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Abstract—An accurate model of wire antennas in free space,
above or inside lossy ground is presented in which the current is as-
sumed to flow on the surface of the wire and the testing is also per-
formed on the surface. To replace the traditional delta-gap source,
a more accurate source model is developed by using the Huygens’
principle. From this principle and reciprocity theorem, a varia-
tional formulation of the input admittance is derived. When the
triangle function is chosen as both basis and weighting functions,
all the elements of impedance matrix and source vector are formu-
lated in closed forms, which can be rapidly computed. Several nu-
merical results are given. Comparing with measured data, both the
current distribution and input impedance by this model are more
accurate than those of delta-gap model.

Index Terms—Accurate model, Galerkin method, Sommerfeld
integrals, variational formula, wire antennas.

I. INTRODUCTION

T HE investigation of wire antennas in free space, above
or inside lossy ground is a very old but important topic.

For wires in free space, comprehensive study has been made
by using approximate methods and numerical methods since
the beginning of this century [1]–[13]. For wire antennas above
or inside the lossy ground, they were intensively investigated
in 1960’s, 1970’s, and early 1980’s [14]–[23], after the pio-
neering work of Sommerfeld in 1909 [2]. In the above studies,
the method of moments [7] plays an important role in modeling
arbitrary wire antennas, yielding some efficient codes, for ex-
ample, the numerical electromagnetics code (NEC) [21], [22].
Recently, we developed a general algorithm for wire antennas
above or inside the lossy ground by using Galerkin’s method
with triangle basis function [26].

In the above methods, however, there are three limitations.
First, in most methods the current is assumed to flow on the
axis of the wire and testing is performed on the surface or vice
versa. Second, the delta gap and magnetic frill are adopted for
the source model but the delta gap is popularly used. In the
frill model, a circumferentially directed magnetic current den-
sity that exists over an annular aperture with inner radiusand
outer radius has been assumed, requiring an additional param-
eter [13]. Finally, the input admittance of the wire is simply
defined as the ratio of the current and voltage at the driving point
which is not variational.
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Fig. 1. A voltage-driven antenna and its equivalence. (a) Original problem. (b)
Equivalent problem. (c) The source model.

In this paper, an accurate model of wire antennas in free
space, above or inside lossy ground is presented in which the
current is assumed to flow on the surface of the wire and the
testing is also performed on the surface. To replace the delta-gap
source, a more accurate source model is developed using Huy-
gens’ principle. From this principle and the reciprocity theorem,
a variational formulation of the input admittance is derived in a
general form. When the Galerkin’s method with triangle basis
function is used, all the elements of the impedance matrix and
source vector are formulated in closed forms, which can be
rapidly computed.

II. GENERAL FORMULATION

We consider a general three-dimensional (3-D) antenna in a
half-space shown in Fig. 1(a). When
and , the antenna is in free space; when

and , the antenna is above the ground; when
and , the antenna is inside the ground. From

Huygens’ principle, the electric field can be expressed as

(1)

in which is the magnetic field and and
are electric- and magnetic-field dyadic Green’s func-

tions. From the reciprocity theorem ,
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it is easily shown that has a relation with
[27]

(2)

where “ ” represents the transpose. In the half-space problem
shown in Fig. 1, the dyadic Green’s function is ex-
pressed as [25], [26]

(3)

where

(4)

(5)

in which and are reflection coefficients of TE wave
and TM wave in Region, and is a mixed reflection coef-
ficient, which are defined by

In above expressions, is a unit vector denoting the
direction of electric field at the observation point;
is that for the source point; is that for an image
source point; ; in which the
subscript “ ” represents the transverse direction: ,

, , .

Furthermore, where is the

wave number in Region ( ) and is the
wave number in the free space.

In (1), equals zero on except on . Thus, the
original problem in Fig. 1(a) is equivalent to (b) whereis a
closed metallic surface, and an equivalent magnetic current
is impressed on the part of the metallic surface where originally
in Fig. 1(a), it was a gap. Then the field can be written as

(6)

Fig. 2. An arbitrary wire antenna and its cross section.

Fig. 3. A segment of the wire antenna: (a) local coordinate and (b) global
coordinate.

in which is the aperture region of the surface and ;
is assumed known and is the induced current

on the closed metallic surfacewhich has to be solved for.
When the gap is small and driving voltage is , the mag-

netic current density can be expressed as

(7)

as shown in Fig. 1(c).
Using the boundary condition on the metallic surface, one

obtains the integral equation for the induced electric current
density

(8)

which can be solved by the method of moments. Choosing the
basis function and letting

(9)

then testing with yields

(10)

in which the impedance matrix and source vector (or voltage
vector) are given by

(11)



484 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 4, APRIL 2000

Fig. 4. Adjacent nodes of the wire antenna. (a) Nonjunction node. (b) Junction node.

