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Sparsity and Conditioning of Impedance Matrices
Obtained with Semi-Orthogonal and Bi-Orthogonal

Wavelet Bases
Wojciech L. Golik

Abstract—Wavelet and wavelet packet transforms are often used
to sparsify dense matrices arising in discretization of CEM inte-
gral equations. This paper compares orthogonal, semi-orthogonal,
and bi-orthogonal wavelet and wavelet packet transforms with re-
spect to the condition numbers, matrix sparsity, and number of
iterations for the transformed systems. The best overall results are
obtained with the orthogonal wavelet packet transforms that pro-
duce highly sparse matrices requiring fewest iterations. Among
wavelet transforms the semi-orthogonal wavelet transforms lead
to sparsest matrices, but require too many iterations due to high-
condition numbers. The bi-orthogonal wavelets produce very poor
sparsity and require many iterations and should not be used in
these applications.

Index Terms—Electromagnetic integral equations, electro-
magnetic scattering, integral equations, sparse matrices, wavelet
packets, wavelet transformations.

I. INTRODUCTION

D ISCRETIZATION of electromagnetic integral equations
via the method of moments produces dense matrix equa-

tions. For electrically large objects the systems become so large
that iterative solvers must be used. In such cases, an approxima-
tion to the solution is obtained in flops, where is the
number of iterations and the size of the system, in contrast to

flops used by the direct solver. For very large systems
the complexity of flops is still unacceptable (even as-
suming that is of reasonable size) and special techniques must
be devised to reduce the cost of a single matrix-vector mul-
tiplication. Such approaches include the fast multipole method
[1], [2], the adaptive integral method [3], the impedance matrix
localization method [4], and the fast Fourier transform (FFT)
and wavelet based methods [5]–[7].

The wavelet based methods have attracted considerable
attention lately. They can be applied either directly (using
wavelets as test and trial functions) or indirectly (transforming
the impedance matrix with wavelet transformations). The
direct approach might be more attractive in principle, because
it allows the a priori location of small matrix elements and
replaces them with zeros thus avoiding the evaluation of the
full impedance matrix. An analysis of such an approach for
nonoscillatory kernels can be found, for example, in [8].
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Similar analysis for oscillatory kernels and wavelet packets has
not been performed.

The indirect approach starts out with the matrix equation

(1)

obtained from an electromagnetic integral equation by the
method of moments with standard basis functions. Here
represents the complex, non-Hermitian, dense impedance
matrix of size , is the surface current vector, and
is the excitation vector. A wavelet transform matrixis then
applied to the system yielding the new system

(2)

where , , and denotes the complex
conjugate transpose of. Once is found, current vector
can computed from . Matrix is closely related to
the impedance matrix obtained directly by discretizing integral
equations with wavelet basis functions.

It can be shown that contains many negligible elements
which can be set to zero without adversely affecting the quality
of the solution approximation. Matrix is usually computed
by repeated application of low-pass and high-pass filter coeffi-
cients which define transformation. It is important that such
filters are as short as possible yet still capable of producing high
sparsity of . These two requirements are somewhat contradic-
tory and a compromise must be sought.

Popular candidates for such filters are the compactly sup-
ported orthogonal wavelets of Daubechies [5]–[7], [9], the
B-spline semi-orthogonal wavelets of Chui [10], and the
B-spline bi-orthogonal wavelets of Cohen, Daubechies, and
Feauveau [11]. In most cases the scattering surfaces allowed
the use of periodic wavelets, but the interval wavelets have
been tried as well [12], [13].

Sparsity of is only one of the important parameters in the
iterative solution of linear systems. Another is the number of
iterations necessary to reduce a measure of the solution error to
a given tolerance. This depends on the distribution of singular
values of the system matrix. A widely used iterative method for
non-Hermitian systems is the conjugate gradient for the normal
equations (CGNE) solver. For this method the Euclidean norm
of the residual vector monotonically decreases
with the number of iterations and is bounded by

(3)
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where is the space of polynomials of degree up to, is the
Hermitian transpose of , and denotes the set of singular
values of [14].

In the case of periodic orthogonal wavelets,is the inverse
of , so that matrix is orthogonally similar to . This implies
that and have identical singular values. The convergence
behavior of the CGNE solver for the systems (1) and (2) will be
very similar.

