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Sparsity and Conditioning of Impedance Matrices
Obtained with Semi-Orthogonal and Bi-Orthogonal
Wavelet Bases

Wojciech L. Golik

Abstract—Wavelet and wavelet packet transforms are often used Similar analysis for oscillatory kernels and wavelet packets has
to sparsify dense matrices arising in discretization of CEM inte- not been performed.
gral equations. This paper compares orthogonal, semi-orthogonal, The indirect approach starts out with the matrix equation
and bi-orthogonal wavelet and wavelet packet transforms with re-
spect to the condition humbers, matrix sparsity, and number of
iterations for the transformed systems. The best overall results are
obtained with the orthogonal wavelet packet transforms that pro- . . .
duce highly sparse matrices requiring fewest iterations. Among ©Obtained from an electromagnetic integral equation by the
wavelet transforms the semi-orthogonal wavelet transforms lead method of moments with standard basis functions. Hgre
to sparsest matrices, but require too many iterations due to high- represents the complex, non-Hermitian, dense impedance
condition numbers. The bi-orthogonal wavelets produce very poor matrix of size N x N, J is the surface current vector, al

sparsity and require many iterations and should not be used in is the excitation vector. A wavelet transform matilixis then

these applications. ) o
applied to the system yielding the new system
Index Terms—Electromagnetic integral equations, electro-
magnetic scattering, integral equations, sparse matrices, wavelet 7] = E 2)
packets, wavelet transformations.

ZJ =E.,z1 1)

whereZ’ = TZT*, E' = TE, andT* denotes the complex
I. INTRODUCTION conjugate transpose df. OnceJ’ is found, current vectod
can computed frony = 7*.J’. Matrix Z’ is closely related to

D ISCRETIZATION of electromagnetic integral equationge impedance matrix obtained directly by discretizing integral
via the method of moments produces dense matrix eql@iuations with wavelet basis functions.

tions. For electrically large objects the systems become so larg¢; 4n pe shown thaf’
that iterative solvers must be used. In such cases, an approxi
tion to the solution is obtained i?(pN?) flops, wherep is the

contains many negligible elements
WAich can be set to zero without adversely affecting the quality

- ; : ; of the solution approximation. Matri%’ is usually computed
number of iterations an®y the size of the system, in contrast toOy repeated application of low-pass and high-pass filter coeffi-

) ;
O(N*) flops used by the direct solver. For very large SystémMsents which define transformatic. It is important that such

. ) >
the complexity ofO(p V™) flops is still unacceptable (even assjjiars are as short as possible yet still capable of producing high

suming thap is of reasonable size) and special techniques Musty ity of7’. These two requirements are somewhat contradic-
be devised to reduce thé? cost of a single matrix-vector mul-

L i . tory and a compromise must be sought.
tiplication. Such approaches include the fast multipole methOdPopular candidates for such filters are the compactly sup-

[1], [?],the adaptive integral method [3], th? impedance matriX, o4 orthogonal wavelets of Daubechies [5]-[7], [9], the
localization method [4], and the fast Fourier transform (FF é-spline semi-orthogonal wavelets of Chui [10], and the

and wavelet based methods [5]-{7]. _ B-spline bi-orthogonal wavelets of Cohen, Daubechies, and
The wavelet based methods have attracted considergele, \yeay [11]. In most cases the scattering surfaces allowed

attention lately. They can be applied either directly (Usinge yse of periodic wavelets, but the interval wavelets have
wavelets as test and trial functions) or indirectly (transformingeen tried as well [12], [13].

the impedance matrix with wavelet transformations). The Sparsity ofZ’ is only one of the important parameters in the

direct approach might be more attractive in principle, becaugg ative solution of linear systems. Another is the number of
it allows thea priori location of small matrix elements andiieations necessary to reduce a measure of the solution error to
replaces them with zeros thus avoiding the evaluation of th&yi en tolerance. This depends on the distribution of singular
full impedance matrix. An analysis of such an approach fop e of the system matrix. A widely used iterative method for
nonoscillatory kernels can be found, for example, in [8},n Hermitian systems is the conjugate gradient for the normal
equations (CGNE) solver. For this method the Euclidean norm
Manuscript received February 17, 1999; revised October 25, 1999. This gf-the residual vector,, = £ — Z.J,, monotonically decreases
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whereP,, is the space of polynomials of degree uptdZ* isthe illustrate the limitations of nonorthogonal wavelet transforms
Hermitian transpose df, andS(Z) denotes the set of singularand nonorthogonal wavelet packet transforms in numerical

values ofZ [14]. solution of electromagnetic integral equations.
In the case of periodic orthogonal waveléfs, is the inverse
of T, so that matrixZ’ is orthogonally similar t&Z. This implies Il. WAVELETS AND WAVELET PACKETS

that Z and Z’ have identical singular values. The convergence

, . Detailed descriptions of compactly supported orthogonal,
behavior of the CGNE solver for the systems (1) and (2) il b§emi-orthogonal gnd bi-orthogoaal v)\//avelrgs can be fo?md in
very similar. L .