TABLE I
PARAMETERS OFADJACENT NODES

and

(12)

and and are basis and testing or weighting func-
tions, respectively.

After is solved for, a variational expression for the
general input admittance is [28]

(13)

where
and are the total electric and magnetic fields pro-

duced by both and ;
is defined on , while
is defined on .

For the exact solution, since the tangential elec-
tric field equals zero on the metallic surface. Then

(14)

where and are the exact total fields. We take the first-
order variation of (13) about the exact solution to show that

(15)

in which we assume that but remains un-
changed since the antenna in Fig. 1(a) is driven by a voltage
source. Due to the fact that the tangential electric field on
equals zero, the last term in (15) is obviously zero.

From the reciprocity theorem, we have
. Since and are unchanged, one obtains

Considering on , where is a
unit tangential vector on , the above equation gives

(16)

Similarly, using the reciprocity theorem, we have

(17)

Substituting (16) and (17) into (15) yields , which im-
plies that (13) is a variational formula about the exact solution.

If Galerkin’s method is used, then and it is
easily shown that even for approximate and

. In this case, only the first term in (13) remains or

(18)

From the equivalent problem shown in Fig. 1(b), we easily
have

(19)
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TABLE II
PART OF THE IMPEDANCEMATRIX Z OF A HALF-WAVELENGTH DIPOLE IN

THE FREE-SPACE (L = 0:5 m,N = 21, f = 300 MHz)

Then in (18) should be

(20)

Hence,

Thus,

(21)

in which and are the gap capacitance and input admit-
tance of the antenna

(22)

(23)

Using relation (2),

which is the same as (12) if Galerkin’s method is used. Hence,
the input admittance can finally be written as

(24)

Equation (24) is a general formula. The traditional definition of
the input admittance is only a special case of this formula when
the source vector (12) is a delta function.

III. W IRE ANTENNAS

For the wire antennas considered in this paper (see Fig. 2),
we make the following assumptions.

• The current flows along the surface of the wire.
• The testing points are on the surface of the wire.
• The current is not a function of.
• The current is flowing in the longitudinal direction of the

wire .
• The gap and radius of the wire are electrically small.

Under the above assumptions, the dyadic Green’s function
can be simplified by using directional derivative [26]. Then

the impedance matrix is expressed as

where

(25a)

(25b)

(25c)
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Fig. 5. Current distribution of a half-wavelength dipole with delta-gap source
model: (a)a = 0:2 mm anda = 5 mm and (b)a = 15 mm.

(25d)

(25e)

(25f)

(25g)

(25h)

in which , , ,
, , and .

In (25a) and (25b) are the contributions from primary field, and
(25c)–(25h) are the contributions from reflected field of the half
space. In the reflected-field terms, the integrands are defined
on the image region of . Therefore, when the antenna is
not very close to the interface, the integral in these
terms can be approximated by .

If we choose triangle function as the basis function, we will
obtain the same expressions for to as those in [26]
after improving the primary-field terms.

A. Impedance Matrix

The functions and in the primary-field
terms [26] are defined as

(26a)

(26b)

which can be combined into a general form

(27)

with different parameters and .
1) Mutual Term: We set up a local coordinate system as

shown in Fig. 3(a) and evaluate the following integral:

(28)
in which . Since

is electrically small, we expand the integrand in terms ofby
Taylor’s series
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TABLE III
PART OF THE VOLTAGE VECTOR OF AHALF-WAVELEGNTH DIPOLE IN THE

FREE-SPACE(L = 0:5 m,� = 22:7 mm,N = 21, f = 300 MHz)

from which we obtain the inner integral of (28)

in which . Similarly, expanding the function
in terms of by Taylor’s series yields

(29)

in which and

We remark that the Taylor expansion of will be diver-
gent as since the th derivative
when and . Hence, the above equation cannot
be used to evaluate the self term and adjacent mutual term of
the impedance matrix.

In the global coordinate system, the segmentis shown in
Fig. 3(b). In this system, , and in (29) are
replaced by , and , in which

Fig. 6. Current distribution of the half-wavelength dipole with delta-gap and
new source models. (a)a = 0:2 mm anda = 5 mm. (b)a = 15 mm.

