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Accurate Model of Arbitrary Wire Antennas in Free
Space, Above or Inside Ground

Tie Jun Cuj Member, IEEEand Weng Cho Chewrellow, IEEE

Abstract—An accurate model of wire antennas in free space,
above orinside lossy ground is presented in which the current is as-
sumed to flow on the surface of the wire and the testing is also per-
formed on the surface. To replace the traditional delta-gap source,
a more accurate source model is developed by using the Huygens’
principle. From this principle and reciprocity theorem, a varia-
tional formulation of the input admittance is derived. When the
triangle function is chosen as both basis and weighting functions,
all the elements of impedance matrix and source vector are formu-
lated in closed forms, which can be rapidly computed. Several nu-
merical results are given. Comparing with measured data, both the
current distribution and input impedance by this model are more
accurate than those of delta-gap model.
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Index Terms—Accurate model, Galerkin method, Sommerfeld
integrals, variational formula, wire antennas.

SEp by G

I. INTRODUCTION &€a My > G,

. — . . b
HE investigation of wire antennas in free space, abovc @ ® ©

or inside lossy ground is a very old but important topiGzig 1. A voltage-driven antenna and its equivalence. (a) Original problem. (b)
For wires in free space, comprehensive study has been maqevalent problem. (c) The source model.
by using approximate methods and numerical methods since
the beginning of this century [1]-[13]. For wire antennas above | this paper, an accurate model of wire antennas in free
or inside the lossy ground, they were intensively investigatelace, above or inside lossy ground is presented in which the
in 1960's, 1970's, and early 1980’s [14]-[23], after the piogyrent is assumed to flow on the surface of the wire and the
neering work of Sommerfeld in 1909 [2]. In the above studiegasting is also performed on the surface. To replace the delta-gap
the method of moments [7] plays an important role in modeling,rce, a more accurate source model is developed using Huy-
arbitrary wire antennas, yielding some efficient codes, for exang' principle. From this principle and the reciprocity theorem,
ample, the numerical electromagnetics code (NEC) [21], [24].variational formulation of the input admittance is derived in a
Recently, we developed a general algorithm for wire antenngsneral form. When the Galerkin’s method with triangle basis

above or inside the lossy ground by using Galerkin's methgghction is used, all the elements of the impedance matrix and

with triangle basis function [26]. ~ source vector are formulated in closed forms, which can be
In the above methods, however, there are three limitationgpiqly computed.

First, in most methods the current is assumed to flow on the
axis of the wire and testing is performed on the surface or vice
versa. Second, the delta gap and magnetic frill are adopted for
the source model but the delta gap is popularly used. In the¥We consider a general three-dimensional (3-D) antenna in a
frill model, a circumferentially directed magnetic current deralf-space shown in Fig. 1(a). When= e, = pio = pp = 1

sity that exists over an annular aperture with inner radiaad a@ndo. = o, = 0, the antenna is in free space; when=
outer radius has been assumed, requiring an additional paraw- = 1 ando, = 0, the antenna is above the ground; when
eterb [13]. Finally, the input admittance of the wire is simply€a = #« = 1 ando, = 0, the antenna s inside the ground. From
defined as the ratio of the current and voltage at the driving poffitlygens’ principle, the electric fielél(r) can be expressed as
which is not variational.

Il. GENERAL FORMULATION

E(r) = —V x j'{ dS'Co (. ) - ' x E(r')
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it is easily shown tha@,,(r, ') has a relation wittG..(r, ')
[27]

VX G(r, ) = [V’ X Go(r, 'r)]t (2)
where ‘t” represents the transpose. In the half-space problem

shown in Fig. 1, the dyadic Green’s functi@®.(r, r') is ex-
pressed as [25], [26]

& Qe - &
wpops { . A 1, At r
=— |- &d+5a-VV-a&

47 < + kg ) g
Wwhots (- -,
i (ds - aLgts + Oézalzg%\q)
WM |/ . . - -

5 (a -VV. a”g%\q 4+ 2&s -V Vs - a’sg]%\q)

dr ks
3)
where
exp(iky|r — 7'
o (r—1') = w @)
r—r
(@) (b)
R Fig. 3. A segment of the wire antenna: (a) local coordinate and (b) global
gre, o™, eM(Ts — 7L, 24 27) coordinate.
i +oo  ptoo pTE,TM,EM
T on oo /_Oo kb in which S, is the aperture region of the surface afide S;
. oiks(ra—r)Fike: (2427) dk, (5) M, = —nax E,isassumed known and, is the induced current

on the closed metallic surfacewhich has to be solved for.
in which RTF and R™ are reflection coefficients of TE wave When the gap is small and driving voltage i¥’, the mag-
and TM wave in Regioi, andR™ is a mixed reflection coef- Netic current density can be expressed as
ficient, which are defined by

