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The Simultaneous Interpolation of Antenna Radiation
Patterns in Both the Spatial and Frequency Domains

Using Model-Based Parameter Estimation
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Abstract—The Padé rational function fitting model commonly
used for model-based parameter estimation (MBPE) in the fre-
quency domain is enhanced to include spatial dependence in the
numerator and denominator coefficients. This allows the function
to interpolate an antenna radiated electric field pattern in both the
frequency and spatial domains simultaneously, such that a single
set of coefficients can be used to accurately reconstruct an entire
radiation pattern at any frequency in the fitting-model range.
A simple procedure is introduced for transforming interpolated
electric fields into gain patterns using input impedance versus
frequency curves also obtained via MBPE. The utility of this
method is demonstrated by applying it to a dipole antenna over
a frequency range of 150–950 MHz and using a polynomial
representation in for the coefficient spatial dependence. It is also
used to estimate radiation patterns for a three-element Yagi array
between the frequencies of 470 and 500 MHz using a binomial
representation for the spatial variation that includes terms depen-
dent on as well as . The use of this method for interpolating
radiation patterns has at least two significant advantages; one
being large compression ratios for the amount of data that must
be stored to accurately reproduce patterns and the other being a
significant decrease in the amount of time required for modeling
problems with large computational domains.

Index Terms—Antenna radiation patterns, model-based param-
eter estimation.

I. INTRODUCTION

T HE process of creating a large database of antenna radi-
ation patterns containing both spatial and frequency do-

main information can be an arduous task, especially when con-
sidering the amount of space on storage media required to accu-
rately reproduce these patterns. A typical high-fidelity radiation
pattern will contain more than 64 000 data points in its spatial
domain representation alone. If information on how this pattern
changes as a function of frequency is desired, the only solution
currently available is to store an entire spatial pattern for every
frequency within the operational range of the antenna. Clearly,
a scheme whereby high-fidelity radiation patterns can be inter-
polated, compressed, and then regenerated at differing levels of
fidelity in both space and frequency is highly desirable. In many
cases, including those concerned with only the spatial variation
of antenna radiation patterns, interpolation can be done using the
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multitude of curve and surface fitting algorithms available [1],
which often incorporate polynomial and binomial fitting models
for one- and two-dimensional curves and surfaces, respectively.
For some situations, however, such as frequency dependence
in the case of radiation patterns, these functions are not suffi-
cient to represent the data in question and an interpolation model
must be chosen, which takes into account the physics behind the
problem. Such models fall into a class of data-fitting algorithms
known as model-based parameter estimation (MBPE).

A series of articles by Miller [2]–[5] describes in detail the
theory behind the MBPE interpolation process and gives many
examples to which it may be applied. In [2] and [3], the moti-
vation for using physically based model equations to represent
parameters in electromagnetics applications is given, along with
a detailed tabulation of many different types of model-based
equations, which are in common use. The modeling, sampling,
and solution of MBPE problems for both spatial and frequency
domain problems, including the use of matrix inversion tech-
niques to solve for the interpolation coefficients, is described in
[4]. Specific applications to antennas are considered, including
the use of MBPE to interpolate the input impedance of an an-
tenna as a function of the operating frequency. Other applica-
tions mentioned for MBPE are the filtering of noisy data, the
determination of scattering patterns from antennas, antenna ra-
diation pattern analysis and synthesis, and schemes for choosing
optimum data sampling. A procedure for combining MBPE with
the method of moments (MoM) that leads to an efficient tech-
nique for solving electric field integral equations (EFIE’s) is
outlined in [5]. In [6], the use of MBPE is discussed for re-
ducing numerical error or error due to inadequacies in param-
eter estimation and, in [7], the concept of optimized sampling
is presented in some detail with particular emphasis placed on
frequency domain applications. A method for using MBPE to
model the spatial dependence of antenna radiation patterns is
given by Miller in [8], with the objective of reducing the number
of sampling points needed to accurately represent radiation and
scattering patterns for antennas. Finally, Roberts and McNa-
mara have demonstrated in [9] that MBPE can also be success-
fully used to synthesize antenna radiation patterns at a single
frequency by determining the array currents necessary to pro-
duce a desired pattern.