Therefore, the mutual term

(30)

is a simple integral, which can be numerically evaluated.
Because the adjacent mutual term will be considered in other
forms, the above equation can be approximated by

(31)

in which for ;
for when ; for
when .
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Fig. 7. Comparison of the current distributions of the new source model
and delta-gap source with the measured data. (a) Half-wavelength dipole. (b)
Full-wavelength dipole.

2) Self Term and Adjacent Mutual Terms:We first consider
the adjacent nodes shown in Fig. 4(a), where no junction node
exist. Under the local coordinate system, (27) becomes

(32)

in which . Because
is electrically small for adjacent nodes, the function

can be expanded in terms ofby using Taylor’s series. After a
complicated derivation, we obtain a compact form for

(33)

in which for

where is the radius of the wire, and

in which

and are integrals defined as
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In the above integrals, the first three are odd function ofand
the last three are elliptical integrals, all of which can be rapidly
computed. When ,

If all the segments have the same length, these integrals are
fixed.

The self term and adjacent mutual terms can be ob-
tained from (33) by choosing different parameters

, and . Table I gives these pa-
rameters of adjacent nodes in which and
are only for . For , they are constant:

.
If the node is a junction point of two bend wires

shown in Fig. 4(b), the formula (33) will be invalid for
, ,

as well as and .
Under the local coordinate systems and
in which and are assumed to be in the same direction,
(32) still holds, however, the distancehas been changed. By
rotating one of the coordinate systems one easily obtains

where is the angle between the two bend wires. Unfortu-
nately, for this general formula we cannot obtain a closed form
like (33). Using Taylor’s expansion, the four-dimensional in-
tegral (32) can reduce to several three-dimensional integrals,
which have to be evaluated by numerical integration.

Generally, the number of junction nodes, , is very small
in wire antennas. For example, for dipoles and circular
loops; for triangle loops; and for square loops.
Therefore, no more computational burden has increased.

B. Voltage Vector

Like the electric-field dyadic Green’s function shown in (3),
the magnetic-field dyadic Green’s function in the voltage
vector (12) also contains a primary-field term and reflected-field
terms. Similar to the impedance matrix, we approximate the in-
tegral by in the reflected-field terms. Then it is easily
shown that the voltage vector contributed by these terms equals
zero.

Now we evaluate the contribution from the primary-field
term. It is known that in an unbounded homogeneous region
[27]

Fig. 8. Comparison of the input admittance of the two source models with the
measured data.

Hence, the voltage vector becomes

(34)

where is the electric vector potential. In the following
subsections, we assume that the driving point is not a junction of
two bent wires. If it is, we can use a method similar to Fig. 4(b)
to compute the numerical integration.

1) Nodes Far From the Gap:The local coordinate system of
the gap is shown in Fig. 3(a) in whichis replaced by . In this
system, . Expanding the integrand in terms of
the radius and integrating around , we clearly see that has
only component. Expanding the resulting functions in terms
of , we obtain

(35)

Hence,

(36)

(37)
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Fig. 9. Current distribution of a square loop above a clay whenf = 300MHz
anda = 10 mm.

Fig. 10. Current distribution of the square loop inside the clay whenf = 300

MHz anda = 10 mm.

in which

Note that (35)–(37) are invalid when and
due to the same reason as that in the impedance matrix. In the
global coordinate system shown in Fig. 3(b), where the center

coordinate, the unit tangential vector, and the unit normal vector
of the gap are assumed to be , and , respec-
tively. Then, , and in (35)–(37) should be replaced
by , and , in which

Therefore, the voltage vector becomes

(38)

Because the nodes adjacent to the gap will be considered in other
forms, (38) can be further approximated by

(39)

2) Nodes Adjacent to the Gap:Under the local coordinate
system shown in Fig. 4(a), the voltage vector (34) can be written
as the following general form for adjacent nodes:

(40)

in which . Expanding
the integrand in terms of by using Taylor’s series, we obtain
a compact form for

(41)

in which for

where to are integrals defined as before and
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Then the voltage vector for the adjacent nodes are given by

(42)

(43)

(44)

Similar expressions can be found for and .

IV. NUMERICAL RESULTS

To test the validity of the accurate model, we consider a
simple example: a dipole in free space so that the numerical
results can be compared with measured data.