The situation is quite different in the case of periodic semi-
orthogonal, periodic bi-orthogonal, or the interval wavelets. In
this case, the transformation changes singular values of
(the singular spectra of and are different). A convenient
measure of this is the spectral condition numberdefined as
the ratio of the largest and the smallest singular values of a given
matrix. Since we have

and for large , the right side of this inequality is approxi-
mately equal to ; it follows that for large
convergence to specified, tolerance can be expected in
iterations. Of course, the convergence may be faster if the sin-
gular values are clustered [14].

Recently it has been demonstrated that the semi-orthogonal
(SWT) or bi-orthogonal wavelet transforms (BWT) produce
higher matrix sparsities than the orthogonal wavelet transforms
(OWT) at the same levels of accuracy [10], [15]. However,
since the SWT’s and BWT’s are nonorthogonal it is likely that
their application willincreasethe condition numbers of trans-
formed matrices leading to an increased number of iterations.
The exact relation between the impedance matrix conditioning
and the number of iterations on one hand and the sparsity and
the accuracy of the solution on the other is very difficult to
quantify. In this paper, we seek to compare the nonorthogonal
and orthogonal wavelet transforms with respect to these rela-
tionships. To our knowledge, such a study of several classes of
wavelet transforms of many orders with respect to their overall
effectiveness in numerical electromagnetic integral equations
has not been performed before. Its findings should be of use to
those in the computational electromagnetics community with
an interest in wavelet applications.

In Section II, we briefly present the discrete wavelet
transforms and the discrete wavelet packet transforms based
on compactly supported orthogonal, semi-orthogonal, and
bi-orthogonal wavelets. In Section III, we compare the con-
ditioning of the semi-orthogonal and bi-orthogonal discrete
wavelet transforms as the function of the number of vanishing
moments and the number of decomposition levels. Section
IV investigates the conditioning of the semi-orthogonal and
bi-orthogonal discrete wavelet packet transforms (the SWP’s
and BWP’s). Section V presents the matrix sparsities obtained
with various wavelet and wavelet packet transforms for systems
obtained from discretization of the combined field integral
equation defined on a circular contour. Section VI shows the
condition numbers and number of iterations obtained with
different wavelets for this numerical example. The results

illustrate the limitations of nonorthogonal wavelet transforms
and nonorthogonal wavelet packet transforms in numerical
solution of electromagnetic integral equations.

II. WAVELETS AND WAVELET PACKETS

Detailed descriptions of compactly supported orthogonal,
semi-orthogonal, and bi-orthogonal wavelets can be found in
[16], [17], and [18], respectively. Section II introduces specific
notation needed later in the paper. The scaling and wavelet
functions and satisfy two-scale relations

(4)

where and denote decomposition filter coefficients. In
the following, only finite-length filters will be considered. The
wavelet is said to have vanishing moments if
, .
The filters for Daubechies orthogonal wavelets withvan-

ishing moments are each of length (the total filter length
is ) and are related by the formula

(5)

There is no explicit formula for values of , but they can be
computed with a well-known algorithm [16]. For the
filters (given here with four significant digits) are

Filter coefficients for the dual semi-orthogonal wavelet trans-
form (SWT) are given by the following formulas:

(6)

where and denotes the cardinal
B-spline of order [17]. The SWT wavelet has van-
ishing moments and the filter lengths are and ,
respectively, for the total filter length of . The reconstruc-
tion filters for SWT are of infinite length but they are not used
in the impedance matrix applications. For the filters are

In the case of dual B-spline bi-orthogonal wavelet transform
(BWT) for each order of the spline scaling function there ex-
ists a whole family of wavelets with different filter lengths and
different number of vanishing moments. Specifically, for order
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B-splines the decomposition filter coefficients are given
by the following formulas [18]:

(7)

where must satisfy and

(8)

The wavelet transform defined by above filters will be called
the -BWT transform. Note that in contrast to the SWT
case, the reconstruction filters given by are finite. It can
be shown that the -BWT wavelet has van-
ishing moments and the filters lengths are and ,
respectively. If , then the total filter length is
and the BWT has vanishing moments. For and
the filters are

The -level wavelet transform is defined by the product of
one-level wavelet transforms

(9)

(10)

where denotes the identity matrix of rankand
are low- and high-pass matrices of size –by–
defined by their filter coefficients . For example, the
low-pass matrix for the periodic filter of length four is

...

The high-pass matrix has the same structure as , but is
defined in terms of wavelet coefficients.