AV
R R M,=-ixE,=—-nxl—_— (7
RTE — Nakbz - kaaz RTM — 6akbz - 6bkaz A
Hakyz + fipkaz Cakpz + G kas as shown in Fig. 1(c).
REM _ k_f (RTM n RTE) Using the boundary condition on the metallic surf&ene
2k2 ) obtains the integral equation for the induced electric current
density
In above expression&, = &, + 2« is a unit vector denoting the
: : f : Y- oot . —
_d|rect|on ofelectrlcfleld_at :c/he obi?rva}t|9n poiat;= A2, §W o j{ dS'Ge(r, ') - J(r')
is that for the source point” = —&,, +2¢«, is that for an image s

source pointy = r; + 22; V. = V,; + 29/3z in which the

subscript " represents the transverse directien= zx + 4y,
V., = £9/0x + §0/0y, k, = ko + Gky, k2 = k2 4+ k2.
Furthermoref;. = /k7 — k2 wherek; = ko/p1;¢; is the
wave number in Regiofi (¢; = ¢, + 0, /weg) andky is the
wave number in the free space. N

In (1), 7/ x E(r') equals zero oi§ except onS,. Thus, the Jp(r') =Y LiJu(r) 9)
original problem in Fig. 1(a) is equivalent to (b) whe¥ds a n=1
closed metallic surface, and an equivalent magnetic culgnt en testing withw,(r) yields
is impressed on the part of the metallic surface where originally

=-Vx j{ dslém('rv ’I'/) : Ma(rl)v res (8)
S

which can be solved by the method of moments. Choosing the
basis function and letting

in Fig. 1(a), it was a gap. Then the fiele(») can be written as Z.I=V (10)
E(r)=V x j{ dS'G (7, v') - M (v') in which the impedance matriZ and source vector (or voltage
s, vector)V are given by

o jé ASGe(r, 7') - Iplr') ©) Zopn = twpiopip{wm (1), Ge(r, '), Jo(r')) (11)
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Fig. 4. Adjacent nodes of the wire antenna. (a) Nonjunction node. (b) Junction node.

and

TABLE |
PARAMETERS OF ADJACENT NODES
(. 1) 2y £ th ty uy uz [ va
My —l, 0 —ln_ 0 1 ;! 1 1,7
no,(n=14 | —ln_ 0 —ln_ 0 1 ;1 0 -t
n_,(n=1_ | =ln_ 0 —ln_ = l(no1)_ —l, 1 o 1+ z(‘"l_l)~ ln_ z(‘n’_l)
n_,(n—2)y —ln_ 0 —ln_ — I(n_l)_ —ln_ 1 l;l _1(""1_”_ In_ [(_nl—l)
n_,ng —1, 0 0 Iny 1 ;! 1 -5
no,(n4+ 1) | —la 0 0 In, 1 17t 0 1;_;
ny. ny 0 Iny 0 Iny -y 1 —15)
ng,(n+ 12 0 In, 0 Iny 1 _z;jr 0 1;:_
ny, (n4 1)y 0 Iny lny fng + lnt1), 1 -z;jr ’+'(_,.1+1)+’"+ (—n1+1)+
ng, (n+2)- 0 Ing Ing by ¥ lnyy 1 —1;_}_ “(_nl+1)+’"+ (-n1+1)+
ng,n_ 0 l,,+ -, 0 1 —l;_}_ 1 l;i
ng,(n—1)4 0 Iny —in 0 R 0 —i;!

Vi = —{wn(r), V X G (r, 7)), M (7))

From

the

reciprocity theorem, we havd,, Jp.)

—(H,., M,). SinceM , andE, are unchanged, one obtains

(12)

andJ, (r") andw,,(r) are basis and testing or weighting func-
tions, respectively.

After J),(r’) is solved for, a variational expression for thgit tangential vector o1, the above equation gives
general input admittance is [28]

(E,, 8J) = —(6H, M,) = —(M,, 6H).

Considering - Eg. =t - (E,. + E;) = 00nS, wheref is a

v _ (M., Hr)  (Er, Jp) (13) M D) = e 07) 4o
vz vz Similarly, using the reciprocity theorem, we have
where
Erand are the total electric and magnetic fields pro- (Epe, 00y = (0F, Jp.). a7)
Hr duced by botM, andJ,;

(M, Hr) is defined onS,, while

<ET7 JP>

is defined ons.
For the exact solutionEr., J,) = 0 since the tangential elec-

tric field equals zero on the metallic surface. Then

Substituting (16) and (17) into (15) yield%,, = 0, which im-
plies that (13) is a variational formula about the exact solution.

If Galerkin’s method is used, then,,(r) = J,,,(r) and it is

easily shown thatE;, J,,) = 0 even for approximat# ;- and

J,. In this case, only the first term in (13) remains or

- <Ma7 HT6>
Vo= 4 v, _ (Mo, Hr) a8)
whereFE . andH . are the exact total fields. We take the first- &

order variation of (13) about the exact solution to show that

M, 6H
(Mo, o) |

in which we assume thak, =

(OF, Jpe)

(Ee, 6J)

VQ

V2
pe + 6J but M, remains un-

VQ

have

(15)

changed since the antenna in Fig. 1(a) is driven by a voltage
source. Due to the fact that the tangential electric fieldSon
equals zero, the last term in (15) is obviously zero.

