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Radiation Pattern Computation of Cavity-Backed and
Probe-Fed Stacked Microstrip Patch Arrays

Miguel A. Gonzalez de Aza, José A. Encindfember, IEEEand Juan ZapatMember, IEEE

Abstract—In this paper, two different methods based on the this technique has several restrictions since it is valid only when
Floguet's harmonic expansion of the electromagnetic field in half- |osses are not present in the structure, it provides only power
space are proposed to determine the active element pattern of in- yaitarng and no information can be obtained on field patterns

finite planar arrays. They allow us to obtain the radiating charac- larization | ls. Besides. thi L t valid
teristics without the limitations of the conventional method from Of Cr0SS-polarization levels. besides, this expression is not vall

the active reflection coefficient. Both are applied to analyze the When grating lobes are present in the visible range since there
scan performance in the case of probe-fed and cavity-backed mi- is no way to discern the power going to the main lobe from the
crostrip arrays from its generalized scattering matrix (GSM), com-  grating lobe power. A method to compute the active element
p”teld previously W'tgafﬂ'wa"e ””g‘er.'%a' phroced”k:e: Numerical - hattern that overcomes all these drawbacks is proposed in [4].
results are presented and compared with other techniques. In this reference, the active element pattern is derived from the
Index Terms—Antenna radiation patterns, finite-element current distribution on the patch, which is obtained by the inte-
methods, microstrip arrays, scattering matrices. gral equation and Green's function formalisms.
On the other hand, stacked microstrip patches with several di-
l. INTRODUCTION electric layers are used to improve the bandwidth, gain, or effi-
- ciency antenna performance or to operate in dual frequency. The
O NEt ofthe fgn?ﬁmentaltpharafcterystlcsc(j)f_the Ft)hasedd'a”%ertion of metallic walls between the patch elements also has
antennas 1S the variation ot gain and Input IMpedantg ., considered in the last years to prevent surface wave modes.
when the array is scanned. It is well known [1]

. that the INteHig configuration allows to utilize thick substrates in order to
action between array elements makes these parameters dep@&

on the feeding phase shifts and, therefore, the principle of oAt gase the impedance bandwidth of the antenna without the

s ) itation in the scanning range or even to achieve a consid-
tern multiplication from the isolated element and the a"ayfaCtSFable improvement in scan performance [5]. To analyze mul-

is not applicable. A usual way to characterize the scan perf?ﬁé er structures, full wave efficient numerical methods based

mance in phase_d arrays is the _active element pattern, whic% modular approaches have been proposed [6]-[8]. In these
defined as the field pattern radiated by an array when one g hniques, each interface or transition, including the feeding,

lemgnt és ?I_XhC'tEdtand ?” thetothf[atrs arellitebrm(ljr}f?ted 't”fmatcﬁ onsidered as a building block and it characterized by a gen-
oads [ ]', € active element pattern will be difierent for eacy) 5,64 scattering matrix (GSM). Multilayer structures are an-

element na finite array owing to a different mutual co_uplln yzed with a modular approach in a more flexible and efficient

However, in the case of finite but '_""Tge arrays the behavior of ay that with an integrated approach since modifications on one
the elements is almost equal and itis possible to neglect the e r only require a single GSM calculation and not a whole re-

effects and to apply the infinite array approach. Therefore, t mputation

active element pattern is the same for all the radiating element§n this work, two procedures are proposed to compute the ac-
and the superposition theorem may be applied from the actj '

> aCl%e element power and field patterns in infinite planar arrays.
element pattern and the array factor. All the mutual coupling t?ey are deduced from the Floguet's harmonic representation

fects are implicitly taken inFO a_ccount. The pra_ctical intgrest A the electromagnetic field generated by the array and they are
the active element pattern lies in the fact that it is proportional %plicable when grating lobes and losses are present. The active

the gain of the array atagiven scan .angle [2] and itis relaf[ive ement patterns are directly computed from the GSM which
casy to measure WIFh Of"y one exc't‘?d element. In. F?racnCet:ﬁaracterizes the array. The methods are applied to obtain the ra-
provides a good estimation of the gain pattern for finite arra

i ¥fation characteristics of probe-fed and multilayer microstrip ar-
even with few elements.

rays of patches in single and stacked configurations and backed

qu infinite arrays, t.he normalized agtlve element power p%&/ metallic cavities, analyzed previously with the modular pro-
tern is frequently obtained from the active reflection coefﬁmen&edure proposed in [6]. Active element patterns for several ar-
which can be related intuitively applying power conservatio '