Equations (9) and (10) define the discrete wavelet transform.
Of course, instead of recursive transformations of the low-pass
signals only [see (10)], one can select to transform only the

TABLE I
CONDITION NUMBERS�(T ) FOR ONE-LEVEL (m; K) BWT

high-pass signal. At the second level this would result in the
following definition of :

(11)

The other possibility at level 2 is to transform both the low-
and the high-pass signals. The required transformation can be
written now as

(12)

If this process is repeated recursively withlevels it results in a
binary tree structure of more than possible discrete wavelet
packet transformations [19], [20], [9].

III. CONDITIONING OF NONORTHOGONAL

WAVELET TRANSFORMS

Define the condition number of a matrix by
, where denotes the matrix

2-norm. If denotes a wavelet transform defined by (9),
then its condition number depends on the kind of the wavelet
selected. Due to their orthogonality, the orthogonal wavelet
transforms have irrespective of filter lengths and
number of decomposition levels. The condition numbers for the
BWT’s and SWT’s are larger and increase with filter lengths
and decomposition levels, but do not depend on the size of
matrix . In this section, we study the dependence of first
on the wavelet order for a single level transforms and second
on the number of decomposition levels.

It can be shown that the condition numbers of one level
BWT’s are bounded as a function of for a fixed . For the
fixed the condition numbers increase withat least as fast
as (see Table I). This property and its harmful impact
on sparsity and conditioning of the impedance matrices was
investigated in [11]. However, it is possible to scale the BWT
wavelet coefficients and from (7) to mollify the quick
growth of the condition numbers with. Selecting
one can define the scaled bi-orthogonal wavelet transforms
(SBWT) through the new coefficients computed from

The optimal value of slows the growth of the con-
dition numbers to [21], as shown in Table II.
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TABLE II
CONDITION NUMBERS�(T ) FOR SCALED ONE-LEVEL (m; K)BWT

Table III compares for 1-level wavelet transforms (un-
scaled and scaled BWT’s and SWT’s) as functions of vanishing
moments . In order to make a viable comparison we set

for the BWT’s, which results in the filters of the same
(total) length as those for the SWT. In all three cases, the con-
dition numbers increase with and are smallest for the
scaled BWT’s.

It is well known that to obtain significant sparsification of
impedance matrices it is necessary to perform several levelsof
wavelet decomposition. Table IV shows the condition numbers
of SWT’s and scaled BWT’s with different number of vanishing
moments as a function of number of levels. We do not con-
sider unscaled BWT’s since their condition numbers (for level

) were considerably larger than those for the SWT’s and
scaled BWT’s. Note that, for a given, the condition numbers
for each transform increase with, but appear to be bounded. In
fact, it can be shown that (for a fixed)

that is, the SWT’s and SBWT’s arestablein mathematical terms
[22], [23]. In addition, note that the SWT condition numbers
are smaller than scaled BWT condition numbers for sufficiently
large number of levels(for a fixed ). This indicates that the
condition number of one-level transform is not a good indicator
of conditioning for larger .

However, large condition numbers ofwith higher might
significantly slow down the iterative solvers. The transforms
must be chosen carefully so that the gain in sparsity from se-
lecting large will not be lost in additional iterations due to a
high condition number of the transformed system.

The condition numbers of the transformed impedance ma-
trices satisfy the inequality . However,
although is only an indirect measure of conditioning of
the impedance matrix , the results in Table IV do suggest to
expect huge values of for larger and .

IV. CONDITIONING OF NONORTHOGONAL WAVELET

PACKET TRANSFORMS

Recently, it has been demonstrated that the orthogonal
wavelet packet transforms yield much better sparsity than
the classical wavelet transforms [20], [24], [9]. Due to the
orthogonality of the transforms the condition numbers of
the original impedance matrices were preserved. Numerical
experiments illustrated that the number of significant elements
in the impedance matrices grows as , where .

Wavelet packet transforms can also be constructed with semi-
or bi-orthogonal wavelets. Since some nonorthogonal wavelet

TABLE III
CONDITION NUMBERS�(T ) FOR ONE-LEVEL BWT’s AND SWT’s WITH m

VANISHING MOMENTS

TABLE IV
�(T ) FOR WAVELET TRANSFORMS:

SWT AND SCALED BWT WITH l LEVELS

TABLE V
�(T ) FOR FULL TREE WAVE PACKET TRANSFORMS:

SWPAND SCALED BWP WITH l LEVELS

bases yield better impedance matrix sparsity than the orthog-
onal ones, it is natural to expect that the nonorthogonal wavelet
packet transforms might improve sparsity even further. How-
ever, it has recently been shown that for any fixed, the condi-
tion numbers of the bi-orthogonal wavelet packet (BWP) trans-
forms are not bounded as a function of levels[23]. Related
results on theinstability of wavelet packets for the BWP and
semi-orthogonal wavelet packet (SWP) transforms can be found
in [25] and [26]. These results suggest that the iterative solvers
might be considerably slowed down if nonorthogonal wavelet
packets were to be used.