+ twepp j{ dS'G(r, 7)) -M,(r") reS,.
Sa
(19)

H(r) =V x ]i dS'G(r, ') - J,(r')

From the equivalent problem shown in Fig. 1(b), we easily
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TABLE 1l

PART OF THE IMPEDANCE MATRIX Z .., OF A HALF-WAVELENGTH DIPOLE IN

THE FREE-SPACE (L = 0.5 m, N = 21, f = 300 MHz)

a = 0.2 mm

m| n This model The old model

11| 1 | (0.330, 0.662) | (0.330, 0.662)
11| 2 | (0.344, 0.887) | (0.344, 0.887)
11§ 3 | (0.357, 1.217) | (0.357, 1.217)
111 4 | (0.368, 1.737) | (0.368, 1.737)
11| 5 | (0.378, 2.627) | (0.378, 2.627)
11| 6 | (0.387, 4.417) | (0.387, 4.417)
11| 7 | (0.394, 8.518) | (0.394, 8.518)
11| 8 | (0.400, 21.526) | (0.400, 21.526)
111 9 | (0.396, 143.102) | (0.396, 143.598)
11 | 10 | (0.380, 1406.263) | (0.380, 1404.523)
11 111 | (0.401,-3125.479) | (0.401,-3122.986)

a=5mm

m| n This model The old model

11| 1 | (0.330, 0.661) | (0.330, 0.660)
11| 2 | (0.344, 0.884) | (0.344, 0.882)
11} 3 | (0.357, 1.212) | (0.357, 1.221)
11| 4 { (0.368, 1.727) | (0.368, 1.745)
11+ 5 | (0.378, 2.607) | (0.378, 2.645)
111 6 | (0.387, 4.365) | (0.387, 4.394)
11| 7 | (0.394, 8.346) | (0.394, 8.444)
11 | 8 | (0.400, 20.568) | (0.400, 21.149)
11| 9 | (0.396, 96.741) | (0.404, 104.061)
11 | 10 ] (0.380, 248.372) | (0.407, 211.185)
11§ 11 | (0.401,-742.167) | (0.408, -684.008)

a =15 mm

mi| n This model The old model

11 1 | (0.329, 0.646) | (0.329, 0.653)
11| 2 | (0.343, 0.861) | (0.343, 0.871)
11| 3 | (0.355, 1.174) | (0.356, 1.201)
11| 4 | (0.367, 1.656) | (0.368, 1.707)
111 5 | (0.377, 2.459) | (0.378, 2.566)
11| 6 | (0.386, 3.988) | (0.386, 4.192)
111 7 | (0.393, 7.173) | (0.394, 7.786)
11 ¢ 8 | (0.399, 15.293) | (0.399, 17.695)
11 9 | (0.394, 46.841) | (0.403, 50.114)
11 | 10 | (0.378, 71.934) | (0.406, 15.723)
11 | 11 | (0.399, -284.438) | (0.407, -185.780)

ThenHy in (18) should be

Hp(r) =iwepéy j{

Hence,

Sa

N
x> I, j’i dS'G.(r,
n=1

dS'G.(r, 7)) -M,(r')+V

) - Tn(r')

(M,, Hr) :iwcoebw (1), Gu(r, 1), M, (1)

Thus,

—i—ZI

Y}n:

), V x G.(r,

—iwCi, + Yy

resS,.

(20)

'), In(r)).

(21)

485

in which C¢ andY? are the gap capacitance and input admit-
tance of the antenna

€0 éyb

Ch = W(Ma("')v 6m('r‘, "'/)7 Ma("'/»v (22)
Yi= Z In{ x Ge(r, 1), Ju(r). (23)
Using relation (2),
(Mo(r), VX Ge(r, 7'), Ju(r))
W), [V x Ge(r, )], My(r))

= (Ju(r )]
<Jn( ) V' % Gm( "')v M, "')>
<Jn("') V x Gm("' "'/)7 Ma( /)>

which is the same as (12) if Galerkin’s method is used. Hence,
the input admittance can finally be written as

N
P — _% S L(da(r), V X Gunlr, 1), Ma(r')). (24)
n=1

Equation (24) is a general formula. The traditional definition of
the input admittance is only a special case of this formula when
the source vector (12) is a delta function.

I1l. WIRE ANTENNAS

For the wire antennas considered in this paper (see Fig. 2),
we make the following assumptions.

« The current flows along the surface of the wire.

» The testing points are on the surface of the wire.

e The current is not a function af.

¢ The current is flowing in the longitudinal direction of the

wire [.

« The gapA and radius of the wire are electrically small.

