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Abstract—A methodology based on the genetic algorithm (GA)
is proposed to determine the equivalent impedance boundary con-
dition (IBC) for corrugated material coating structures. In this ap-
proach, rigorous solutions of the reflection coefficients at a number
of incident angles are first calculated using a periodic method of
moments (MoM) solver. The IBC model is used to predict the re-
flection coefficients at the same observation angles. The model co-
efficients are then optimized using the GA so that the difference
between the approximated and the MoM predicted reflection coef-
ficients is minimized. The GA proves efficient in obtaining an op-
timal IBC model. The resulting IBC model can be readily incorpo-
rated into an existing computational electromagnetics code to as-
sess the performance of the corrugated coating when mounted on
complex platforms.

Index Terms—Coatings, genetic algorithm, gratings, impedance
boundary conditions.

I. INTRODUCTION

I T is well known that the impedance boundary condition
(IBC) approximation is an efficient way to model complex

structures such as material coatings and subskinline features
[1]–[3]. It replaces the original volumetric structure with a
surface impedance so that the problem dimension is reduced
by one. Thus, large savings in computational resources can
be achieved in the analysis of the original problem. However,
to determine a simple IBC for an arbitrary structure that is
valid over a wide range of incident angles, polarizations and
frequencies is a nontrivial task. In this paper, we set out to
develop a methodology to determine the equivalent IBC model
for a corrugated coating structure backed by a conducting
surface (see Fig. 1). The corrugation of the surface is assumed
to be periodic in one dimension along the-axis. Of interest is
an IBC model that is valid over a large range of incident angles
in both the and directions. Our objective is to establish
a robust methodology such that the resulting IBC model can
be used in place of the actual coating structure in subsequent
analysis and design involving complex platforms.

The problem at hand is difficult since the scattering charac-
teristics of the corrugated surface is strongly dependent on po-
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Fig. 1. Scattering from a corrugated coating structure backed by a conducting
surface.

larization and incident angle. The standard IBC used for flat
coatings accounts for neither the aniostropic nor the angular be-
havior of the scattering characteristics of the corrugated surface.
Some improved impedance boundary conditions have been pro-
posed in the literature, including the tensor impedance boundary
condition (TIBC) [1] and the generalized impedance boundary
condition (GIBC) [2], [4]. TIBC usually works only for a very
limited range of incident angles. GIBC improves the accuracy
of the IBC model by including higher order derivatives of the
fields on the surface. However, it cannot be easily implemented
in existing MoM solvers since it requires further reformulation
in the integral equation. A resistive boundary condition (RBC)
has been reported that works well over large incident angles for
two-dimensional (2-D) planar periodic surfaces [5]. However, it
is limited to surfaces with very small periods. Furthermore, the
choice for the position of the equivalent impedance surface is
not obvious for the corrugated structure.

Our proposed approach to this problem is based on the ge-
netic algorithm (GA). First, we compute the reflection coeffi-
cients from the corrugated surface over a number of incident
angles and polarizations using a periodic method of moments
(MoM) solver [6]. The resulting reflection coefficients consti-
tute our reference data base. Next, a simple periodic IBC model
is proposed from which we can derive an expression for the re-
flection coefficients. In the GA step, we optimize the model co-
efficients so that the difference between the IBC-predicted and
the MoM-predicted reflection coefficients is minimized. GA
searches the entire parameter space in a way similar to natural
evolution and arrives, after many generations, at the best param-
eters for the model.
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(a) (b)

Fig. 2. Equivalent impedance boundary problem, (a) Original structure, (b)
IBC Approximation.

This paper is organized as follows. In Section II, the MoM
solution of the problem, the IBC model formulation and the GA
optimization are discussed as the steps of the IBC determina-
tion. Numerical results are provided in Section III to verify the
effectiveness of the approach in a number of corrugated geome-
tries. A 3-D scattering example is also given to demonstrate the
utility of the resulting IBC model.