Table V displays condition numbers of full tree wavelet
packet transforms for the SWP and scaled BWP transforms with
various numbers of vanishing moments. The growth of condi-
tion numbers with level and order is very pronounced. Sur-
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prisingly, the BWP condition numbers grow withsomewhat
slower than those for the SWP. Note that the opposite is true for
the scaled BWT’s and SWT’s (see Table IV). Due to quite large
condition numbers of wavelet packet transformsfor larger
values of , the condition numbers of impedance matrices
satisfying the inequality are generally too
large for the effective use of any iterative solvers.

V. MATRIX SPARSIFICATION WITH WAVELETS AND

WAVELET PACKETS

In this section, we compare the sparsities of impedance ma-
trices obtained with the help of various wavelet transforms from
a discretization of an electromagnetic integral equation. To en-
able comparisons with some earlier papers [7], [9] the scattering
of plane waves from perfectly conducting cylinders with con-
stant cross sections bounded by surface contouris considered
here. Two contours: a circle and an-shape, were selected for
the experiments [9]. The far fields and the radar cross sections
are determined by the surface currentcomputed from the com-
bined field integral equation

(13)

where is the zero order Hankel function of the first kind,
, denote points on , is the outer unit

normal at point , and is the excitation wavelength.
Point matching and pulse-test functions were used to dis-

cretize integral (13) with a constant number of test functions
per wavelength . Thus, , the size of the impedance matrix

was directly proportional to the electrical size of the contour.
The support of pulse functions was throughout all experi-
ments.

To provide a comparison between different wavelet trans-
forms, Table VI lists condition numbers of for a circular
cylinder with . The condition number of the original
impedance matrix is . The results show that con-
dition numbers grow both with the number of levels
(for a fixed ) and with number of vanishing moments(for
a fixed level ). A comparison of results from Tables IV and VI
show that the bound is quite accurate. The growth of

with is moderate for small values of for both SWT’s
and scaled BWT’s. For larger and the condition number for
the scaled BWT’s is quite large.

The choice of thresholding criteria for the elements of the
transformed matrix poses certain problems due to matrix
conditioning. A popular choice in the literature [7], [9], [15] is
to select the relative residual error

or the relative matrix error

TABLE VI
CONDITION NUMBERS�(Z ) WITH l LEVELS, �(Z) = 6:8

as a measure of accuracy, where is the solution of matrix
equation

and is the thresholded version of the transformed matrix.
The use of such measures is justified when orthogonal wavelet
transformation are used and the condition number fordoes
not increase considerably with. For large values of in
the case of nonorthogonal transformations, the small size of any
of the above measures can not assure that the relative error of the
computed current

is small. This can be seen from the easily derived inequality

(14)

Thus, it can be expected that in some cases the relative error of
computations exceeds the relative residual error by a factor of

.
This phenomenon is illustrated in Fig. 1, which shows the

modulus of the computed current along the circular contour with
obtained with the orthogonal (OWT) and semi-or-

thogonal (SWT) wavelet transforms with vanishing mo-
ments. These results were generated with the threshold level se-
lected as to satisfy the relative residual error criterion

in both cases. The matrix sparsities were 10.8 and 6.9%, respec-
tively. The solution obtained with the OWT is visually identical
with the solution of the original equation . It can be
checked that the relative error for the OWT
is less than 1.6%. On the other hand, the SWT solution is much
less accurate. The SWT relative error is about 20.6%, which is
more than 20 times larger than the relative residual error in this
case. Since, for the SWT with the condition numbers are

and , inequality (14) overestimates the
discrepancy between the relative error and the relative residual.
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Fig. 1. Modulus of the current along the circular contour obtained with the OWT (dashed line) and the SWT (solid line) with seven vanishing moments. Relative
residual errorke � Z J k=ke k = (1 � 0:1)%. Matrix sizeN = 256.

Additional tests indicate that the SWT solution becomes as ac-
curate as the OWT setting the relative residual error to 0.07%
which yields the matrix sparsity of 11%. This is about the same
sparsity as that obtained from the OWT.