Under the above assumptions, the dyadic Green’s function
G, can be simplified by using directional derivative [26]. Then
the impedance matrix is expressed as
Tn = Z80) 4 70) 4 7(e) 4 7(d) 4 7e) 4 7(f) 4 7(9) +Z<h)

mn mn mn mn mn mn mn mn

where

Zl@) _ _ ikonosin / / l/ _
n)"’] 167T3 as. Jas, rn "' ’I')

(D) f(U)dS'dS (25a)
70 _ oo / / o"(r — )
™ 16m%ky Jas,, Jas,
(D) dfnll')
. ds' dS 25b
dl dr (25D)
@ _ _ homom / / OB )
mn 167T3]€2 AS AS. TI\T
!

dl dl’
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x10° : . : . dfn(l/)

!
o T fon (1) S dS (25f)

ikomnotp
Zr(rg% = 87r3k2 AS. s, 9EM2 T, 7‘)

Real part

% Oézrna;nfrn( n dS/ dS (259)
3 ———— This modsl
] o o x xThe old model
S or 1 gy _ _ tonok / /
" 1673 AS,, JAS,
2k =4
meaneny et : [asm : asngTE("'v r ) + azma{zngl@l\{("'v "'/)]
D fu 1) dS" dS (25h)

B W% o1 o oiim nno.;zi R mofs 0% 04 045 05 in whichdS = dl do, ds’ = dl d(/)/, r = ’r'(l, (/)), T =
e (I, '), gy = (9/092)gtlyy, andgfly, = (8°/92%)gfy-
(a) In (25a) and (25b) are the contributions from primary field, and
(25¢)—(25h) are the contributions from reflected field of the half
space. In the reflected-field terms, the integrands are defined
10 , , } , ( . , , , on the image region oAS,,. Therefore, when the antenna is
not very close to the interface, the integfall¢ [ d¢’ in these
terms can be approximated ky?2.
If we choose triangle function as the basis function, we will
obtain the same expressions 8§ to Z\") as those in [26]
after improving the primary-field terms.

[ Real part o

- A. Impedance Matrix
This model

©__© Theold model . The functions¢? (4, j) and ¥ (i, j) in the primary-field
' 1 terms [26] are defined as

6] o (i, §) / / Pl —o)
| T a2 [y, AS;

Current distribution (A}
N

Imaginary part

! : Uydd dedl’ di (26a)
Y i L L ! L L L L L
[} 0.05 0.1 0.15 O-intenng‘liigm (m()).s 0.35 04 045 05 p(/ L 1 47{_2 /AS /AS ,r _ ,r dd) dd) dl/ dl
26b
(b) (26b)

which can be combined into a general form

Fig. 5. Current distribution of a half-wavelength dipole with delta-gap source
model: (a)a = 0.2 mm ande = 5 mm and (b = 15 mm. 1
h('[:7 J) = ﬁ / / (U,l + uﬂ)(vl + Ugl/)
= JAas; JAs;

g —o)dg' dpdl’ di (27)
oy _ koot B (r ) -
L = 872 Jas. Jas IEm\T, T with different parameters, , uo, v1 andws.
df(l) df (7/) 1) Mutual Term: We set up a local coordinate system as
. Zgl ;l’ ds’ ds (25d) shown in Fig. 3(a) and evaluate the following integral:
1 /2 27 eik"R
K(z,y, z) = 5 / (v1 + v22) / 7 d¢' d2’
(e) _ thoTiopu TSy 0
rnn = 87T3k'2 / / g]{]:cl\'ll('r? ’I'/) (28)
ASm S A5y in which R? = p? + (2 — )% + a® — 2ap cos(¢ — ¢'). Since
o, = dfm D (1) dS' dS (25e) ais electricglly small, we expand the integrand in terms b§
Taylor's series
ot ' (0) 1 2O

ap =t [ pi(@) = S~ (0) +ap (0) + 2P+ 0(a?),
Ly = 87r3k§ ns. Jas. 9rM1 a <7
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PART OF THE VOLTAGE VECTOR OF AHALF-WAVELEGNTH DIPOLE IN THE
FREESPACE(L = 0.5 m,A = 22.7mm,N = 21, f = 300 MHz)

TABLE Il

—_ =
DS 00~ o ok w3

(.0000, 0.00000)
(.0000, 0.00000)
(.0000, 0.00000)
(.1253, 0.00000)
(.7494, 0.00000)

(.0010, -.00005)
(.0024, -.00005)
(.0091, -.00005)
(.1636, -.00005)
(6488, -.00005)

a=0.2mm a=95mm a =15 mm
(.0000, 0.00000) | (.0001, -.00004) | (.0007, -.00034)
(.0000, 0.00000) | (.0001, -.00004) | (.0009, -.00036)
(-0000, 0.00000) | (.0001, -.00004) | (.0012, -.00037)
(.0000, 0.00000) | (.0002, -.00004) | (.0018, -.00038)
(-0000, 0.00000) | (.0003, -.00004) | (.0027, -.00039)
(.0000, 0.00000) | (.0005, -.00004) | (.0043, -.00040)

(.0080, -.00041)

(.0181, -.00041)
(.0471, -.00042)
(.1978, -.00042)
(.4599, -.00042)

from which we obtain the inner integral of (28)

14~
2r2
2

+ 2 (3= iBkyro — k,?rg)} } 1+ O(a®),
2rg
"0

eikb’l‘g

p(?) = [(ikbro —1)

To

a7

in which73 = p2+ (» — 2’)2. Similarly, expanding the function
p2(2") in terms ofz’ by Taylor’s series yields

. 2
1— @
7 272

</31 — %/32 sin? 9)

2 a2
242 { (B1 = Pa cos™ 0) — 52 ((B2 — B3 cos® 6)
— 1 sin? 6 (B3 — B4 cos® 6)) } }
ikpr 2
23,¢ _* _ 1 -2
+ 12l & 73 [ﬁl 9,2 </32 2/33 sin 9)}
ot 29)

in whichr? = p? 4+ 22, sin 6 = p/r, cos § = z/r and

/31 =1- ikw’
B2 =3 — i3kyr — k12
B3 =15 — i15kyr — 6kir? + ikpr®
By =105 — i105kyr — 45k2r% + i10k37° + ket
We remark that the Taylor expansionmf(a) will be diver-

gent asa — 7 since thenth derivativepgn)(o) = ola™™)
whenz = 2’ andp = a. Hence, the above equation cann

be used to evaluate the self term and adjacent mutual term

the impedance matrix.