In discussing frequency domain applications of MBPE,
[2]–[5] make use of the Padé rational function. As pointed
out by Presset al. [10], functions such as this one are more
useful than simple polynomials or binomial models in some
cases because they are able to represent complicated pole-zero
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functional forms. This procedure is know as Padé approxima-
tion. Spectral response curves are known to exhibit this type
of behavior, which suggests that the Padé rational function
is a logical choice to use for the interpolation of frequency
dependent data sets. For example this type of function is used
in [4] to interpolate the input impedance of an antenna as a
function of frequency. The model-order reduction that is pos-
sible when using a rational function, as opposed to what would
be possible if a polynomial or other nonphysical function were
used, is also demonstrated in [4]. While MBPE techniques
have been successfully applied to the interpolation of antenna
input impedance as demonstrated in [4], there has not been
any documented attempt to extend these techniques to include
interpolation of the corresponding frequency variation in the
radiation patterns.

The purpose of this paper is to present a generalized Padé ra-
tional function fitting model that can be used to interpolate both
frequency and spatial characteristics of antenna radiation pat-
terns simultaneously. Although simple polynomial and binomial
functions cannot model accurately the pole-zero structure of the
frequency response, they are quite capable of interpolating the
spatial structure of the radiation pattern at a single frequency.
A hybrid method for combining a rational function pole-zero
frequency domain fitting model with a polynomial or binomial
spatial domain fitting model is introduced in this paper. This
new hybrid method allows an antenna radiation pattern to be
interpolated in both the spatial and frequency domains simul-
taneously such that only a single set of coefficients is neces-
sary to reconstruct the entire pattern of interest with any desired
angular resolution and at any frequency within the operational
range of the antenna. Two practical examples are considered in
this paper which serve to demonstrate the utility of this new hy-
brid MBPE technique. In particular, the hybrid MBPE approach
will be shown to yield accurate reproductions of radiation pat-
terns for a 0.5-m dipole, modeled from 150–950 MHz, and a
three-element Yagi antenna, modeled from 470–500 MHz, at
several different frequencies within the range of each interpola-
tion model.

II. THEORY

MBPE is a form of “smart” curve fitting because it uses a fit-
ting model, which is based on the problem physics as opposed
to standard curve-fitting techniques that do not make use of the
problem physics and, consequently, tend to be much less effi-
cient. The “model-based” part of MBPE involves using low-
order analytical formulas as fitting models, while the “parameter
estimation” part refers to the process of numerically obtaining
coefficients for the fitting model by matching it or fitting it to

sampled values (either calculated or measured). One form of a
fitting model that is commonly employed in MBPE is repre-
sented by the rational function [4], [5]

(1)

where represents a spectral-domain fitting model (SD FM)
appropriate for the set of complex data undergoing interpola-
tion, the argument represents the complex frequency and
the function has unknown complex coefficients [2],
[4], [5]. By sampling at a total of frequencies, the ex-
pression in (1) can be written as a matrix equation of the form

(2)

where and are shown in (3), shown at the bottom of the page,
and

...
(4)

and the coefficient matrix is given by

...

...

(5)

This matrix equation may then be solved in order to determine
the set of appropriate numerator and denominator coefficients
for (1).

The Padé rational function (1) has been successfully used
in the past to interpolate antenna input impedanceversus
frequency by setting equal to the sampled values of the
impedance and , where is the frequency at
which the antenna is operated [2], [4], [5]. This paper, however,
is concerned with developing a MBPE scheme for the efficient
interpolation of antenna radiation patterns. In order to accom-
plish this, the methods proposed in [2], [4], [5] must be extended
to include not only frequency variation but also spatial varia-
tion. This would allow radiation patterns to be reconstructed via
the MBPE interpolation at any frequency within the predeter-
mined operational range of the antenna. One approach for ac-

...
...