Since, for nonorthogonal wavelets, the comparisons of ma-
trix sparsity using relative residual errors may be misleading, a
study of matrix sparsity was conducted by controlling the rela-
tive error

The system sizes studied ranged from (contour
length of ) to (contour length of ).
The relative error was maintained within %. Both
classical wavelet transforms (WT’s), as well as wavelet packet
transformations (WP’s) with various number of vanishing mo-
ments were used; the latter ones used an adaptive algorithm
described in [9]. Tables VII–IX show results for orthogonal
Daubechies wavelets (OWT’s and OWP’s), semiorthogonal
B-spline wavelets (SWT’s and SWP’s), and bi-orthogonal
B-spline wavelets (SBWT’s).

The matrix sparsity results for the circular cylinder are
presented in Table VII. The sparsest matrices were obtained
with the orthogonal wavelet packet transform (OWP, ).
Among the semiorthogonal transforms (SWT), those with

produced better matrix sparsity for large than the
sparsity results obtained with the OWT, . The scaled
bi-orthogonal transforms produced very poor sparsity for all

and for this reason only two examples are given
here.

VI. CONDITIONING AND ITERATIVE SOLVERS

Table VIII contains the condition numbers for the
system matrices for the circular cylinder. Several observations
should be made. First, the condition numbers for the OWP
and OWT are the same as those for the original matrices
(because of the orthogonality of the transforms) and increase
with . This increase partially explains why the number of
nonzero matrix elements in Table VII for the OWP does not
decrease monotonically when the relative error is controlled
(instead of relative residual as in [9]). Second, the size of
condition numbers for the SWT’s increases both with(for
fixed ) and with for fixed . The increase of with

is a combination of the growth of with and the
growth of with the number of levels (see Table IV).
The growth of with for fixed (i.e., for the fixed
number of wavelet levels) is also predicted by Table IV. Its
harmful effect on matrix sparsity is partially offset by better
approximation properties of wavelets with higher value of.
This offset may be responsible for slow improvement in matrix
sparsity for larger values of and for the SWT’s in the case
of the circular cylinder. Last, the condition numbers for the
SBWT are so large that better approximation for higherdo
not produce any gains—the matrix sparsity in this case is very
disappointing (see Table VII).

Finally, we discuss the performance of iterative solvers on the
sparse systems generated with the help of wavelet transforms. It
is well known that the rate of convergence of iterative solvers,
e.g., the ratio of the norms of the current and initial residuals, is
related to the condition number [27]. We will show that the rela-
tively high-condition numbers of SWT and SBWT transformed
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Fig. 2. Impedance matrix sparsity pattern for the circular cylinder,N = 2048 obtained with the OWPm = 7.

TABLE VII
NUMBER OF NONZEROELEMENTS (IN %) FOR THECIRCULAR CYLINDER

WITH THE RELATIVE ERROR= (5� 0:1)%

matrices lead to increased numbers of iterations, negating any
savings obtained from mild sparsity improvements over those
obtained with the OWT’s.

To illustrate the complicated relation between the condition
numbers and the rate of convergence of iterative solvers, the
conjugate gradient for normal equations (CGNE) solver was
selected due to its popularity. Similar tests conducted with the
QMR and GMRES solvers generally confirm our findings. The-
oretically, in the absence of roundoff errors, the CGNE method

TABLE VIII
CONDITION NUMBERS�(Z ) FOR THECIRCULAR CYLINDER

is guaranteed to yield the exact solution afteriterations. The
presence of roundoff errors leads to loss of accuracy and finite
termination is not guaranteed. However, the CGNE is normally
used as a genuine iterative method and often a few iterations
are required to achieve sufficient accuracy of the iterated solu-
tion. This usually happens when the system matrix is well condi-
tioned or, in case of high-condition number, if the spectral values
are highly clustered.

There was no preconditioning in the experiments and the iter-
ations started with the zero vector. The lack of preconditioning
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TABLE IX
NUMBER OF THE CGNE ITERATIONS WITH THE RELATIVE RESIDUAL

<5e � 3 FOR THECIRCULAR CYLINDER (N INDICATES THAT ITERATIONS

EXCEEDED THESYSTEM SIZE)

TABLE X
SPARSITY (IN %) FOR THEL-SHAPE CYLINDER OBTAINED WITH THE RELATIVE

ERROR= (5� 0:1)%. THE ITERATION NUMBERS AREGIVEN IN PARENTHESES

has been dictated by a desire to illustrate the impact of various
wavelet transforms on the conditioning of the system matrix. If a
given wavelet transform increased the matrix condition number
greatly, a much better preconditioner would have to be found
just to undo this undesirable phenomenon. This paper indicates
which classes of wavelets do not cause the excessive growth of
condition numbers. As a measure of iterative solution accuracy,
an easily computable quantity, the relative residual error

was used. From (3) it follows that this error measure is mono-
tonically decreasing with number of iterations.