In the global coordinate system, the segmgig shown in
Fig. 3(b). In this systemi<(z, y, 2), r, I, z, andg in (29) are
replaced by&;(z, vy, z), r;, l;, I; - r;, andé;, in which
ri=( =)’ + (Y —y)* + (2= )%

i =&z —x;) + 9y — y;) + 2(z — z)).
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Reat part

o] o X X

New source model
Delta~gap source

Current distribution (A}
N
T

-2r \maginary part

0.15 0.2 0.25 03
Antenna length (m)

Real part

New source model

o o Delta-gap source

Current distribution (A)
™
T

Imaginary part

0.35 04 0.45 0.5

L . L L
0.15 0.2 0.25 0.3
Antenna length (m)

i
0 0.05 0.1

(b)

Fig. 6. Current distribution of the half-wavelength dipole with delta-gap and
new source models. (&)= 0.2 mm anda = 5 mm. (b)a = 15 mm.

Therefore, the mutual term

1

i, ) = o

/ (w1 +ual)Kj(z,y,2)dS  (30)

AS;

is a simple integral, which can be numerically evaluated.
Because the adjacent mutual term will be considered in other
0rfms, the above equation can be approximated by

o' (i, §) ~ LK (i, yis 2i),
WP, ) =LK (i, vis 2i) (31)
in whichv; = 1,99 = 0 for 1/)P(i, J), v = 1/2, Uy = 1/[1
for " (i, j)whenj = n_; vy = 1/2, va = —1/1; for " (4, j)
whenj = n4.
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Real part
< 4t
=
. o ——  New source model
bl - ~=  Delta-gap source
8 o o Measured (MACK)
5
S oF

-2+

4+

6 L L ! 1 L L L L

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
Antenna length {m)

2 T T T T T T T T

1
0.45 0.5

1.5 -
[HKe] [o]

New source model
Delta-gap source
Measured (MACK)

2

051

Real part

Current distribution {A)
s
o =)
T T

(
T

EN
o
T

Imaginary part
v}

-2k

1 . L 1 L 1
01 0.2 03 0.4 0.5 0.6 07 0.8
Antenna length (m})

(b)

can be expanded in terms Bfby using Taylor’s series. After a
complicated derivation, we obtain a compact form/¢t, ;)

h(i, 7) = — W1 + 4a*Wy + a*Ws + 2aW, + 8a* W5
+ a®We + itk Wr + Ws + O(RY) (33)
in which forn =1,2,---,7
zg — t2
W, :Fn(tQa 2 = tQ)In < )
—t
— Fn(tg, zZ1 — In <71 2)
Zo—1
_Fn(tlsz In( 22a 1)
bt 7 — )T, (AT
nitly, 21 — n %
Wg Iikb(ZQ - Zl)(tg - tl [ul + 511,2(22 + Zl)]
< [vr + Fva(ta + 1)
whereq is the radius of the wireZ;(k) = 1 and
Fi(t, z) =ao(t)z + Sai(t)2® + Lap?®
Fg(t, 7) lk'bFl(t 7) 4CL3
Fs(t, 2) = kjas, Fs(t, z) = —8kfa,
Fu(t, z) =ao(t) + ba(t)z + 3 [3kjao(t) + 16a2]7”
+ Ekfbl (t)23 + %k?@z‘k
Fs(t, ) 5 L[3kZao(t) — 2as] — Gkgbg(t)z - 9—70/€ga222
L7t =a?7? [a )+ a4 )z + ZGQZQ]
+ %74 [ ot) + gag(t)z + %ang]
in which

ao(t) = (U,l + U/Qt) (Ul + Ugt)
ay (t) = U1V + Ugv1 + 2uvot

a2 = UV2,

Fig. 7. Comparison of the current distributions of the new source model

and delta-gap source with the measured data. (a) Half-wavelength dipole. (b)

Full-wavelength dipole.

2) Self Term and Adjacent Mutual Term$Ve first consider

the adjacent nodes shown in Fig. 4(a), where no junction node

exist. Under the local coordinate system, (27) becomes

1 2r 27 zo to _ o
Wi, ) = 45 / d</)/ dg’ / dz(uy + uz72) / andZ.(k) (n =1, 2, -,
4 0 0 z1 ty

otk R

R

- dZ (v1 + ve2')

in which R? = 2a[1 — cos(¢ — ¢)] + (2 — #)?