...
...

...
...

...
...

(3)
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complishing this would be to use the rational function (1) to
interpolate the frequency response of the complex far-zone ra-
diated electric field at a particular value ofand [11], [12].
This technique may be applied repeatedly over a range of values
for and in order to obtain an approximation for the radiation
pattern at any desired frequency. However, one major drawback
of this technique is that it is not very computationally efficient
because it requires very fine sampling resolution in the spatial
domain. This is true because in order to provide a complete set of
high-fidelity spatial radiation patterns at each frequency within
the model range, a separate MBPE interpolation must be per-
formed at every point in space where radiation pattern data is de-
sired. To obtain accurate spatial resolution, the number of sepa-
rate interpolations required and, therefore, the overall number of
resulting interpolation coefficients becomes very large. A much
better approach is to assume that the numerator and denomi-
nator coefficients of (1) are functions of the spatial domain an-
gles. This assumption allows interpolation to be performed in
the spatial domain as well as in the frequency domain. There-
fore, a much smaller number of spatial sampling points can be
used to provide the same level of resolution obtained via the
technique described in [11] and [12] while requiring far fewer
interpolation coefficients. For instance, we may write (1) in the
more general form

(6)

where the unknown numerator and denominator coeffi-
cients now possess dependence on a spatial variable, in this case

and thus (6) can be used to interpolate antenna radiation pat-
terns as a function of both frequency and angle simultaneously.
There are several possible models, which could be adopted to
represent the dependence of these coefficients on angle. For the
purpose of this study we have chosen to consider a simple poly-
nomial model of the form

...

...

(7)

where represents the polynomial order for each Padé coeffi-
cient.

By sampling the set of calculated or measured complex elec-
tric field data at frequency points and, at points in space,

a matrix equation of the form given in (2) can be constructed
where and are given by (8), shown at the bottom of the next
page, and

...

...

...

...

(9)

respectively, and represents the value of the complex
electric field at a particular sampling point. The corresponding
coefficient matrix is composed of the unknown com-
plex coefficients given by

...

...

(10)

where for and
for . Solving

this matrix equation yields the set of numerator and denomi-
nator coefficients required by (6).

The fitting model proposed in (6) may be easily extended to
include radiation patterns which not only have a dependence on
, but also vary with . The general form of the fitting model

under these conditions will be as shown in (11), on p. 387. In this
case, we choose to approximate the numerator and denominator
coefficients by the following binomial expansions [1]:

(12)

(13)

where is the class of the binomial, or the highest power of
and present in the binomial expansion. For a given binomial
class, the number of coefficients present in the expansion is

(14)
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and when fully expanded the coefficient functions (12) and (13)
become

...

...

(15)

As in the previous case, the rational function defined by (11)
is expanded using the set of coefficients given in (15) and then
sampled at the appropriate number of data points in order to
construct a matrix equation of the form (2). The total number of
sampling points for this matrix is where and

represent the total number of sampling points inand ,

AAA =
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respectively, and is the total number of frequency sampling
points. The coefficient matrix in this case is given by

...

...

(16)

where

for

and

for and the total number of unknown coef-
ficients is .

The methods described above are used to interpolate complex
electric field values, but in many cases it is the antenna gain
pattern that is of the greatest interest. Therefore, a technique
for efficiently converting the interpolated electric field values to
gain is outlined below. The technique is based on the fact that
the gain of an antenna may be expressed in the form [13]

(17)

where

(18)

and

(19)

which represent the input power accepted by the antenna and the
antenna radiation intensity, respectively. The complex-valued
input current to the antenna is given by

(20)

where is the excitation voltage applied to the antenna and
is the antenna input impedance. A technique for interpolating
the input impedance of an antenna via Padé approximations has
been demonstrated previously by Miller [2]–[4]. A similar tech-
nique may be employed here which uses Padé approximations
to estimate the input impedance required in
order to calculate the input power (18) of a particular an-
tenna as a function of frequency. Finally, the interpolated elec-
tric field values may be used to calculate (19) and, ultimately,
the required antenna gain (17).