. . . ! |r5ys and comparisons with other numerical predictions are pre-
considerations [2] or using scattering parameters [3]. HoweveL e q
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Fig. 1. Conventional infinite planar microstrip phased array of probe-fed rectangular microstrip patches with a same amplitude and a linéfiephaag@h
given by V., ..

from the Green's function but based on the identification with The two indexesn andn are reduced to onkby ordering
Floquet's harmonics. Let us consider an infinite phased planthe Floguet's harmonics as the cutoff frequency increases. The
array with a rectangular periodicityx b, all cells with an iden- z-component of the electric field for TM harmonics is obtained
tical amplitude excitation voltage, and a linear phase shift ddirectly from the plane wave relationd,, ¢, ) coincides with
fined by (T3, ,T,.) inthex andy directions, respectively. Fig. 1 the radiated plane wave direction corresponding to the funda-
shows a case of a conventional microstrip patch array probe feéntal space harmonie{=n = 0orl = 1).

via an inner conductor of coaxial transmission line. Next, the On the other hand, the radiated field is the superposition of the
total far-field radiated by the array scanned toward the directi@ctive element fielo@e(r, 8, ¢), which is written by separating
(6,,¢,) is expressed in two ways. On the one hand, the totidfle spherical wave variation with threcoordinate and the array
electromagnetic field over a periodic planar array with a linedactor (AF)
phase shift excitation may be represented using a Floquet's har-

jkr
monic expansion [1]. The electric field in the half-space (region Er(r.6,0) = E.(6,0)" - -AF(0,¢) 4)
z > 0in Fig. 1) may be written as a summation of Tk) and T
TM (¢) space harmonics where
Z a' @' (ket, kyt) + a7 & (kat, kyt)) AF(0,¢) = Z Z eI mako (T =T ) ginbke(Ty =Ty )
X elka.lxelkylye_lk:lz (1) (5)
where
1 . .
&M (kpt, k) = ﬁ(—/sy,@ +ku9) (TE) T, =sinfcosyp T, =sind,cosy,
ko + kg T, =sinfsing 1T, =sinf,sin¢,
1 . . .
& (kat, byt) = —m—s(ket® + kel + E2)  (TM). andk, is the free-space wave number.
ko +ky, If the array factor is expressed in (4) as a double summation

(2) of Dirac-delta functions, the spherical wave as a plane wave

spectrum and after the calculation of the resultant integral, the
I anda; are the complex coefficients of tth Floquet har- right-hand side of the equation results in

monlc andk,, k,; andk.; are the components of the propaga-
tion vector given by Ep(r,0, ) = E.(6, (p)2_7£
a
2mm ke
kyi = ko = —— — k,siné, cos ¢, e INemmZ pikem® ik,
a em® o ihyn (6)
2nm . . nl;oo n;m mn n
kg =ky, = - k,sin 6, sin ¢,

wherek,y,, kyn andk.,, , are defined in (3). This expression
kot = komn = \J K2 — k2, — k2. (3)  corresponds with a summation of homogeneous and evanescent
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a ——— between Cartesian and spherical unit vectors, we obtain the
7777 7 T TS T T 7, active element field pattern in spherical coordinates
L

7
/
Z /

—

ab . . A
E.(6,¢)= %ko [cos 9aff(9, ©)p + aj (6, <p)9)} . (1)

This expression provides field radiation patterns in a rigorous
way, is applicable when losses are included in the computation,
and when grating lobes are present. In such a case, also an iden-
tification from (9) can be done to yield an expression similar to
(11) for higher order harmonics.

This technique is directly applicable in the analysis of
probe-fed and multilayered infinite arrays of cavity-backed
microstrip patches in single or stacked configuration from
the space harmonics calculated previously with the full wave
method presented in [6]. Fig. 2 shows the unit cell of an
array of this type with square patches. The quoted procedure
. £5 combines the mode-matching (MM) GSM techniques and
! 2, the two-dimensional finite-element method (2-D FEM), and
< 2r, it is based on the consideration of the elementary cell as an

open-ended succession of homogeneous waveguides of diverse
Fig. 2. Elementary cell of an infinite array of stacked cavity-backed SAUag oss sections (multistepped structure), with the same direction
patches fed by coaxial lined;(= 1.35 cm;l, = 1.458 cm;h = 1.815 cm; . L. . L. .
s=175mma =2.378cm:b=2215cme, =2.42mm e, = 1.5 mm: Of propagation £ axis in Fig. 2) radiating into half-space. The
ez = 2.0mmie,, = 2.61;¢,. = 4.0;¢,5 = 1.0; Coaxial feedz,. = 1.951;  radiated field is expressed as a Floquet's harmonic expansion
r: = 0.64 mm; 7, = 2.05 mm.) and a modal representation, either analytical or numerical,
is used in the homogeneous waveguides. Each transition
space harmonics, which is expected from an infinite array undsstween waveguides and the interface between the infinite
the applied excitation. By ordering the harmonics as the cuteffray of apertures and the free half-space are solved by the MM
frequency increases and reducing the two indexesndn to  technique to obtain their individual GSM. A hybrid MM-FEM
one! (6) results in procedure is used for the analysis of discontinuities that involve
homogeneous waveguides of arbitrary cross section. A cascade
Ihagikoy (7) connection process for the GSM's of the waveguide disconti-