As stated in the previous sections, the impedance matrix, the
source model and the definition of input admittance have been
improved in the accurate model. So, we first see the modifica-
tion of the impedance matrix. Table II shows the comparison
of impedance matrices of half-wavelength dipole computed by
the accurate model and the old model [26] when the wire radius
changes from 0.2 to 15 mm, in which, MHz and 21
nodes have been used. In the old model, the electric current is
assumed to flow on the axis of the wire.

From Table II, the impedance matrix computed by the accu-
rate model is nearly the same as that by the old model when the
wire is very thin. This is because the current is nearly concen-
trated on the axis in this case. When the wire radius increases,
the difference between the two models increases. Fig. 5 gives the
comparison of current distribution of the three radius in which
the delta-gap source model has been used. As expected, the cur-
rent distributions by the two models are nearly the same when
the wire is very thin. However, they are also very close when

mm although the impedance matrix changes a lot. When
the wire radius increases to 15 mm, the old model is invalid, as
shown in Fig. 5(b).

Next, we observe the voltage vector of the new source model.
Table III illustrates the comparison of source vectors of the same
dipole for different wire radius, in which the driving voltage is
set to 1 V. To save space, only half of the vector is given which is
symmetrical. From Table III, two interesting phenomena can be
observed: 1) the source vector approaches to the delta function
when the wire radius is very thin; as the radius increases, the
sharp delta function becomes broader and 2) the summation of
the source-vector elements is a constant which just equals the
driving voltage.

To compare the delta-gap and new source models, Fig. 6
shows the current distributions along the dipole in which and
later examples, the impedance matrix is computed by the
accurate model. We clearly see that the electric current near the
driving point has a larger difference in the two models when
the wire radius increases, which directly affects the accuracy
of the input admittance.

To test the validity of the accurate model, a comparison of cur-
rent distributions by the numerical results and measured data is
plotted in Fig. 7 in which MHz, mm, and 15

Fig. 11. Current distribution of two circular loops above the clay whenf =

300 MHz anda = 5 mm.

Fig. 12. Current distribution of two circular loops inside the clay whenf =

300 MHz anda = 5 mm.

and 31 nodes have been used for half-wavelength and full-wave-
length dipoles. The measured data are obtained from [9] and
[10]. From Fig. 7, the current distribution from the new model
is much closer to the measured data than that of the delta-gap
model, especially for the full-wavelength dipole. Therefore, the
input admittance of this model is also more accurate. Fig. 8
shows the comparison of the input admittance of the two models
and measured data [9], [11] in which . Clearly,
the new model is much closer to the measured data.
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Fig. 13. Input admittance of the square and circular loops above the clay.
(a) Square loop. (b) Circular loops.

Now we consider some complicated wire shapes. When a
square loop is placed 0.3 m above a clay ( and
S/m), the current distributions computed by the two models are
illustrated in Fig. 9 in which the feed point is located at the center
of line AB and 80 segments have been used. When the same
loop is placed 0.3 m under the clay, the current distributions are
displayed in Fig. 10. In this case, however, 280 segments have
been chosen since the electric size of the loop increases.

Fig. 11 illustrates the current distribution of two circular loops
above the clay, in which the feed point is driven at the center of
arcAB and 120 segments have been used. When the same cir-
cular loops are set 0.3 m under the clay, the current distribution
is depicted in Fig. 12, where the loops are discretized into 360
segments.

From Figs. 9–12, the current distributions computed by the
two source models are nearly the same, except near the feed

point, which directly affect the input admittance. The compar-
ison of input admittance of the loops above the clay computed by
the delta-gap and new source models are shown in Fig. 13 when
the frequency changes from 0 to 600 MHz. From this figure, we
notice that the real parts computed by the two models are nearly
identical but the imaginary parts are quite different, especially
in high frequency.

V. CONCLUSIONS

This paper presents an accurate model for arbitrary wire an-
tennas in the free space, above or inside the lossy ground by
using the Galerkin’s method. Comparing with old models, three
improvements have been made.

• The current is assumed to flow on the surface of the wire
and the testing is also performed on the surface. Numerical
results show that only when the wire is very thin can the
current be considered to flow on the axis.

• A new source model has been presented to replace the
delta gap. Numerical results show that only when the wire
is very thin, does the source vector approach to the delta
function (delta gap).

• A variational formula of the input admittance has been
obtained. In fact, this is a general formula. The traditional
definition is only a special case of this formula when the
source vector is a delta function.

Although the new model provides more accurate results, its
numerical complexity and storage requirements keep the same
compared with the old models. They have the same convergence
rate as the number of segments is increased.
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