The situation i ite diff in th ¢ veriodi 16], [17], and [18], respectively. Section Il introduces specific
e situation Is quite different in the case of periodic SemMyaiion" needed later in the paper. The scaling and wavelet

orthogonal, periodic bi-orthogonal, or the interval wavelets. %nctionsd) andy satisfy two-scale relations

this case, the transformatidhi changes singular values &f
(the singular spectra of and Z’ are different). A convenient
measure of this is the spectral condition numbaetefined as

the ratio of the largest and the smallest singular values of a given /3 "
matrix. Since we have (@) =V2 ) gud(2 —n) (4)

$() =V2 Y had(2z —n),

" whereh,, and g,, denote decomposition filter coefficients. In

max |p(c)| < 2 <“(Z) - 1) the foIIowi_ng, c_mly finite-length fi!ters will be considered. The

K(Z) +1 wavelety is said to haven vanishing moments i§ | gont =
. . .. . _O,kIO,"',m—l.
and for larger(Z), the right side of this inequality is approxi- e filters for Daubechies orthogonal wavelets withvan-
mately equal t@(1 — 2/x(Z))"; it follows that for larges(Z)  ishing moments are each of lengtn + 2 (the total filter length
convergence to specified, tolerance can be expect®diiZ)) s 41, + 4) and are related by the formula
iterations. Of course, the convergence may be faster if the sin-
gular values are clustered [14]. = (=1 *homik E=0. .. 2m+1. (5)

Recently it has been demonstrated that the semi-orthogonal ’ T

(SWT) or bi-orthogonal wavelet transforms (BWT) producgpere is no explicit formula for values @, but they can be
higher matrix sparsities than the orthogonal wavelet transforr@gmputed with a well-known algorithm [16]. Fen = 1 the

(OWT) at the same levels of accuracy [10], [15]. Howevefiars (given here with four significant digits) are
since the SWT’s and BWT’s are nonorthogonal it is likely that

their appllcapon W|Il|nlcreasethe. condition numbers of tran_s- S[h()’ hy, ha, hs] = [0.4830, 0.8365, 0.2241, —0.1294]
formed matrices leading to an increased number of iterations. B .
The exact relation between the impedance matrix conditioning[go’ 915 92, 93] =[~0.1294, ~0.2241, 0.8365, —0.4830].

and the number of iterations on one hand and the sparsity and o .
the accuracy of the solution on the other is very difficult to Filter coefficients for the dual semi-orthogonal wavelet trans-

quantify. In this paper, we seek to compare the nonorthogofi@i™ (SWT) are given by the following formulas:
and orthogonal wavelet transforms with respect to these rela-

inf
PEL, 0CS(Z)

tionships. To our knowledge, such a study of several classes of p;, = 2-"—1/2 <m + 1>’ k=0,--,m+1

wavelet transforms of many orders with respect to their overall k

effectiveness in numerical electrom_agnetic integral equations (—1ylg 12 ’g’f m+1 N I+1—7)

has not been performed before. Its findings should be of use to 9! = i 2m+2 J
j=0

those in the computational electromagnetics community with
an interest in wavelet applications. ®)

In Section Il, we briefly present the discrete wavelet ,
transforms and the discrete wavelet packet transforms baddfre! = 0,---, 3m — 2 and Ny,.4» denotes the cardinal
on compactly supported orthogonal, semi-orthogonal, afSPline of order2m + 2 [17]. The SWT wavelet has: van-
bi-orthogonal wavelets. In Section 1, we compare the cofshing moments and the filter lengths are+ 2 and3m + 2,
ditioning of the semi-orthogonal and bi-orthogonal discref&SPectively, for the total filter length din+4. The reconstruc-
wavelet transforms as the function of the number of vanishitig" filters for SWT are of infinite length but they are not used
moments and the number of decomposition levels. Sectibhth® impedance matrix applications. Fer= 1 the filters are
IV investigates the conditioning of the semi-orthogonal and
bi-orthogonal discrete wavelet packet transforms (the swpl&o, h1, ko] =[0.3536, 0.7071, 0.3536],
and BWP’s). Section V presents the matrix sparsities obtaingg, - - -, g4] =[0.0589, —0.3536, 0.5893, —0.3536, 0.0589].
with various wavelet and wavelet packet transforms for systems
obtained from discretization of the combined field integral In the case of dual B-spline bi-orthogonal wavelet transform
equation defined on a circular contour. Section VI shows ti{BWT) for each order of the spline scaling function there ex-
condition numbers and number of iterations obtained wiikts a whole family of wavelets with different filter lengths and
different wavelets for this numerical example. The resultdifferent number of vanishing moments. Specifically, for order
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m + 1 B-splines the decomposition filter coefficients are given TABLE |
by the following formulas [18]: CoNDITION NUMBERS k(1) FOR ONE-LEVEL (m, K) BWT
1 K\m| 0 2 4 6 8
m
hy =27 m7Y/2 k=0,--- 1 1 1.00
* ko) Mt 3 142 4.00 16.0
PPN T 5 1.58 4.00 160 64.0 834.
G = (=D har—m—2-r ) 7 1.68 4.00 16.0 64.0 259.
9 1.75 4.00 16.0 64.0 256.
whereK must satisf\ 2K > m + 1 and
) 14 5\ 2K-m-t high-pass signal. At the second level this would result in the
> it =v2 < 5 ) following definition of W, _:

K145 (1- 2\ K—j In_Ny2i
S ) e[ ]
=0 anl
gk = (_1)khrn—k—l- (8)
The other possibility at level 2 is to transform both the low-

The wavelet transform defined by above filters will be calle@nd the high-pass signals. The required transformation can be
the (m, K)-BWT transform. Note that in contrast to the SWTwritten now as
case, the reconstruction filters given by, j; are finite. It can

be shown that thém, K)-BWT wavelet ha@ K —m — 2 van- [g"_l }

ishing moments and the filters lengths are-2 and4 K —m—2, W1 = n-t (12)
respectively. IfK' = m + 1, then the total filter length i¢m + 4 [ oy }

and the BWT hag: vanishing moments. Fer = 1 andK = 2 G

the filters are If this process is repeated recursively witlevels it results in a

binary tree structure of more thaR possible discrete wavelet

[0, P, h2] =[0.3536, 0.7071, 0.3536], packet transformations [19], [20], [9].
[90, -+, ga] =[—0.1768, —0.3536, 1.0607,
—0.3536, —0.1768]. [1l. CONDITIONING OF NONORTHOGONAL

WAVELET TRANSFORMS
Thel-level wavelet transforri” is defined by the product of Define the condition number of a matrix” by

one-level wavelet transformid’;, w(T) = ||T||2|T71||2, where || - ||2 denotes the matrix
2-norm. If T denotes a wavelet transform defined by (9),
T=Wu_iz1---Wp W, (9) then its condition number depends on the kind of the wavelet

selected. Due to their orthogonality, the orthogonal wavelet
transforms have:(T) = 1 irrespective of filter lengths and
number of decomposition levels. The condition numbers for the

|:Hnj:| BWT’'s and SWT's are larger and increase with filter lengths
Wiy = | [Gny (10) and decomposition levels, but do not depend on the size of
In_Ny2i matrix7". In this section, we study the dependence @F) first

on the wavelet order for a single level transforms and second
on the number of decomposition levels.

It can be shown that the condition numbers of one level
BWT'’s are bounded as a function &f for a fixedm. For the
fixed K the condition numbers increase with at least as fast
as2™m~! (see Table I). This property and its harmful impact

wherel;, denotes the identity matrix of ratkandH,,—;, Gn—;
are low- and high-pass matrices of si2&/2/+1—by—V/2/
defined by their filter coefficient§ A, gi}. For example, the
low-pass matrixH,, for the periodic filter of length four is

b by b by O 0 on sparsity and conditioning of the impedance matrices was

0 0 hy hy hs hy O - 0 investigated in [11]. However, it is possible to scale the BWT
H, = . wavelet coefficientsy, and g, from (7) to mollify the quick

0o --- 0 hi ho hy hy growth of the condition numbers with. Selectingy = 2-/2

ha hy O oo 0 hy he one can define the scaled bi-orthogonal wavelet transforms

(SBWT) through the new coefficients computed from
The high-pass matri%#,, has the same structure &5,, but is
defined in terms of wavelet coefficiends. a = ag, @Y = an/a.
Equations (9) and (10) define the discrete wavelet transform.
Of course, instead of recursive transformations of the low-paBBe optimal value ofr = 2—™/2 slows the growth of the con-
signals only [see (10)], one can select to transform only thktion numbers t@™/? [21], as shown in Table II.
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TABLE I TABLE il
COoNDITION NUMBERS #(T') FOR SCALED ONE-LEVEL (m, K)BWT CoNDITION NUMBERS %(T') FOR ONE-LEVEL BWT'S AND SWT'SWITH m
VANISHING MOMENTS