(32)

. Because

R is electrically small for adjacent nodes, the functigr{R)

az = UV — ULV

a4(t) =urvs + 2ugvy + Sugvat
as(t) =wu v + dusvy + duguat
bo(t) =wuyva + uswat

bi(t) = uiva + 3ugvr + dugvot
ba(t) = Buivg + ugvy + 4uguot
bs(t) = 13uivz + 3ugvy + 16usvat

6) are integrals defined as

3
~
[\v]

_ 2 . —1 k

Il (]C) = ; /0 sinh m dd)

2 [™/? k
(k) == / sin? ¢ sinh ! ——— de

7 Jo sin ¢

2 [™/? k
Ta(k) == / sin* ¢ sinh™! ——— d¢

7 Jo sin ¢
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2 / . s . — , : : .
14(]§) = - /0 k2 + sin® ¢do ——  New source model

--- Delta-gap source

77/2
) /2 o O Measured (MACK)
I:)(Iﬂ/) P / SinQ d) /kQ + SinQ (/)dd) X x  Measured (MACK)
v 0 L
) /2
Ts(k) == / sin* ¢/ k2 + sin® ¢pdo.
T Jo
In the above integrals, the first three are odd functio& ahd

the last three are elliptical integrals, all of which can be rapidly
computed. Whert = 0,

Input admittance in millimhos

7:(0) =1(0) = Z5(0) = 0

2 4 16
7,0) ==, I5(0) = —, Zg(0) = —.
T 3 157
If all the segments have the same length, these integrals ai s 1 15 2 25 3 a5 4

fixed.
The self term and adjacent mutual terms can be Opy.8. Comparison of the input admittance of the two source models with the
tained from (33) by choosing different parametergeasured data.
w1, U2, V1, V2, 21, 22, t1, and t;. Table | gives these pa-
rameters of adjacent nodes in whiah, us, v1, and v, Hence, the voltage vector becomes

are only for ¢ (i, j). For % (i, j), they are constant: Vo= _ iU (1), V x Tg"(r — '), Mo(+'))
ulzvlzl,quvgz(). " 47 " ’ ’ @

If the noden is a junction point of two bend wires = = (Ju(r), VX Fc(r))
shown in Fig. 4(b), the formula (33) will be invalid for ={(Jp(r), E, (1)) (34)

h(ng, no), hlng, (n = 1)4], M(n-, ny), hln—, (n +1) % whereeé, F. is the electric vector potential. In the following

as well ash{(n +1)_, (n —1)4] andhf(n — 1), (2 +1)-]. g pcections, we assume that the driving point is not a junction of

H / / /
Under the local (/:oordlnate systeris, y, =) and(a’, v/, 2') o pentwires. If itis, we can use a method similar to Fig. 4(b)
in which z and #’ are assumed to be in the same dlrectm% compute the numerical integration

(32) still holds, however, the distanéehas been changed. By 1) Nodes Far From the GapThe local coordinate system of

rotating one of the coordinate systems one easily obtains the gap is shown in Fig. 3(a) in whidhis replaced byA. In this
2_ 2 _ N Y systemM ,(r') = ¢’ M,. Expanding the integrand in terms of
R =a (Clos_d) C;)S o)+ (a_ Sln/¢_ @ = (/j o 902 the radius: and integrating around!, we clearly see thdf, has

+ 2 sin 6)” + (2 — a sin ¢’ sin 6y — 2" cos by) only ¢ component. Expanding the resulting functions in terms

. . of 2/, we obtain
wheref, is the angle between the two bend wires. Unfortu- &

ikp T
nately, for this general formula we cannot obtain a closed formpw(r) ~ M. a?A sin @ ;’ (1 — ikyr)
like (33). Using Taylor's expansion, the four-dimensional in- 4 ,
tegral (32) can reduce to several three-dimensional integrals, . {1 + AT [ikyr — 2
which have to be evaluated by numerical integration. 24r?
Generally, the number of junction node¥;, is very small + cos? 6(8 — i5kyr — kir?)]
in wire antennas. For exampl&,; = 0 for dipoles and circular A2 ) .
loops; V; = 3 for triangle loops; andV; = 4 for square loops. + —247,2(1 k) [cos™ 6(7 — i2k,r) — 1]}
Therefore, no more computational burden has increased. +O(a?, A%). (35)
B. Voltage Vector Hence,
Like the electric-field dyadic Green’s function shown in (3), My 5, . cther
o - , = Eyp = — —a"Asin 6 cos 6
the magnetic-field dyadic Green’s functi@#,, in the voltage 4 73
vector (12) also contains a primary-field term and reflected-field A2 2 2 3 A3
terms. Similar to the impedance matrix, we approximate the in- (P 8r2 P + 2472 Py cos™ 8 ) + O(a”, A7)
tegral [ d¢’ by 2z in the reflected-field terms. Then it is easily (36)
shown that the voltage vector contributed by these terms equals
zero.

tkyr 2
Now we evaluate the contribution from the primary-field £, =~ A;[”' a?AS ; [(/35 A (B6 — Br cos® 9))
,

term. It is known that in an unbounded homogeneous region 24r?
[27]

A2 A2
2 2
— cos” € <[32 ~ g2 [s + 9172 34 cos 9)}

1 —
Vx G, r) = EV x IgP(r' — 7). +0(a?, A®) (37)
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coordinate, the unit tangential vector, andjhe unit normal vector
F— 05m—" of the gap are assumed to bey, yy, 29), {y, andi,, respec-

D c tively. Then,r, z, p, 2, and@ in (35)—(37) should be replaced
} A by ry, Uy - 74, fg, Ly, andeg, in which

B.