III. RESULTS

The MBPE techniques described in the previous section were
first applied to a 0.5-m dipole antenna over a frequency range of
150–950 MHz, using radiation pattern data obtained from a nu-
merically rigorous method of moments (MoM) computer code.
Since the dipole is oriented along the-axis, there will be no

-variation in the radiation pattern. This suggests that a rational
function fitting model of the type given in (6), which only de-
pends on a single angular variable, would be sufficient for in-
terpolating the radiation pattern. Furthermore, the symmetry of
the problem may be exploited such that it is only necessary to
apply the interpolation over the limited range .
The rational function was chosen to have a numerator order

, a denominator order , and a polynomial coefficient
order . The fitting frequencies selected were 150, 300,
350, 600, 800, 900, and 950 MHz, and the fitting angles for the
spatial dependence were chosen to be 2, 10, 20, 40, 50, 60, 80,
and 90 . These parameters, including the frequency and spatial
domain sampling points and the Padé and polynomial function
interpolation orders were chosen experimentally by varying the
parameter values and selecting those which produced the best
results. This information was used to construct a matrix of the
form given in (8) where, in this case, and

. The required unknown co-
efficients for (6) were determined by solving the related matrix
equation (2) using (8)–(10). A surface plot of the interpolated
electric field magnitude as a function ofand frequency

(11)
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Fig. 1. Electric field magnitude as a function of spatial variable� and
frequency for a 0.5-m dipole obtained using hybrid MBPE technique.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Comparison of the electric field frequency response of a 0.5-m dipole
using MoM and MBPE at� = 10, 30, 50, 70, and 90with the seven fitting
frequencies, 150, 300, 350, 600, 800, 900, and 950 MHz, shown as circles.

is shown in Fig. 1. Fig. 2 shows a series of plots of the electric
field magnitude versus frequency for this dipole at 10,
30, 50, 70, and 90, with comparisons being made between the
MoM frequency spectra and the spectra obtained via MBPE.

Fig. 3. A comparison ofRefZ g andImfZ g for a 0.5-m dipole computed
using MoM and MBPE, with the seven fitting frequencies, 150, 300, 450, 600,
750, 900, and 950 MHz, shown as circles.

As can be seen from Fig. 2, the two curves are nearly graphi-
cally indistinguishable. In this case, only seven fitting frequen-
cies were required for the MBPE technique. The actual fitting
frequencies that were used are indicated by circles on the plots
contained in Fig. 2. The plots in this figure also show that one of
the fitting frequencies chosen coincides with the half-wave res-
onance of the 0.5-m dipole at 300 MHz. Although it has been
demonstrated by Miller [4] that spectral domain MBPE does
not necessarily require that resonances be sampled in order for
their structure to be preserved, in this case choosing 300 MHz
as a sampling frequency seemed a natural and beneficial choice
to make. The application intended here is the interpolation of
a known set of data rather than the estimation of an entire set
of data from a sparse set of measurements, so minimizing the
number of sampling frequencies is highly desirable. Placing fit-
ting frequencies at or very near to resonances insures that the in-
terpolation accurately preserves the structures and locations of
these important features while still allowing a minimum number
of spectral-domain sampling points to be used.

