe of theTEM
copolarradiation is centered in the endfire direction ,
while the main lobe of the copolarradiation is oriented in
another direction, which is about . In the -plane,
there is no cross-polar radiation for both modes. Fig. 7 depicts
the -plane radiation patterns of both modes (copolarfor TEM
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(a)

(b)

Fig. 5. Measured [8](�) and calculated(�) (a)H- and (b)E-plane radiation
patterns, LTSA without substrate5� long and 15 flare angle.

andcrosspolarfor ). The TEM mode radiates in the end-
fire direction , while the TE mode exhibits a more
isotropic radiation pattern than the TEM mode. Consequently,
there is a particular high backfire level for the TE
mode. In the -plane, there is no cross-polar radiation for the
TEM mode and no copolar radiation for the TEmode. The TE
mode radiated field is consequently crosspolarized with respect
to the TEM mode radiated field in that plane.

D. Power Losses in Conductor

Taking into account the finite conductivity of the metal yields
two consequences. The first is an exponential field amplitude
attenuation along the taper. This attenuation is taken into ac-
count in the term of the integrand in (18), which affects
the result of the integral. In the case of a good conductor the

Fig. 6. CopolarE-plane radiation pattern of TEM(�) and TE (��) modes,
LTSA without substrate.

Fig. 7. H-plane radiation pattern of TEM(�) mode, copolar, and TE(��)
mode, cross-polar LTSA without substrate.

power losses are low. Then the attenuation along the taper is
low when compared to the attenuation in (15)–(17) and is
neglected. The second consequence is a nonvanishing tangen-
tial component of the electric field on the conductor surface.
This causes a radial electric field component on the conductor,
which is perpendicular to the azimuthal component across the
slot. Such a radial field causes cross polarization. The tangential
electric field component on the metal can be calculated by a per-
turbation method. Assuming that the magnetic field calculated
without losses (14) remains unchanged when low losses are in-
troduced, and assuming that the metal thickness is much larger
than the skin depth, the tangential electric field is related to the
tangential magnetic field (14) by the metal impedance. The ratio
between the tangential electric field amplitude on the metal and
the electric field amplitude across the slot is then given as the
product of the metal impedance and the free-space admittance.
For copper at 24 GHz this ratio is 0.15 10. The radial field is
consequently negligible when compared to the azimuthal field.

As a consequence, the radiation pattern of LTSA is not sen-
sitive to the power losses in the conductor.
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V. CONCLUSION

The electromagnetic fields of the eigen modes propagating
in conical structures made of lossless conductors in a homo-
geneous lossy dielectric medium have been calculated analyt-
ically. TE and TM modes yield a complete set of solutions of
Helmholtz equations.

The bow-tie antenna is shown to be a conical transmission
line with a degenerated elliptical section and the conical eigen
mode theory is particularized to that structure. The bow-tie an-
tenna and the LTSA are dual structures, as shown by application
of Babinet's principle and the image method. The electric field
distribution in the slot aperture of LTSA is obtained for the first
three-order modes by using duality. This yields the edge effect
at the metallic edges, the curvature of the field across the tapered
slot, and all the modes propagating in the structure. Moreover,
the accuracy of the method is sufficient for radiation calculation.
The calculated copolar radiation patterns of a TEM LTSA have
been compared to measurements published in the literature. The
accuracy of the simulation is good. The first two-order mode ra-
diation patterns have been compared. In the-plane, the main
lobe of the TEM mode is oriented in the endfire direction, while
that of the TE mode is oriented in the direction . In the

-plane, the TEmode radiation is cross polarized relatively to
the TEM mode radiation. The -plane radiation pattern of the
TE mode is more isotropic than the TEM mode and exhibits a
high backfire level. The power losses due to the conductor finite
conductivity are shown to have a negligible effect on radiation.

Those results are obtained without using time consuming
computational methods. No numerical difficulties have been
observed during computation, which is remarkable.

APPENDIX

LAMÉ EQUATION AND FUNCTIONS

Lamé equation is obtained when expressing Laplace equation
in ellipsoidal and conical coordinates and Helmholtz equation in
conical coordinates. It is given as

(A.1)

The functions, solutions of (A1), have been introduced by
Gabriel Lamé in 1837 [17] while solving Laplace equation in
ellipsoidal coordinates for calculating heat distribution in a
homogeneous ellipsoid. They are classically based on series of
increasing powers of

(A.2)

Four classes are distinguished [18]

(A.3)

(A.4)

(A.5)

(A.6)

Coefficients (A.2) of the power series in (A.3)–(A.6) are cal-
culated by inserting (A3)–(A.6) in (A.1) and identifying coeffi-
cients of of equal power. Lamé polynomials are a set of Lamé
functions based on particular values ofsuch that the series
(A.2) reduces to a polynomial in . The value of is obtained
by imposing the vanishing of for class I,
for class II, for class III, and for class
IV. This imposition is called the characteristic equation. It has a
number of solutions depending on orderand on the class con-
sidered. Each solution of the characteristic equation yields a
new Lamé polynomial so that there is a number of solutions of
(A.1) depending on the class considered. The question of nota-
tion is troublesome since there are almost as many notations as
investigators. We adopt here a notation such that Lamé polyno-
mials are denoted by where is the order and the
class of the polynomial (1 for class I, 21 to 23 for class II, 31 to
33 for class III or 4 for class IV), parameterbeing the solution
of the characteristic equation. The first Lamé polynomials cor-
responding to values of (the order) from zero to two are listed
below. The series is normalized by putting

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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(A.13)

(A.14)

(A.15)

General theory of second-order differential equations shows that
if one solution of the equation is known, then a second solution
independent of the first one can be obtained by integration [19].
This is particularized here as

where is an arbitrary constant. Lamé functions of the second
kind , linearly independent of , have been cal-
culated and are listed below for and

where is the elliptic integral of the first kind with amplitude
and modulus [14]

where is the elliptic integral of the third kind with parameter
1, amplitude and modulus [14]

It can be shown [20] that Lamé polynomials of same
class, same order, and differentare linearly independent. The
general solution of (A.1) is then expressed as
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