0.3m 7’3 =@ =z + (U —y) + (2 — %)
{ ry =z — 2g) + 3y~ up) + 2z — 7).
€,=20 ¢,;=0.01S/m Therefore, the voltage vector becomes
27
V=g [ do / 11+ 1/, )
5“0-“ T T T T T T T T T
sk © o o g:nvaigg::g:ﬁggl | : |:ln— ngE ( y Y, 2 *) + ln— : lgEaZ(xv Y, Z):|

1 27 ln+
+§/0 d¢/0 di(1 = 1/1,.,)

. |:Zn+ . ﬁgEap(xv Y, Z) +Zn+ . ZgEaz(xa Y, Z):| . (38)

Because the nodes adjacent to the gap will be considered in other
forms, (38) can be further approximated by

Vo~ b [ g Baglta . 2)

+ Zn_ ’ ZgEaz(xn_v Yn_y Zn_ ):|

Current amplitude (A)

+ %lrur |:ln+ : 7ﬁLg-Eap(anrv Yny s Zn+)

02 "ox 06 os ] 12 14 18 18 2 + ZN+ : lgEaZ(37n+v Unyy Zny ):| . (39)
Antenna length from point A (m) . .
2) Nodes Adjacent to the GagJnder the local coordinate
Fig. 9. Current distribution of a square loop above a clay when 300 MHz system shownin Fig. 4(3)’ the voItage vector (34) can be written

anda = 10 mm. as the following general form for adjacent nodes:
V(zlv 22, U1, U’Q)
0.06 T T T T T T T T T M 27 27

o _ a 2 Ur ot

5o lesoucemodd = g2 O /0 de /0 d¢'{1 = cos(¢ — ¢')]

0.05+ ’ - z2 A/2 ikR—1 .

/ dz(uy +u22)/ dzluig ke’ (40)
Z1 —A/Q R

in which R? = 2a?[1 — cos (¢ — ¢/)] + (# — 2’)2. Expanding
the integrand in terms ak by using Taylor's series, we obtain
a compact form fol (21, 22, uy, u2)

V(Zl, 22, UL, U’Q)
~ —Maa(Uy +Us + Uy + Us + Us) + O(RY)  (41)
in which forn =2, 3,4,5

A 229 + A
U, =D, (-a, s+ 21, (2212
2 4a

Current amplitude (A}

0 0z 04 o5 0o 3 12 14 e s 2 - D, <—A’ z1 + é) Z, <M>
Antenna length from point A (m) 2 40/
A 220 — A
Fig. 10. Current distribution of the square loop inside the clay when300 - D, <A, Zy — —> I, <27>
MHz anda = 10 mm. 2 da
A 221 —A
D, <A, . _) I, <7)
in which 2 da
Bs =1 —ikyr — kjr? Us =ighyal(z2 — 21) [u1 + su2(z2 + 21)]
Bs =9 — iOkyr — 4k2r2 + k30 whereZ, (k) to Z; (k) are integrals defined as before and
- 2 2
1 17.2
Br =45 — id5kyr — 21k3r2 + i6k3r® + kvt Dalt. 2) = = quaa t ghyaziu +us(z +7)]

>

3 t, 7) _U/Qk
t,z) = [2u1 +us(z +1)]
)=

a’[duy + ug(z + 21)].

Note that (35)—(37) are invalid whem = a and> = 2’ (
due to the same reason as that in the impedance matrix. In the Dy(
(

global coordinate system shown in Fig. 3(b), where the center Dsy(t, 2
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Then the voltage vector for the adjacent nodes are given by
1“—‘ 0.5m }‘— O.Sm")
C D

V, =V (—zgf, 0,1, z;}) YV (0, lpos 1, —z_;j) (42)

Vg1 =V (_lgfv 0,0, _l;,l) +V (_lgf - l(ﬂ—l)f7 —lg_, TO ©

0.3m = 1.0m -
141, I7F 17t 43
9="g—1)- <9—1>*) (43) £;=20 G,=0.018/m
Vo =V (0’ lﬂ+’ 0, l.'7_+1) +V (lﬂ+’ lﬂ+ + l(g+1)+’
—1 —1 .
TG Mg, ) (44) 25 '

New source model
o 0  Delta-gap source

Similar expressions can be found figy_, andV,».

IV. NUMERICAL RESULTS

To test the validity of the accurate model, we consider a
simple example: a dipole in free space so that the numerical
results can be compared with measured data.

As stated in the previous sections, the impedance matrix, the E
source model and the definition of input admittance have been °
improved in the accurate model. So, we first see the modifica-
tion of the impedance matrix. Table Il shows the comparison
of impedance matrices of half-wavelength dipole computed by
the accurate model and the old model [26] when the wire radius
changes from 0.2 to 15 mm, in whiclf, = 300 MHz and 21 o} o . - L 2 s 2
nodes have been used. In the old model, the electric current i¢ Antenna length from point A (m)
assumed to flow on the axis of the wire.