K\m[ 0 2 4 6 8 ,
1 1.00 m 1 2 3 4 3 6 7
3 142 2.00 4.39 BWT [ 2.0 4.0 30 16. 32. 64. 128.
7 1.66 2.00 4.00 S8.00 16.1. sBWT [ 1.4 2.0 28 40 56 80 113
9 1.72 2.00 4.00 S.00 16.0
TABLE IV
x(T) FOR WAVELET TRANSFORMS
Table 11l compares:(T) for 1-level wavelet transforms (un- SWT KND SCALED BWT WITH I LEVELS
scaled and scaled BWT’s and SWT’s) as functions of vanishing .
momentsmn. In order to make a viable comparison we get= —lfvi;lvlv?‘ 5 112 S ;6 = 16 9?8
m + 1 for the BWT’s, which results in the filters of the same M EWT | L4l 200 235 260
(t.o.tal) length as_those for the SWT. In all three cases, the con- m=2, SWT | 3.75 4.75 503 5.10
dition numbers increase witlh and«<(7") are smallest for the sBWT | 2.00 4.00 5.27 6.28
scaled BWT's. m=3,SWT [6.55 899 9.71 9.90
It is well known that to obtain significant sparsification of sBWT | 282 8.00 116 154

m=4, SWT | 114 169 187 19.1

impedance matnce_s_ itis necessary to perform se\_/c_eral lbwéls CBWT | 400 160 256 403
wavelet decomposition. Table 1V shows the condition numbers =5 SWT 199 320 360 370
of SWT's and scaled BWT's with different number of vanishing SBWT | 5.65 32.0 56.6 113.
momentsn as a function of number of levelsWe do not con- m=6, SWT | 34.7 605 69.3 71.7
sider unscaled BWT's since their condition numbers (for level sBWT | 8.00 64.0 125. 351.
I = 1) were considerably larger than those for the SWT’s and m=7, SWT | 60.7 114. 133. 138

sBWT [ 11.3 128. 280. 1209.

scaled BWT’s. Note that, for a given, the condition numbers
for each transform increase withbut appear to be bounded. In

fact, it can be shown that (for a fixed) TABLE V
k(T) FOR FuLL TREE WAVE PACKET TRANSFORMS

. WPAND SCALED BWP wWITH I LEVEL
lhm K(T) =cpm < 00 S = S
—0o0

level { = ] 2 3 4
m=1, SWP | 2.12 2.77 481 7.03
BWP | 141 200 2.56 3.40
m=2, SWP [ 3.75 35.57 13.7 25.4

thatis, the SWT’'s and SBWT's astablein mathematical terms
[22], [23]. In addition, note that the SWT condition humbers

are smaller than scaled BWT condition numbers for sufficiently BWP | 2.00 4.00 668 118
large number of levels (for a fixedm). This indicates that the m=3,SWP | 655 11.0 371 838
condition number of one-level transform is not a good indicator BWP | 282 8.00 16.9 405
of conditioning for larged. m=4, SWP | 11.4 219 99.7 278

BWP | 400 16.0 43.1 138.

However, large condition numbers6fwith higherm might
significantly slow down the iterative solvers. The transforms m=5, gag égﬁ‘g g.?;'g %EZ' Zgé'
must be chosen carefully so that the gain in sparsity from se- =6, SWP | 347 569 715, 3045,
lecting largem will not be lost in additional iterations due to a BWP | 5.00 64.0 300. 1704.
high condition number of the transformed system. m=7,SWP [ 60.7 172. 1931. 1008l.
The condition numbers of the transformed impedance ma- BWP | 113 128. 776. 5975.

trices 2’ satisfy the inequality:(Z’) < x(Z)x*(T). However,
althpughm(T) IS onl)_/ e/m indirect measure of conditioning Ofbases yield better impedance matrix sparsity than the orthog-
the impedance matri¥X’, the results in Table IV do suggest to L
y onal ones, it is natural to expect that the nonorthogonal wavelet
expect huge values ef( Z’) for largerm and!. R _
packet transforms might improve sparsity even further. How-
ever, it has recently been shown that for any fixecdthe condi-
tion numbers of the bi-orthogonal wavelet packet (BWP) trans-
forms are not bounded as a function of leve[23]. Related
Recently, it has been demonstrated that the orthogomesults on thénstability of wavelet packets for the BWP and
wavelet packet transforms yield much better sparsity thaemi-orthogonal wavelet packet (SWP) transforms can be found
the classical wavelet transforms [20], [24], [9]. Due to then [25] and [26]. These results suggest that the iterative solvers
orthogonality of the transforms the condition numbers ohight be considerably slowed down if nonorthogonal wavelet
the original impedance matrices were preserved. Numerigalckets were to be used.
experiments illustrated that the number of significant elementsTable V displays condition numbes$T) of full tree wavelet
in the impedance matrices grows@sN?), wherep =~ 4/3. packet transforms for the SWP and scaled BWP transforms with
Wavelet packet transforms can also be constructed with serarious numbers of vanishing momentsThe growth of condi-
or bi-orthogonal wavelets. Since some nonorthogonal wavet&n numbers with level and orderr is very pronounced. Sur-