The iterations were stopped when the relative residual
dropped below 0.005 or if the number of iterations exceeded
the size of the system. The second stopping criterion was added
because of inevitable round-off errors. Note that stopping
iterations at the same level of the relative residual error yields
more accurate results for solutions of systems with lower
condition numbers.

The results Table IX generally support the notion that the
higher condition number corresponds to more iterations. The
moderate growth of with for the OWT and OWP trans-
formed matrices translates into a moderate growth of the neces-
sary iteration numbers. Since obtained from nonorthog-
onal transformed matrices are generally larger than for the or-
thogonally transformed matrices, the iteration numbers are also
much higher.

Since the condition number alone provides only an upper
bound for the necessary number of iterations, convergence may

be faster if the spectrum of the matrix is clustered. This could be
the reason why, in spite of the huge matrix condition numbers
for the sBWT with , the corresponding iteration numbers,
although much larger than for the orthogonal transformations,
are smaller than those for the SWT’s.

To confirm the observations made above we performed nu-
merical computations on an L-shape and the NACA0012 air-
foil. The system sizes studied ranged from (contour
length of ) to (contour length of ). All
the observations made from numerical experiments on circular
cylinders held true for the other shapes. Table X lists the spar-
sity and the number of iterations obtained for an infinite cylinder
with the -shaped cross section for some representative wavelet
transforms. The number of iterations with the SWT’s is larger
than with the orthogonal transformations especially for larger

. The results for the sBWT’s are not listed—they produced
very poor matrix sparsity.

VII. CONCLUSIONS

Recent articles in computational electromagnetics literature
have shown that some nonorthogonal wavelet transforms pro-
duce sparser impedance matrices than the orthogonal wavelet
transforms. Since the nonorthogonality increases the condition
number of transformed matrices the improvement in matrix
sparsity could be offset by the increased number of iterations
needed for the solution to converge.

This paper studies the impact of the B-spline semiorthog-
onal and scaled bi-orthogonal wavelet and wavelet packet
transforms on the matrix conditioning, matrix sparsity, and the
performance of the CGNE iterative solver. Several conclusion
have been reached. It is well known that the matrix condition
number for impedance matrices (obtained from discretization
with simple basis functions) grows rather slowly with matrix
size , when is proportional to the electric size of the
scattering object. This leads to a small increase of CGNE
iterations with . Orthogonal transformations do not change
the condition numbers and the convergence behavior of the
iterative solver.

We found that the condition numbers of matrices transformed
with nonorthogonal transforms increased faster withthan
those treated with the orthogonal transforms (Table VIII). This
growth was due to the higher condition numbers of the trans-
forms themselves (see Tables IV and V). The growth was only
little faster for the SWT and the SBWT with small numbers of
vanishing moments . The condition numbers of large matrices
transformed with the SWT and SBWT with are several
orders of magnitude larger than those from orthogonal trans-
forms. The largest condition numbers, as predicted by theory,
were produced by nonorthogonal wavelet packet transforms (the
SWP and BWP).

A comparison of matrix sparsities obtained with different
wavelet transforms for the problem of scattering from infinite
cylinders indicates that generally an SWT with yields
better sparsity than any OWT. On the other hand, the SBWT
and the BWP are consistently worse than both SWT and OWT.
The best sparsity results are obtained by the orthogonal wavelet
packet transforms (OWP).
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A comparison of number of iterations needed to reduce the
initial residual a fixed factor showed that matrices transformed
with the SWT, SBWT, OWT, and BWP required many more
iterations than those transformed with the OWT. The increase
of iterations is large enough to completely offset any gains from
the slightly sparser matrices obtained in most of the SWT cases.

The numerical results generally support the thesis that the
much higher condition numbers of impedance matrices obtained
with the nonorthogonal wavelets lead to more iterations and thus
cancel any benefits from higher sparsity.

In practical computations effective preconditioners are nec-
essary to speed up the convergence of iterations even without
any sparsifying transformations. It appears that in order to use
semiorthogonal wavelet transforms effectively inexpensive pre-
conditioners must be found to drastically lower the number of
iterations. Unless such preconditioners are found the orthogonal
wavelets and orthogonal wavelet packets will remain more effi-
cient overall.
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