2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Electromagnetic Scattering by Nonplanar Junctions of Resistive Sheets

C. Gennarelli, G. Riccio and G. Toso Member, IEEE

Page 574.

Abstract:

Approximate uniform asymptotic expressions are provided to determine the field scattered by a penetrable wedge illuminated at normal incidence. The wedge is formed by two resistive sheets or two thin dielectric slabs definable as resistive sheets having identical geometric and electromagnetic characteristics. The solution is limited to wedge angles and source positions where internal reflections cannot occur. It is obtained by using a geometrical optics (GO) approximation for the field internal to the slabs and by performing a uniform asymptotic evaluation of the physical optics (PO) radiation integral in the hypothesis that a resistive sheet condition is valid. Samples of numerical results so obtained are presented and compared with other methods to demonstrate the effectiveness of the proposed technique.

References

  1. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: Inst. Elect. Eng., 1995.
  2. G. D. Maliuzhinets, "Excitation, reflection and emission of surface waves from a wedge with given face impedances", Soviet Phys. Doklady, vol. 3, pp.  752-755, 1958.
  3. W. D. Burnside and K. W. Burgener, "High frequency scattering by a thin lossless dielectric slab", IEEE Trans. Antennas Propagat., vol. AP-31, pp.  104-110, Jan.  1983.
  4. R. J. Marhefka, "UTD diffraction coefficient for dielectric plate junctions", in Proc. IEEE AP-S, Newport Beach, CA, June 1995, pp.  2-5. 
  5. I. J. La Haie, "Function-Theoretic Techniques for Electromagnetic Scattering by a Resistive Wedge", Radiation Lab., Univ. Michigan, Ann Arbor, AFOSR-TR-81-0869, Sept. 1981.
  6. C. Demeterscu, B. V. Budaev, C. C. Constantinou and M. J. Mehler, "TM electromagnetic scattering by a transparent wedge with resistive faces", IEEE Trans. Antennas Propagat., vol.  47, pp.  47-54, Jan.  1999.
  7. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface", Proc. IEEE, vol. 62, pp.  1448-1461,  Nov.  1974.
  8. C. Gennarelli, G. Pelosi, C. Pochini and G. Riccio, "Uniform asymptotic PO diffraction coefficients for an anisotropic impedance half-plane", J. Electromagn. Waves Applicat., vol. 13, no. 7, pp.  963-980, 1999.
  9. G. Pelosi and G. Toso, "A boundary element approach to the scattering from inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol.  46, pp.  602-603, Apr.  1998.
  10. M. Born and E. Wolf, Principle of Optics, Oxford: U.K.: Pergamon, 1980.
  11. G. D. Maliuzhinets, "The radiation of sound by the vibrating boundaries of an arbitrary wedge. Part I", Soviet Phys. Acoust., vol. 1, pp.  152-174, 1955.
  12. "Inversion formula for the Sommerfeld integral", Soviet Phys. Doklady, vol. 3, pp.  52-56, 1958.
  13. P. C. Clemmow, "Some extension to the method of integration by steepest descents", Quart. J. Mech. Appl. Math., vol. 3, pp.  241-256,  1950.
  14. C. Gennarelli and L. Palumbo, "A uniform asymptotic expansion of a typical diffraction integral with many coalescing simple pole singularities and a first-order saddle point", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  1122-1124, Oct.  1984.