II. M ETHODOLOGY FOR DETERMINING THE

OPTIMAL IBC MODEL

In this section, we describe the proposed methodology for
determining the equivalent IBC of a corrugated coating using
the GA. In the first step, the reflection coefficients from the
coating are computed using the MoM at multiple incident angles
to serve as the reference data of the model. The MoM solution
for the corrugated coating structure in Fig. 1 has been formu-
lated earlier in [6]. The formulation entails dividing one cell of
the grating into different homogeneous regions according to the
material layers as shown in Fig. 2(a). Boundary integral equa-
tions are first obtained for each region. Field continuity at region
interfaces and periodic boundary conditions at cell boundaries
are then enforced. The fields in the top half-space are expanded
into a sum of Floquet harmonics and are matched to the fields in
the lower region so that the reflection coefficients can be found.

In the next step, a periodic IBC model is proposed, from
which we can derive an expression for the reflection coeffi-
cients. In the final step, the optimal parameters for the IBC
model are obtained by minimizing the mean squared error be-
tween the two sets of reflection coefficients based on the GA.
These steps are described in detail below.

A. Periodic IBC Model

The equivalent IBC relating the tangential electric and mag-
netic fields for a planar coated surface can be written as [1]:

(1)

We shall adopt this model for the corrugated problem due to its
simplicity and usefulness for our applications. The model pa-
rameters will then be optimized to emulate the properties of the
exact structure. Note that since the corrugated surface exhibits
anisotropic scattering characteristics, the equivalent IBC must
also in general be anisotropic. Therefore, the cross impedance
terms and are kept in our formulation to assess their im-
portance. The boundary impedance , and are

Fig. 3. Flow chart of the GA.

in general functions of incident angle and spatial position. For
the IBC model to be useful for subsequent electromagnetic anal-
ysis, however, it is much preferable to model the boundary im-
pedances as functions of spatial position only. We cannot prove
theoretically the existence of such a model for an arbitrary cor-
rugated structure. Instead, the applicability and limitation of this
approach will be explored numerically in Section III.

In our IBC model, the periodic grating structure with period
, as shown in Fig. 2(a), is replaced by an equivalent impedance

boundary condition, which also has a period, as illustrated in
Fig. 2(b). Each surface impedance term can be expanded into
a Fourier series. Since the cross impedance termsand
are usually very small, we shall treat them as constants and only
expand the impedances and as

(2)

Therefore, to fully describe the IBC model, we must determine
the Fourier series coefficients and .

B. Solution to the Forward Problem of Scattering by
the IBC Model

Next, we derive the reflection coefficients resulting from the
plane wave scattering from the IBC model given above. Under
plane wave incidence where

and

each component of the tangential electric and magnetic fields at
the impedance surface can be expanded into a sum of Floquet
harmonics [7]. For example, the tangential electric field in the
direction is expanded as

(3)
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(a) (b)

Fig. 4. Grating geometry for (a) triangular groove and (b) rectangular groove.

where

is the propagation constant of theth order harmonic
along the -direction. This Floquet harmonic is a reflected
wave with propagation constants , where

with the square root taken as positive
real or negative imaginary. The superscriptsand denote
respectively the incident and reflected field throughout this
paper. The harmonic term is suppressed in (3)
and is set to zero at the impedance surface for convenience.
Assuming that the coefficients of the higher order Floquet
harmonics are negligible and applying this to other tangential
field components we get

(4)

where can be , , or , and is a positive integer.
Substituting (2) and (4) into (1) and matching the coefficients
of the exponential terms, we obtain a set of equations relating

and

(5)

for to . is the Kronecker delta. This set of equa-
tions can be written in matrix form as

(6)

where

...
...

...
. . .

...

...
. . .

...
. . .

...

...

...

and

(c)

Fig. 5. Comparison of reflection coefficients versus angle among: 1) the
exact MOM result; 2) the IBC derived from GA; and 3) the TIBC result. (a)
H-polarization. (b) V-polarization. (c) H–V cross polarization.

Following the same steps, we also arrive at the relationship for
, , and

(7)
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where

...
...

...
. . .

...

...
. . .

...
. . .

...

...

...

For a plane wave, the tangential components of the fields in the
-direction , can be expressed in terms of and as

and (8)

where

...
...

