2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Gain Enhancement of a Pyramidal Horn Using E-and H-Plane Metal Baffles

Matthew A. Koerner, Member, IEEE and Robert L. Rogers Senior Member, IEEE

Page 529.

Abstract:

A technique for enhancing the gain of a wide-flare angle pyramidal horn is described. The gain of the antenna is increased by placing simple metal strips or baffles inside the horn near its throat. Two baffles, an E-and an H-plane baffle,are described and analyzed. The baffles are first analyzed through two-dimensional (2-D) numerical calculations and then through measurements in an experimental X-band horn. Each baffle enhances the antenna's gain in the respective plane. When the baffles are implemented together the gain enhancement is additive in decibels. The numerical calculations and measurements show that baffles can be used to significantly reduce the size of pyramidal horn antennas.

References

  1. S. Silver, Microwave Antenna Theory and Design, New York: McGraw-Hill, 1949,vol. 12, p.  383. 
  2. M. A. Koerner, "Gain enhancement of a wide-flare, X -band,pyramidal horn using metal baffles", Master's thesis, Univ. Texas, Austin, TX, Aug. 1996.
  3. M. A. Koerner and R. L. Rogers, "Gain enhancement of wide flare angle horn antennas using metallic baffles", in URSI Nat. Radio Sci. Meet., Boulder, CO, Jan. 1996.
  4. M. A. Koerner and R. L. Rogers, "Enhancement of wide-flare pyramidal horn E -and H -plane performance using metal baffles", in URSI North Amer. Radio Sci. Meet., Montreal, Canada,July 1997, oral presentation,
  5. M. Clenet and L. Shafai, "Gain enhancement of conical horn by introducing bodies of revolution inside the horn", in IEEE AP-S Symp., Atlanta, GA, June 1998, pp.  1718- 1721. 
  6. A. W. Love, Electromagnetic Horn Antennas, New York: IEEE Press, 1976.
  7. C. A. Balanis, Antenna Theory Analysis and Design, New York: Wiley, 1982, ch. ch. 12.
  8. C. A. Balanis, Antenna Theory Analysis and Design, New York: Wiley, 1982, ch. 11.
  9. E. H. Braun, "Some data for the design of electromagnetic horns", IEEE Trans. Antennas Propagat., vol. AP-4, pp.  29-31, Jan.  1956.
  10. R. F. Harrington, Field Computation by Moment Methods, New York: MacMillan, 1968, ch. 3.
  11. C. A. Balanis, Advanced Engineering Electromagnetics, New York: Wiley, 1982, ch. 12.
  12. R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
  13. C. A. Balanis, Antenna Theory Analysis and Design, New York: Wiley, 1982, ch. 2.
  14. G. V. Eleftheriades, W. Y. Ali-Ahmad, L. P. B. Katehi and G. M. Rebeiz, "Millimeter-wave integrated-horn antennas-Part I: Theory", IEEE Trans. Antennas Propagat., vol. 39, pp.  1575-1581, Nov.  1991.
  15. W. Y. Ali-Ahmad, G. V. Eleftheriades, L. P. B. Katehi and G. M. Rebeiz, "Millimeter-wave integrated-horn antennas-Part II: Experiment", IEEE Trans. Antennas Propagat., vol.  39, pp.  1582-1586, Nov.  1991 .