IV. CONDITIONING OF NONORTHOGONAL WAVELET
PACKET TRANSFORMS
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prisingly, the BWP condition humbers grow withrsomewhat TABLE VI
slower than those for the SWP. Note that the opposite is true for ~ CONDITION NUMBERS & (Z”) WITH [ LEVELS, (Z) = 6.8
the scaled BWT'’s and SWT's (see Table V). Due to quite large

. level | = 1 2 3 4
condition numbers of _vvavelet packet .transforﬂﬁsfor Iar_ger =1, SWT | S4E+0 1LIEF1 31E+1 3.1B+1
values ofm, the condition numbers of impedance matri¢és sBWT | 7.3E4+0 94E+0 1.3E+1 L7E+1
satisfying the inequality:(Z’) < x(Z)x?(T) are generally too m=2, SWT { 2.6E+1 3.4E+1 1.1E+42 LI1E+2
large for the effective use of any iterative solvers. sBWT | 7.8E+0 28E+1 4.1E+1 6.3E+1

m=3, SWT [ 8.0E4+1 1.2E+2 3.6E+2 3.5E+2

sBWT | 1.3E+1 1.1E+2 20E+42 3.2E+2

V. MATRIX SPARSIFICATION WITH WAVELETS AND m=4 SWT [ 2.4E+2 43E+2 12E+3 LIE+3
WAVELET PACKETS sBWT | 3.0E+1 4.5E+2 9.6E+2 2.1E+3

; ; i ; . m=5, SWT | 7.3E+2 1.5E+3 3.6E+3 3.4E43
In this section, we compare the sparsities of impedance ma "BWT | 6.0B41 L8E+3 47E+3 LSE+4

trices obtained with the help of various wavelet transforms from m=6, SWT 29573 54E+3 1.IE+4 1OE+4

a discretization of an electromagnetic integral equation. To en- sBWT | 1.2E+2 7.0E+3 2.3E+4 1.8E+5
able comparisons with some earlier papers [7], [9] the scattering  m=7, SWT | .7E+3 1.9E+4 3.4E+4 3.1E+14
of plane waves from perfectly conducting cylinders with con- sBWT | 23E+2 28E+4 1.2E+5 1.4E+6

stant cross sections bounded by surface contbisrconsidered

here. Two contours: a circle and @nshape, were selected foras 2 measure of accuracy. whete is the solution of matrix
the experiments [9]. The far fields and the radar cross sectioris Y 5

are determined by the surface currémomputed from the com- equation
bined field integral equation Z 0, =E
b} e andzgp is the thresholded version of the transformed maffix
1+ Iy B (=) The use of such measures is justified when orthogonal wavelet

iwio 9 W transformation are used and the condition numberAatoes
=-= <1 + o ) / Hg''(2nAr)J(«) di(z") (13) notincrease considerably witN. For large values of(7’) in
w/ e the case of nonorthogonal transformations, the small size of any

L of the above measures can not assure that the relative error of the
WhereHé ) is the zero order Hankel function of the first kindcomputed current

r = |z — 2'|, =, ' denote points o, n, is the outer unit
normal at points, andA is the excitation wavelength. T =TT/ 1]
Point matching and pulse-test functions were used to dis-
cretize integral (13) with a constant number of test functions small. This can be seen from the easily derived inequality
per wavelength\. Thus, N, the size of the impedance matrix

Z was directly proportional to the electrical size of the contour. |J =TT < W(T(Z £ = Z'J,,|| y
The support of pulse functions wag10 throughout all experi- II.7]] = w(T)r(Z) [I1E| (14)
ments.

To provide a comparison between different wavelet tranghus, it can be expected that in some cases the relative error of
forms, Table VI lists condition numbers @’ for a circular computations exceeds the relative residual error by a factor of
cylinder with N = 256. The condition number of the original #(1)x(Z).
impedance matri¥Z is x(Z) = 6.8. The results show that con-  This phenomenon is illustrated in Fig. 1, which shows the
dition numbersx(Z’) grow both with the number of levels modulus of the computed current along the circular contour with
(for a fixedm) and with number of vanishing moments (for N = 256 obtained with the orthogonal (OWT) and semi-or-

a fixed levell). A comparison of results from Tables IV and VIthogonal (SWT) wavelet transforms with = 7 vanishing mo-
show that the bound( Z)«2(T’) is quite accurate. The growth of ments. These results were generated with the threshold level se-
x(Z") with [ is moderate for small values of for both SWT’s lected as to satisfy the relative residual error criterion