.. .
. . .

and

Combine (6)–(8), the matrix relationship between the incident
and reflected fields is written as

(9)

In (9), the components of the scattered field can be directly
related to those of the incident field. We can therefore define
the reflection coefficients for the different polarizations as

(10)
To summarize, the reflection coefficients from the IBC model
can be calculated by using (9) and (10) if and are given.
This relationship is utilized by the GA to calculate the reflection
coefficients for a given sample of and and compare
them with the reference data obtained from the MoM solution
to optimize the model parameters.

Two comments are in order. First, although the reflection co-
efficients are derived for the polarizations, they can
be easily transformed to the more conventional vertical (V)/hor-
izontal (H) polarizations with respect to the surface. Second, we
have assumed the position of the IBC surface is at in the
above formulation. However, if the IBC surface is at the position

[as shown in Fig. 2(b)], a factor of should be

(a)

(b)

Fig. 6. Effect of incorporating the cross impedance terms in the IBC model
generated from GA, (a) H-polarization, (b) V-polarization.

multiplied to each of the reflection coefficients to arrive at the
correct answer. It is well known that in general layered coating
problems, there is not a preferred position for the impedance
surface. The solution can sometimes be improved by applying
the IBC at a position other than a natural interface in the struc-
ture [4]. Therefore, by including the position of the IBC surface
as an additional tuning parameter in our IBC model, we can fur-
ther improve the accuracy of the model.

C. Genetic Algorithm to Determine the Optimal
IBC Parameters

In the GA, the parameters to be optimized are first encoded
into binary form. A set of the encoded parameters is known as a
chromosome. The basic idea of GA is to generate a pool of chro-
mosomes, discard the bad ones, keep the best ones and let them
evolve to produce better chromosomes. The evaluation of each
chromosome is performed by a cost function which, in this case,
is chosen to be the mean-squared error between the MoM com-
puted reflection coefficients and those solved using (9) and (10)
with the parameters decoded from the cor-
responding chromosome. Chromosomes in the pool are ranked
according to the cost function. The best ones are selected in pairs
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Fig. 7. Effect of increasing the model order in the IBC model generated from GA. (a) Amplitude, H-polarization. (b) Phase, H-polarization. (c) Amplitude,
V-polarization. (d) Phase, V-polarization.

to act as parents of the next generation. Reproduction of children
chromosomes is based on specific rules of heredity and muta-
tion. The process of selection and reproduction is repeated until
a set of satisfactory parameters is found or the generation limit
is reached. The flow chart of the GA is shown in Fig. 3. Detailed
discussion of the GAs can be found in [8].

In the IBC model for the corrugated coating, the parameters
to be optimized are the coefficients of the Fourier expansion
and , the cross impedances and the position of the
impedance surface. Each of the parameters and

consists of a real part and an imaginary part. We assume a
symmetric structure so that . For an ap-
proximation truncated to the th order, the total number of real
numbers is . The number of bits contained in each pa-
rameter is adjustable. If is too large, the convergence of GA
will be slow. If is too small, the accuracy of the calculation
will suffer. In the examples given in this paper, we choose
to be efficient in both speed and accuracy. In order to encode the
unknown parameters into binary form, the minimum and max-
imum possible values of each parameter are required. For ex-
ample, the values for the real and imaginary parts of the Fourier
series and are estimated to be in the range from
to , which is found to be reasonable in the numerical ex-

amples. Thus, the eight-bit binary 00000000 denotes and
11111111 represents . and are relatively small and
their real and imaginary parts vary from to . The
distance is limited between the upper and lower boundaries of
the coating so that the resulting IBC model will not cause any
ambiguity in its applications.