MoM-generated and MBPE-interpolated curves of the real
and imaginary parts of the input impedance versus frequency for
the 0.5-m dipole example are shown in Fig. 3. The seven fitting
frequencies are shown as circles. The fits to these impedance
curves obtained using MBPE, as shown in Fig. 3, are nearly
identical to the impedance values calculated by MoM. Using
this interpolated impedance and the MBPE interpolated electric
field values, the gain pattern for the antenna as a function of
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and frequency was determined (see Fig. 4). A series of six pat-
tern cuts at the frequencies 300, 500, 600, 720, 800, and 933
MHz are shown in Fig. 5, which further demonstrate the excel-
lent agreement between the MBPE and MoM results. Three of
these frequencies, 500, 720, and 933 MHz, are not among the
fitting frequencies that were selected.

We note here that in the case of the simple 0.5-m dipole,
it was only necessary to assume a spatial dependence for the
numerator coefficients of the fitting model given in (6). This
property may be attributed to the fact that the location of the
poles for antenna radiation patterns should be dictated solely
by the geometry of the antenna structure [14], [15]. This
also suggests that the required number of sampling points
for this problem may be reduced by an amount equal to
(in this case ). Hence, by taking advantage of this
property, the required number of coefficients for the fitting
model may be reduced from 56 to 42.

The second example used to demonstrate this new MBPE pro-
cedure was a three-element Yagi array antenna, designed for op-
timized operation at 485 MHz. The driver length was chosen
to be 0.453 , the reflector length 0.479, the director length
0.451 , the element spacing was selected as 0.25, and the
wire radius was chosen to be 0.00016. The Yagi is located
in the – plane with the elements parallel to the-axis. An
MBPE fitting model of the form (11) was chosen in this case
because the radiation patterns for the Yagi will have a spatial
dependence on bothand as well as a frequency dependence.
The angular variation of the rational function numerator and
denominator coefficients were modeled using binomial expan-
sions of the type proposed in (12) and (13), respectively. Unlike
the dipole, the radiated field in this case has bothand
components. Each component was interpolated separately and
then combined using (17)–(20) in order to produce the corre-
sponding gain patterns. In this case, it was found necessary to
assume an angular dependence for both the numerator and de-
nominator coefficients.

The interpolation used a Padé rational function with
numerator order and denominator order , and
the spatial dependence in bothand for each of the five
unknown complex coefficients was modeled using binomial
functions with . The frequency domain sampling was
done at only five frequencies (i.e., 470, 475, 485, 495, and
500 MHz), which were chosen to equal the number of un-
known Padé rational function coefficients. The class eight
binomial has 45 unknown coefficients and there is one bi-
nomial function for each Padé coefficient, resulting in an
overall total of unknown coefficients to be de-
termined for the interpolation. A grid of 196 spatial sam-
pling points was created by choosing the values 0,
10, 20, 40, 60, 70, 90, 100, 120, 140, 160, 170, 175, and
180 (i.e., ). It was found that sufficient ac-
curacy could be achieved by using as few as five sampling
frequencies. Hence, a total of sampling points
was required to estimate the coefficients of the fitting model.
In this case, a least-squares approach was implemented in
order to solve the resulting matrix equation for the desired
coefficients. Comparisons were made at several frequencies,
which showed excellent agreement between the MoM-cal-

Fig. 4. Gain as a function of spatial angle� and frequency for a 0.5-m dipole
computed using MBPE.

Fig. 5. Principle plane cuts of the gain pattern for a 0.5-m dipole at (a) 300
MHz; (b) 500 MHz; (c) 600 MHz; (d) 720 MHz; (e) 800 MHz; and (f) 933 MHz,
with the MoM pattern indicated by the solid curve and the MBPE determined
gain represented by crosses.

culated and MBPE-interpolated electric fields. For the
interpolation, the same numerator and denominator orders
for the Padé rational function were used, but this time a
class binomial function was sufficient to model the
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Fig. 6. E-plane cuts of the gain pattern for a three-element Yagi array at (a)
470 MHz; (b) 480 MHz; (c) 485 MHz; (d) 490 MHz; (e) 495 MHz; and (f)
500 MHz, with the MoM pattern indicated by the solid curve and the MBPE
determined gain represented by crosses.