and scaled BWT's. For larger and! the condition number for

the scaled BWT's is quite large. |E" = Z' T/ I|1E'|| = (1 +0.1)%

The choice of thresholding criteria for the elements of the
transformed matrixZ’ poses certain problems due to matri¥ both cases. The matrix sparsities were 10.8 and 6.9%, respec-
conditioning. A popular choice in the literature [7], [9], [15] istively.- The solution obtained with the OWT is visually identical
to select the relative residual error with the solution of the original equatiod.J = e. It can be
checked that the relative errtpy — Tthp||/||J|| for the OWT
is less than 1.6%. On the other hand, the SWT solution is much
less accurate. The SWT relative error is about 20.6%, which is
_ ) more than 20 times larger than the relative residual error in this
or the relative matrix error case. Since, for the SWT with = 7 the condition numbers are

#(Z) = 6.7 andx(T) = 140, inequality (14) overestimates the
12" = Z, I/ 112" discrepancy between the relative error and the relative residual.

1B = 2" T, I/ 1B
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OWT (dashed) and SWT (solid) with 7 vanishing moments
35 T T Y T T

Fig. 1. Modulus of the current along the circular contour obtained with the OWT (dashed line) and the SWT (solid line) with seven vanishing moatiests. Rel
residual errotje’ — Z7J!__|I/|l€’|| = (1 & 0.1)%. Matrix sizeN = 256.

comp

Additional tests indicate that the SWT solution becomes as ac- V1. CONDITIONING AND ITERATIVE SOLVERS
curate as the OWT setting the relative residual error to 0.07%

o ) . I °Table VIII contains the condition numberg Z’) for the
Wh'Ch. yields the matf'x sparsity of 11%. This is about the Sa'%?/stem matrices for the circular cylinder. Several observations
sparsity as that obtained from the OWT.

] ) should be made. First, the condition numbers for the OWP
Since, for nonorthogonal wavelets, the comparisons of Masy OwWT are the same as those for the original matriées

trix sparsity using relative residual errors may be misleading gecause of the orthogonality of the transforms) and increase
study of matrix sparsity was conducted by controlling the reldz:, 7 This increase partially explains why the number of

tive error nonzero matrix elements in Table VII for the OWP does not
decrease monotonically when the relative error is controlled
g =TT/ - (instead of relative residual as in [9]). Second, the size of
condition numbers for the SWT’s increases both wkh(for
The system sizes studied ranged frdsh = 128 (contour fixed m) and withm for fixed V. The increase o£(Z’) with
length of 12.8 A) to N = 2048 (contour length 0204.8 A). N is a combination of the growth of(Z) with N and the
The relative error was maintained with{id + 0.1)%. Both growth of x(7") with the number of level$ (see Table IV).
classical wavelet transforms (WT’s), as well as wavelet packehe growth ofx<(Z") with m for fixed N (i.e., for the fixed
transformations (WP’s) with various number of vanishing maiumber of wavelet levels) is also predicted by Table IV. Its
mentsm were used; the latter ones used an adaptive algorithmarmful effect on matrix sparsity is partially offset by better
described in [9]. Tables VII-IX show results for orthogonaapproximation properties of wavelets with higher valueraf
Daubechies wavelets (OWT's and OWP’s), semiorthogonahis offset may be responsible for slow improvement in matrix
B-spline wavelets (SWT’'s and SWP’s), and bi-orthogonalparsity for larger values af. and NV for the SWT’s in the case
B-spline wavelets (SBWT’S). of the circular cylinder. Last, the condition numbers for the
The matrix sparsity results for the circular cylinder ar&BWT are so large that better approximation for highedo
presented in Table VII. The sparsest matrices were obtainsat produce any gains—the matrix sparsity in this case is very
with the orthogonal wavelet packet transform (OWP= 7). disappointing (see Table VII).
Among the semiorthogonal transforms (SWT), those with Finally, we discuss the performance of iterative solvers on the
m > 3 produced better matrix sparsity for largé than the sparse systems generated with the help of wavelet transforms. It
sparsity results obtained with the OWil, = 7. The scaled is well known that the rate of convergence of iterative solvers,
bi-orthogonal transforms produced very poor sparsity for alg., the ratio of the norms of the current and initial residuals, is
0 < m < 8 and for this reason only two examples are giverelated to the condition number [27]. We will show that the rela-
here. tively high-condition numbers of SWT and SBWT transformed
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Z sparsified with OWP, m=7. N=2048.
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Fig. 2. Impedance matrix sparsity pattern for the circular cylindee= 2048 obtained with the OWRn = 7.
TABLE VII TABLE VIII
NUMBER OF NONZERO ELEMENTS (IN %) FOR THE CIRCULAR CYLINDER CONDITION NUMBERS £(Z”) FOR THE CIRCULAR CYLINDER
WITH THE RELATIVE ERROR= (5 £ 0.1)%
N 128 256 512 1024 2048
N 128 256 512 1024 2048 OWP m=7 | 1.TEl1 6.7E0 4.7E2 18E2 2.7E2
OWPm=7}| 80 3.6 92 39 40 OWT m=7{1.7E1 6.7E0 4.7E2 1.8E2 2.7E2
OWTm=7| 83 6.2 103 125 106 SWT m=1 | 7.7E1 2.7E1 3.1E2 52E2 6.8E2
SWT m=1]171 123 240 19.2 229 m=2 | 3.0E2 9.1E1 4.2E2 1.2E3 14E3
m=21149 9.0 11.7 172 10.8 m=3 | 1.2E3 4.8E2 23E3 24E3 4.7E3
m=3]132 73 83 84 6.6 m=4 | 42E3 1.7E3 S8.0E4 5.7E3 1.0E4
m=41}106 6.7 8.1 76 5.7 m=5 | 1.2E3 3.4E3 3.6E4 1.5E4 2.7E4
m=35[132 7.1 84 64 438 m=6 | 4.1E3 1.1E4 1.3E5 43E4 6.3E4
m=6 136 7.8 82 6.1 4.4 m=7 | 1.4E4 3.1E4 48E5 12E5 1.3E5
m=7|15.7 8.8 98 61 43 SWP m=4 |9.3E4 12E6 14E7 1.6ES 1.5E9
SWPm=4| 44 438 42 41 4.9 m=7 | 51E6 1.5E8 9.8E9 7.6E10 2.3E12
m=7| 93 354 62 51 4.1 sBWT m=1 | 7.1E1 28El 6.6E2 36E2 55E2
sBWT m=11{442 415 719 66.3 55.9 m=7 | 6.9E4 14E6 2.2E7 4.7ES S8E9
m=7]469 629 60.60 674 724