In the beginning of the GA, a number of chromosomes
are randomly generated. Each chromosome is decoded into
parameters and . The reflection coefficients
are then computed using (9) and (10). The cost function gives
the mean-squared error between these reflection coefficients
and their corresponding MoM solution

Cost

where denotes the MoM solution of the reflection co-
efficients at a specific observation angle and
is the polarization (or V/H). The fitness value
of each chromosome is given by

Cost
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Fig. 8. Higher order reflection coefficients simulated by the IBC model. (a)0th order, H-pol. (b) First order, H-pol. (c)0th order, V-pol. (d) 1st order, V-pol.

where and are constants and is the th chromosome
in the population. This fitness value is used in ranking the
chromosomes and selecting of parents for the next generation
[8]–[11]. There are several standard ways of selection. In
this paper, the roulette wheel selection is used in which the
probability of each chromosome to be selected is proportional
to its fitness value.

After two chromosomes are selected, they mate to generate
children. This is realized by the process of crossover in which a
break point is randomly chosen in the chromosomes and the two
chromosomes are switched at that point. Mutation is imposed
at this point so that new genes appear in the next generation.
The mutation rate, which is the portion of bits to be randomly
changed, is also an important parameter in GA. Experiments
show that a mutation rate of 5–8% is often efficient in the cal-
culation.

The process of evaluation, selection, and reproduction is re-
peated until a desired mean-squared error is achieved or a max-
imum generation is reached. For a population of 400 chromo-
somes, theth order IBC (i.e., ) takes 10–20 generations
to converge to the optimum while the second-order IBC takes
200–400 generations.

III. N UMERICAL EXAMPLES

In this section, some examples are presented to demonstrate
the effectiveness of the method. The first example is a deep tri-
angular grooved grating with relatively small period. The ge-
ometry of one cell of the grating is shown in Fig. 4(a) where
the period and .
The coating material is MagRAM with material constants

and at the frequency of 10
GHz. Seventeen observation angles are selected which include
normal incidence and the combination of
and . In this example, we set and
in (1) to zero and in (4) to make the model compa-
rable with TIBC. The co-polarization reflection coefficients for
the H-pol and V-pol incidence are plotted in Fig. 5(a) and (b),
respectively, and the H–V cross-polarization reflection coeffi-
cients are plotted in Fig. 5(c). In the figures, the-axis is divided
into sections of different incident angle, which varies from 5
to 85 in steps of 10. In each of the section, the grating angle

varies from 0 to 90 . The matching of the reflection coeffi-
cients between the GA approach and MoM solution is good at
most incident angles, even near grazing incidence. The value of
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Fig. 9. Error of the IBC model as a function of material constant" = " �j" .

is found to be from the tip of the groove or
above the ground plane. The TIBC result is also generated by
using the reflection coefficient at normal incidence to derive the
equivalent boundary condition. The impedance surface is placed
at the plane of the conductor backing. It can be seen that the
TIBC results deviate significantly from the reference solution
away from normal incidence. With the same complexity of the
boundary condition, GA achieves a much better matching be-
cause more observation points are used in the modeling and be-
cause of the additional degree of freedom in the position of the
IBC surface.

Next, we compare the IBC approximations with and without
the cross impedance terms and . The structure is a rect-
angular groove as shown in Fig. 4(b) with a period
and a groove depth of . The material con-
stants are and at 10 GHz. The
same observation points are used as in the previous example.
The th order IBC is determined and the comparison
between the reflection coefficients is illustrated in Fig. 6. With
the cross impedance included, the accuracy of the approxima-
tion is improved.

In the third example, the IBC of different orders are
obtained for the structure shown in Fig. 4(b) where

and . The coating material
is the same as that in example 2 but the period is much larger
and the groove is deeper. The reflection coefficients pre-
dicted by the th-order and second-order model are plotted
in Fig. 7. While the approximation by theth-order model is
fairly satisfactory, the second-order model further improves
the result and the matching is better at most incident an-
gles. The price of the improvement is the computation time.
For the th-order modeling, it takes only a few minutes for
the GA to converge while the second-order IBC takes more
than 1 h on an SGI O2 workstation (R10000/155 MHz).
Another consequence as the order of the model is increased
is that the resulting IBC will show more spatial variation.
This implies that when the IBC model is utilized in subse-
quent analysis using numerical electromagnetics solvers, the
impedance surface must be divided more finely to faithfully

Fig. 10. Geometry of the corner reflector.

describe the IBC. This will lead to a higher computation cost.
Thus, the higher order model is not recommended unless the
th-order one is intolerable or the period is large compared

to the wavelength. Generally speaking, the IBC model can be
improved by increasing the model order whether or not the
cross-impedance terms exist. But with the cross-impedance
terms, the required model order is usually smaller than that
without them.