spatial variation, resulting in a total of un-
known coefficients. The sampling scheme is the same as that
used for the component and, as before, the interpola-
tion produced results in good agreement with electric field
values calculated using the more rigorous MoM approach.
It should be noted that contrary to the statement made for
the 0.5-m dipole example that the denominator coefficients
of the Padé rational function do not require spatial depen-
dence, in this case it was necessary to include dependence
on both and in the denominator in order to obtain ac-
curate results. This is due to the fact that very little of the
resonant structure for this Yagi antenna is present in the
470–500 MHz frequency range under consideration, so the
spatial variable dependence in the denominator is necessary
to compensate for this missing information.

After the required interpolations for both the and
components of the radiated electric field as well as the input
impedance were performed, the corresponding gain pattern
of the Yagi could then be determined using (17). Figs. 6 and 7
show -plane and -plane pattern cuts of the resulting gain
patterns for the Yagi at six different frequencies, 470, 480,
485, 490, 495, and 500 MHz. These plots clearly demonstrate

Fig. 7. H-plane cuts of the gain pattern for a three-element Yagi array at (a)
470 MHz; (b) 480 MHz; (c) 485 MHz; (d) 490 MHz; (e) 495 MHz; and (f)
500 MHz, with the MoM pattern indicated by the solid curve and the MBPE
determined gain represented by crosses.

the ability of the MBPE interpolation technique to accurately
reproduce the evolving structure of the antenna gain patterns,
including the changing front-to-back ratio and the appearance
of sidelobes above the design frequency.

The two examples considered above serve to illustrate
how this new MBPE technique may be used to achieve a
significant reduction in the amount of generated and stored
data required to accurately reproduce antenna radiation
patterns, especially those which vary with frequency. For
instance, the MBPE approach only required storing 42
complex coefficients in order to generate the plot shown
in Fig. 1 for the 0.5-m dipole. On the other hand, the
conventional approach for generating this plot would
require radiation pattern data to be calculated via a MoM
code in 10-MHz increments from 150 to 950 MHz and,
at each frequency, over a range of from 0 to 180 ,
with at least 2 angular resolution. This would make it
necessary to store a total of 7371 complex data points as
opposed to only 42 in the MBPE case. Furthermore, the
MBPE technique has the added advantage of being able
to reproduce radiation patterns at any desired frequency
within the fitting-model range and with any desired an-
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gular resolution. These properties make the MBPE method
particularly attractive for use in the creation of large an-
tenna radiation pattern databases, where all the necessary
information can be stored in compressed form.

A second important feature of this new hybrid MBPE tech-
nique is that when used in conjunction with MoM codes, it
could potentially reduce the required computation time for
antenna radiation patterns by several orders of magnitude
depending upon the size of the MoM problem space. Com-
plex MoM antenna models consisting of several thousand
wire segments often require many hours to calculate radia-
tion patterns for a single frequency. If it is desired to calcu-
late these patterns over a large range of frequencies, then the
required calculation time could rapidly become prohibitive.
By using the MBPE technique described in this paper, how-
ever, which uses reduced order fitting models, only the data
needed for the interpolation would have to be generated. Ra-
diation patterns could then be efficiently interpolated at any
other desired frequency within the range of the fitting model.
An adaptive sampling scheme has been introduced by Miller
[7], [8], [16], which uses overlapping fitting models to find
the most suitable positioning of sampling points for a given
Padé approximation. Adaptive sampling would be very useful
for the procedure described above, since it would predict
which frequency data points would have to be generated in
advance, thus removing any reliance on a trial-and-error sam-
pling technique. Similarly, for the spatial domain expansion
functions, an appropriate order can be found by determining
what order function most accurately fits the radiation pattern
at the highest desired frequency. This is true because the ra-
diation pattern for an antenna is generally more complicated
at higher frequencies than it is at lower frequencies. Bose has
shown in [17] and [18] that a recursion relationship exists
for the denominator of the Padé rational function that makes
it possible to efficiently increase the order of the frequency
domain interpolation without having to reevaluate the often
large Padé matrix equation. These techniques, when taken
together, would make the use of the MBPE approach de-
scribed in this paper applicable for the efficient calculation
of antenna radiation patterns for problems which ordinarily
would have very large computational domains. This aspect
of the hybrid MBPE technique is currently being investi-
gated by the authors.