is guaranteed to yield the exact solution aftéiterations. The

matrices lead to increased numbers of iterations, negating gmgsence of roundoff errors leads to loss of accuracy and finite
savings obtained from mild sparsity improvements over thosarmination is not guaranteed. However, the CGNE is normally
obtained with the OWT’s. used as a genuine iterative method and often a few iterations

To illustrate the complicated relation between the conditicare required to achieve sufficient accuracy of the iterated solu-
numbers and the rate of convergence of iterative solvers, tien. This usually happens when the system matrix is well condi-
conjugate gradient for normal equations (CGNE) solver waisned or, in case of high-condition number, if the spectral values
selected due to its popularity. Similar tests conducted with tlaee highly clustered.
QMR and GMRES solvers generally confirm our findings. The- There was no preconditioning in the experiments and the iter-
oretically, in the absence of roundoff errors, the CGNE methadions started with the zero vector. The lack of preconditioning
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TABLE IX be faster if the spectrum of the matrix is clustered. This could be
NUMBER OF THE CGNE [TERATIONS WITH THE RELATIVE RESIDUAL the reason why, in spite of the huge matrix condition numbers
<5e — 3 FOR THE CIRCULAR CYLINDER (N INDICATES THAT ITERATIONS . . . .
EXCEEDED THE SYSTEM SIZE) forthe sSBWT withvn = 7, the corresponding iteration numbers,
although much larger than for the orthogonal transformations,
N[128 256 512 1024 2043 are smaller than those for the SWT's.
OWPm=7] 13 15 34 32 36 To confirm the observations made above we performed nu-
OW,T m=7) 14 1 .6 3‘3 34 39 merical computations on an L-shape and the NACA0012 air-
SWT m=1| 33 33 67 79 97 . . .
m=21103 112 221 199 168 foil. The system sizes studied ranged fravn= 128 (contour
m=3| 94 166 288 362 455 length 0f12.8 X) to N = 2048 (contour length 0204.8 X). All
m=4(103 N N 911 1353 the observations made from numerical experiments on circular
m=5f N N N N N cylinders held true for the other shapes. Table X lists the spar-
m=6 I\: I\f 1\{ N ﬁ sity and the number of iterations obtained for an infinite cylinder
WP 2:; gl; II:I II?I II:II I\ with the L-shaped cross section for some representative wavelet
m=71 71 160 277 €72 1245 transforms. The number of iterations with the SWT's is larger
SBWT m=11 47 33 93 50 50 than with the orthogonal transformations especially for larger
m=7| 41 101 190 316 400 m. The results for the sSBWT'’s are not listed—they produced
very poor matrix sparsity.
TABLE X
SPARSITY (IN %) FOR THE L-SHAPE CYLINDER OBTAINED WITH THE RELATIVE VIl. CONCLUSIONS

ERROR= (5 £ 0.1)%. THE ITERATION NUMBERS AREGIVEN IN PARENTHESES
Recent articles in computational electromagnetics literature

OWP I; 18(%? 15(?)3 14 (31; 81(‘;2‘; have shown that some nonorthogonal wavelet transforms pro-

m= 2 2 X 5 . .