From Table II, the impedance matrix computed by the accgig. 11. Current o_listribution of two circular loops above the clay wiiea

. 00 MHz anda = 5 mm.

rate model is nearly the same as that by the old model when the

wire is very thin. This is because the current is nearly concen-
trated on the axis in this case. When the wire radius increases
the difference between the two models increases. Fig. 5 gives th
comparison of current distribution of the three radius in which ~ °%[
the delta-gap source model has been used. As expected, the cu
rent distributions by the two models are nearly the same when o%s;
the wire is very thin. However, they are also very close when
a = 5 mm although the impedance matrix changes a lot. When
the wire radius increases to 15 mm, the old model is invalid, as
shown in Fig. 5(b).

Next, we observe the voltage vector of the new source model. o
Table Il illustrates the comparison of source vectors of the same oo g & 004
dipole for different wire radius, in which the driving voltage is '
setto 1 V. To save space, only half of the vector is given which is 0005
symmetrical. From Table Ill, two interesting phenomena can be
observed: 1) the source vector approaches to the delta functiol
when the wire radius is very thin; as the radius increases, the
sharp delta function becomes broader and 2) the summation of
the source-vector elements is a constant which just equals Ffge 12. Current djstribution of two circular loops inside the clay wifes
driving voltage. 300 MHz ande = 5 mm.

To compare the delta-gap and new source models, Fig. 6
shows the current distributions along the dipole in which arahd 31 nodes have been used for half-wavelength and full-wave-
later examples, the impedance matrix is computed by thength dipoles. The measured data are obtained from [9] and
accurate model. We clearly see that the electric current near fh@]. From Fig. 7, the current distribution from the new model
driving point has a larger difference in the two models wheis much closer to the measured data than that of the delta-gap
the wire radius increases, which directly affects the accuragyodel, especially for the full-wavelength dipole. Therefore, the
of the input admittance. input admittance of this model is also more accurate. Fig. 8

To test the validity of the accurate model, a comparison of cishows the comparison of the input admittance of the two models
rent distributions by the numerical results and measured dataigl measured data [9], [11] in whieh= 0.007 002X. Clearly,
plotted in Fig. 7 in whichf = 300 MHz, « = 7.022 mm, and 15 the new model is much closer to the measured data.

@0

rrent amplitude (A}

0.51

0.035 T T T T T T

New source model
o O Delta—gap source
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»
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=
o
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. AN KA Y ;
0 0.5 1 15 2 25 3 35
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point, which directly affect the input admittance. The compar-
ison of input admittance of the loops above the clay computed by
the delta-gap and new source models are shown in Fig. 13 when
the frequency changes from 0 to 600 MHz. From this figure, we
notice that the real parts computed by the two models are nearly
identical but the imaginary parts are quite different, especially

Input admittance in millimhos

-5k

10 . . . 1 1 .
0 100 200 300 0 500 600
Frequency (MHz)
a
() .
12 T r T v T
g, New source model

10 o o G, Delta-gap source E
- bin: New source model .

8+ X x b, Delta-gap source E

Input admittance in millimhos

L L s

-8 L

[} 100 2(‘10 300 400 500 600
Frequency (MHz) .
(b)
. . . (1]
Fig. 13. Input admittance of the square and circular loops above the clay.

(a) Square loop. (b) Circular loops. [2]

3

Now we consider some complicated wire shapes. When a[ ]
square loop is placed 0.3 m above a clay£ 20 ando, = 0.01 ]
S/m), the current distributions computed by the two models are
illustrated in Fig. 9 in which the feed pointis located at the center
of line AB and 80 segments have been used. When the sam®l
loop is placed 0.3 m under the clay, the current distributions are
displayed in Fig. 10. In this case, however, 280 segments havés]
been chosen since the electric size of the loop increases.

Fig. 11 illustrates the current distribution of two circular loops 7]
above the clay, in which the feed point is driven at the center of
arcAB and 120 segments have been used. When the same cifé]
cular loops are set 0.3 m under the clay, the current distribution
is depicted in Fig. 12, where the loops are discretized into 360[9]
segments.

From Figs. 9-12, the current distributions computed by thélo]
two source models are nearly the same, except near the feed

in high frequency.

V. CONCLUSIONS

This paper presents an accurate model for arbitrary wire an-
tennas in the free space, above or inside the lossy ground by
using the Galerkin’s method. Comparing with old models, three
improvements have been made.

The current is assumed to flow on the surface of the wire
and the testing is also performed on the surface. Numerical
results show that only when the wire is very thin can the
current be considered to flow on the axis.

A new source model has been presented to replace the
delta gap. Numerical results show that only when the wire
is very thin, does the source vector approach to the delta
function (delta gap).

A variational formula of the input admittance has been
obtained. In fact, this is a general formula. The traditional
definition is only a special case of this formula when the
source vector is a delta function.

Although the new model provides more accurate results, its
numerical complexity and storage requirements keep the same
compared with the old models. They have the same convergence
rate as the number of segments is increased.
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