IV. CONCLUSIONS

An approach has been introduced in this paper whereby
the Padé rational function fitting model commonly used for
MBPE in the frequency domain can be easily modified to
include spatial dependence in its numerator and denominator
coefficients. It was demonstrated that generalized MBPE
techniques of this type provide extremely powerful tools
for interpolating antenna radiation patterns in both the
frequency and spatial domains simultaneously. This new
interpolation technique was applied to two examples, a
0.5-m dipole antenna and a three-element Yagi array and,

in each case, the modified Padé rational function yielded
excellent agreement with the exact results calculated using
MoM. The MBPE method outlined in this paper offers two
important advantages—one being large compression ratios
for data storage of antenna radiation patterns and the other
a significant decrease in the amount of time required to
process antenna models with large computational domains.

ACKNOWLEDGMENT

The authors would like to thank E. Miller, R. Mittra, P.
Werner, J. Zmyslo, and N. Bose for their assistance.

REFERENCES

[1] P. Lancaster and K. Salkauskas,Curve and Surface Fitting: An Introduc-
tion. New York: Academic, 1986, p. 280.

[2] E. K. Miller, “Model-based parameter estimation in electromag-
netics—I: Background and theoretical development,”Applied
Computational Electromagnetics Society Newsletter, vol. 10, no. 3, pp.
40–63, 1995.

[3] , “Model-based parameter estimations in electromagnetics—Part
I: Background and theoretical development,”IEEE Antennas Propagat.
Mag., vol. 40, pp. 42–52, 1998.

[4] , “Model-based parameter estimation in electromagnetics—Part II:
Applications to EM observables,”Appl. Computat. Electromagn. Soc.
Newsletter, vol. 11, no. 1, pp. 35–56, 1996.

[5] , “Model-based parameter estimation in electromagnetics—Part
III: Applications to EM integral equations,”Appl. Computat. Electro-
magn. Soc. J., vol. 10, no. 3, pp. 9–29, 1995.

[6] , “Using model-based parameter estimation to estimate the accu-
racy of numerical models,” in12th Annu. Rev. Progress Appl. Computat.
Electromagn.. Monterey, CA, 1996, pp. 588–595.

[7] , “Minimizing the number of frequency samples needed to repre-
sent a transfer function using adaptive sampling,” in12th Annu. Rev.
Progress Appl. Computat. Electromagn.. Monterey, CA, pp. 1132–1139.

[8] , “Using windowed, adaptive sampling to minimize the number of
field values needed to estimate radiation and scattering patterns,” in14th
Annu. Rev. Progress Appl. Computat. Electromagn., vol. 2, 1998, pp.
958–963.

[9] R. Roberts and D. A. McNamara, “Interpolating radiation patterns using
Prony’s method,” inProc. Symp. Antennas Propagat. Microwave Theory
Tech.. Stellenbosch, South Africa, 1994, pp. 151–154.

[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-
merical Recipes: The Art of Scientific Computing. New York: Cam-
bridge Univ. Press, 1986, p. 818.

[11] R. J. Allard, D. H. Werner, J. S. Zmyslo, and P. L. Werner, “Spectral do-
main interpolation of antenna radiation patterns using model-based pa-
rameter estimation and genetic algorithms,” in14th Annu. Rev. Progress
Appl. Computat. Electromagn.. Monterey, CA, 1998, pp. 964–971.