OWT m=7 | 18() T4(%7 duce sparser impedance matrices than the orthogonal wavelet
7

19(32) 16(45) transforms. Since the nonorth_ogonality_ increases the_ conditi_on
13(226)  §(242) number of transformed matrices the improvement in matrix
12(376) 7(527) sparsity could be offset by the increased number of iterations

needed for the solution to converge.

This paper studies the impact of the B-spline semiorthog-
has been dictated by a desire to illustrate the impact of variogt$al and scaled bi-orthogonal wavelet and wavelet packet
wavelet transforms on the Conditioning of the system matrix. |ft?an5forms on the matrix Conditioning, matrix Sparsity, and the
given wavelet transform increased the matrix condition numbgérformance of the CGNE iterative solver. Several conclusion
greatly, a much better preconditioner would have to be foumgve been reached. It is well known that the matrix condition
just to undo this undesirable phenomenon. This paper indicaigfmber for impedance matrices (obtained from discretization
which classes of wavelets do not cause the excessive growtlygh simple basis functions) grows rather slowly with matrix
condition numbers. As a measure of iterative solution accuragjze N, when IV is proportional to the electric size of the
an easily computable quantity, the relative residual error  scattering object. This leads to a small increase of CGNE

iterations withN. Orthogonal transformations do not change
|E" — Z, T/ 1Bl the condition numbers and the convergence behavior of the
iterative solver.
was used. From (3) it follows that this error measure is mono-We found that the condition numbers of matrices transformed
tonically decreasing with number of iterations. with nonorthogonal transforms increased faster withthan
The iterations were stopped when the relative residudlose treated with the orthogonal transforms (Table VIII). This
dropped below 0.005 or if the number of iterations exceedgdowth was due to the higher condition numbers of the trans-
the size of the system. The second stopping criterion was addeains themselves (see Tables IV and V). The growth was only
because of inevitable round-off errors. Note that stoppiritle faster for the SWT and the SBWT with small numbers of
iterations at the same level of the relative residual error yielstlanishing moments:. The condition numbers of large matrices
more accurate results for solutions of systems with lowénansformed with the SWT and SBWT with > 4 are several
condition numbers. orders of magnitude larger than those from orthogonal trans-
The results Table IX generally support the notion that tHerms. The largest condition numbers, as predicted by theory,
higher condition number corresponds to more iterations. There produced by nonorthogonal wavelet packet transforms (the
moderate growth of(Z’) with N for the OWT and OWP trans- SWP and BWP).
formed matrices translates into a moderate growth of the necesA comparison of matrix sparsities obtained with different
sary iteration numbers. Sine€7’) obtained from nonorthog- wavelet transforms for the problem of scattering from infinite
onal transformed matrices are generally larger than for the aslinders indicates that generally an SWT with > 2 yields
thogonally transformed matrices, the iteration numbers are alsetter sparsity than any OWT. On the other hand, the SBWT
much higher. and the BWP are consistently worse than both SWT and OWT.
Since the condition number alone provides only an upp&he best sparsity results are obtained by the orthogonal wavelet
bound for the necessary number of iterations, convergence npagket transforms (OWP).

SWT m=1| 24(63) 19(3
m=4 | 25(128) 16(221

6
)
) 14(31) 10(35)
)
m=7 | 35(128) 19(248)
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A comparison of number of iterations needed to reduce theo]
initial residual a fixed factor showed that matrices transformed
with the SWT, SBWT, OWT, and BWP required many more 4,
iterations than those transformed with the OWT. The increase
of iterations is large enough to completely offset any gains from12]
the slightly sparser matrices obtained in most of the SWT caseg.

The numerical results generally support the thesis that thga]
much higher condition numbers of impedance matrices obtained
with the nonorthogonal wavelets lead to more iterations and thygy,
cancel any benefits from higher sparsity.

In practical computations effective preconditioners are necl!d]
essary to speed up the convergence of iterations even without
any sparsifying transformations. It appears that in order to usgse]
semiorthogonal wavelet transforms effectively inexpensive pre—m
conditioners must be found to drastically lower the number of
iterations. Unless such preconditioners are found the orthogongis]
wavelets and orthogonal wavelet packets will remain more effi-[lg]
cient overall.

[20]
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