We further investigate a structure with a period larger
than half a wavelength, which results in higher order Flo-
quet-mode reflection at some incident angles. The rectangular
groove shown in Fig. 4(b) has a period and

. The material constant are
and . The th and 1st order reflection coefficients
are plotted in Fig. 8(a) and (b), respectively. It is shown that the
Floquet modes are also well characterized.

In the final example, we investigate the limitation of
the IBC model. We consider a triangular groove shown in
Fig. 4(a) with and . The
optimal IBC model is found using the GA for different
coating materials. A second-order IBC model with cross
impedance terms is used and the optimal model parameters
are determined by running GA to convergence. After the
model is found, the root mean squared (RMS) error of
the IBC-predicted reflection coefficients over the selected
angles are computed. Fig. 9 shows the RMS error of the
optimal IBC model as a function of and , which
are the real and imaginary parts of the coating relative
permittivity . is set to one for all the coatings. We
observe that the IBC model works best for high-contrast
high-loss materials. For low-contrast or low-loss materials,
the model error can be large. This behavior is very similar
to conventional IBC models for planar coatings.

We now apply our derived IBC model to a three-dimen-
sional (3-D) scattering problem. Consider the corner reflector
as shown in Fig. 10. The monostatic radar cross section
(RCS) is calculated for both the uncoated reflector and that
coated with the MagRAM structure described in example
1. The groove of the coating is either parallel or perpen-
dicular to the incident direction. Both cases are computed
for comparison. Note that the solution for such a structure
is very complicated if we try to use the exact MoM for-
mulation. Instead, we use theth-order impedance boundary
condition obtained from example 1 to replace the corrugated
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(a)

(b)

Fig. 11. RCS of the corner reflector(f = 10 GHz). (a) H-polarization. (b)
V-polarization.

absorber. We assume that the size of the plate remain the
same after the IBC replacement. The RCS is computed using
FISC [12], which is a 3-D MoM code based on the fast
multipole method [13]. Comparisons of the RCS at several
elevation angles are shown in Fig. 11 for both the H- and
V-polarizations. The result shows the effect of coating, which
lowers the overall RCS level for both polarizations. We fur-
ther observe that a 30-dB RCS reduction can be achieved for
both polarizations over the range of elevation angles from
20 to 75 if the grating is oriented parallel to the incident
wave.

IV. CONCLUSION

In this paper, an impedance boundary condition model is
derived based on the GA to approximate arbitrary corrugated

coating structures in scattering problems. The periodic struc-
ture is replaced by a periodic IBC on a virtual surface. The
boundary impedance and the position of the surface are opti-
mized by matching the reflection coefficients to the rigorous
numerical solution at a number of incident angles. Similar
to traditional IBC models, this approach is most effective
when the coating material is high loss and of high con-
trast. The resulting IBC model generated by this algorithm
can be incorporated into an existing computational electro-
magnetics code to assess the performance of the corrugated
coating when mounted on complex platforms.

Compared with other IBC approaches, the method de-
scribed above has several advantages. First, the boundary
impedance is assumed to be anisotropic so that the same
model can be applied to oblique incidence from any arbitrary
angles. Second, it is possible to build in spatial variation of
the boundary impedance by adjusting the number of terms
used in the Fourier series expansion. By using more terms,
the IBC model can be made more accurate. In addition, the
position of the impedance surface can also be optimized.
By solving for the best position of the impedance surface
as one of the model parameters, the accuracy of the model
can be improved.

Numerical experiments show that the IBC approximation
can be improved if some of the parameters of the GA are
carefully chosen. These parameters include the incident an-
gles at which the rigorous solution is obtained, the range
of each model parameter, and the mutation rate, etc. The
GA can also be accelerated with carefully chosen parame-
ters and a well-designed cost function.
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