[12] , “Model-based parameter estimation of antenna radiation pattern
frequency spectra,” inProc. IEEE Antennas Propagat. Soc. Int. Symp.,
vol. 1, Atlanta, GA, June 1998, pp. 62–65.

[13] W. L. Stutzman and G. A. Thiele,Antenna Theory and Design. New
York: Wiley, 1981, p. 598.

[14] C. E. Baum, “Emerging technology for transient and broad-band anal-
ysis and synthesis of antennas and scatterers,”Proc. IEEE, vol. 64, pp.
1598–1615, Nov. 1976.

[15] J. N. Brittingham, E. K. Miller, and J. L. Willows, “Pole extraction from
real-frequency information,”Proc. IEEE, vol. 68, pp. 263–273, Feb.
1980.

[16] E. K. Miller, “Computing radiation and scattering patterns using model-
based parameter estimation,” inProc. IEEE Antennas Propagat. Soc.
Int. Symp., vol. 1, Atlanta, GA, June 1998, pp. 66–69.

[17] N. K. Bose,Digital Filters: Theory and Applications. Malabar, FL:
Krieger, 1985, p. 508.

[18] N. K. Bose and S. Basu, “Theory and recursive computation of 1-D
matrix Padé approximants,”IEEE Trans. Circuits Syst., vol. 27, pp.
323–325, Apr. 1980.



392 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

Douglas H. Werner (S’81–M’89–SM’94) received
the B.S., M.S., and Ph.D. degrees in electrical
engineering from The Pennsylvania State Univer-
sity, State College, PA, in 1983, 1985, and 1989,
respectively, and the M.A. degree in mathematics at
the same university in 1986.

He is an Associate Professor at the Department of
Electrical Engineering, The Pennsylvania State Uni-
versity. He is a member of the Communications and
Space Sciences Laboratory (CSSL) and is affiliated
with the Electromagnetic Communication Research

Laboratory, The Pennsylvania State University. He is also a Senior Research
Associate in the Communications Science and Technology Division of the Ap-
plied Research Laboratory, The Pennsylvania State University. He is an asso-
ciate editor ofRadio Science. He has published numerous technical papers and
proceedings articles and is the author of six book chapters. He is the coeditor of
Frontiers in Electromagnetics(Piscataway, NJ: IEEE Press, 2000). His research
interests include theoretical and computational electromagnetics with applica-
tions to antenna theory and design, microwaves, wireless and personal commu-
nication systems, electromagnetic wave interactions with complex materials,
fractal and knot electrodynamics, and genetic algorithms.

Dr. Werner is a member of the American Geophysical Union (AGU), URSI
Commissions B and G, the Applied Computational Electromagnetics Society
(ACES), Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. He was presented with
the 1993 Applied Computational Electromagnetics Society (ACES) Best Paper
Award and was also the recipient of a 1993 International Union of Radio Science
(URSI) Young Scientist Award. In 1994 he received the The Pennsylvania State
University Applied Research Laboratory Outstanding Publication Award. He
has also received several letters of commendation from the Department of Elec-
trical Engineering, The Pennsylvania State University, for outstanding teaching
and research.

Rene J. Allard was born in Hartford, CT, on April
6, 1974. He received the B.A. degree in physics and
astronomy from Boston University, Boston, MA, in
1996, and the M.S. degree in electrical engineering
from The Pennsylvania State University, State Col-
lege, PA, in 1998. He is currently working toward
the Ph.D. degree in electrical engineering at the same
university.

He is currently a Research Assistant in the Com-
munications Science and Technology Division of the
Applied Research Laboratory at The Pennsylvania

State University. His research interests are in the field of computational
electromagnetics, including the analysis and design of conformal antennas
and electromagnetic optimization techniques such as model-based parameter
estimation and genetic algorithms.