._]1
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ET(n 97 90) = Ee(ev 90)_

ab s k2 nuities and the aperture provides the GSM that characterizes
the array
Taking the element pattern function inside the summation sign,
the total far field radiated may be expressed as Bl |Su1 Si2||D (12)
Al |81 S| |C
- 27 i _Jk 2z ,
ET( ) e 917<Pl Cjkwlxejkyly' (8)

T ab Pt k. which relates incident(D) and reflected(B) modes in
the coaxial line and inciden{C) and scattered A) Flo-
Identifying expressions (8) and (1) the following relationship iquet's harmonics in the half-space. The first element of
obtained for each term of the summation, including both proghe column matrixB is the amplitude of the TEM mode

agating and evanescent harmonics: reflected in the coaxial line andt is the column matrix
, , , [A] = {ab,a},---,a", a5, as,---,a%}, after the truncation
'@ (Kt kyt) + a7 & (Kat, kyr)] €71 eI Futy eIk of the harmonic expansion (1) required to implement the MM
21 = ¢ Ika1z ko ko technique. Thus, if the array is excited by the TEM mode in
= ~Ee (61, 01) e ) the coaxial feed, which corresponds ] = {1,0,---,0}
) and[C] = [0], the active reflection coefficient of the |nf|n|te

Finally, the active element field pattern without the space factgfray, R(¢, ¢) and the space harmonics coefficienfyd, ¢
and corresponding to the main lobe scanne®0«.) is 0b-  and a¢(6, ) from which the active element pattern is com—

tained forl = 1 puted (11), are the element matr;(1,1), S5 (1,1) and
- ab Sa1(L + 1,1) respectively. These coefficients and, therefore,
Ee(bo,00) = 5 ka1 a7 (ko1s k1) + afci(kar, k1) - the matrix (12) must be computed for each considered direc-

(10) tion (¢, ) in (11). However, the GSM that characterizes the
multistepped waveguide structure without including the array
a® and a§ are the complex coefficients of the TE and TMof apertures half-space transition (see [6]) is computed once
components corresponding to the first Floquet harmoniecause this matrix is independent of the scanning angle. Only
(m = 0,n = 0) and will vary with the scanning angle. Takingthe GSM of the aperture problem will vary with the scanning
into account (2) and (3) for the first harmonic and the relaticangle.
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I1l. METHOD II: - a
ACTIVE ELEMENT PATTERN FROM

APERTURETHEORY AND FLOQUET'SHARMONICS ///////

In this section, the active element pattern is derived from the
aperture theory and the space harmonic representation of the
electromagnetic field on the array surface. The far field gener-
ated inz > 0 for an arbitrary aperture field situated in the= 0 m
plane, calculated from the plane wave spectrum representation

_ ] —

.
h//égb

NN

of electromagnetic fields [9], and using the stationary phase ap- Y
e L P
proximation is written as X 1 /
E(T, 6,0) = 27rjk[(é cos ¢ — Gsin @ cos ) Eqq (0, ¢) _,////// // /j_,_
R = —jkr
+ (fsinf — @ cos ¢ cos 9)E,,,y(9,<p)]e Zl_ |
T [ TR
(13) x v d
: ._9: s 2 s /}: |
where E,,, and an are the Cartesian components of the tan- b 57,—2:”

gential electric field&,,, and £, in the spectral domain

0o poo Fig.3. Elementary cell of aninfinite array of cavity backed rectangular patches
[ Ly — J(keztkyy) in single configuration fed by probe-coaxial lines.£ b = 10 cm;! = 6 cm;
E‘“’(y)(k’”’ ky) /700 /700 E‘“’(y)(x’ y)e da dy. h=4cmm=995cm;s =t=1cm;e, = 4.32; d = 0.8 mm; Coaxial
feed:e,., = 1.951;r; = 0.64 mm;r, = 2.05 mm.)

(14)
This approach rejects the contribution of the surface waves to the 0]
angular spectrum of plane waves in half-space and is applicable
to points sufficiently separated from the= 0 plane.
Equation (13) will be applicable to compute the radiated field
of a planar array if the tangential electric field is known onthe =
entire surface of the array. For a phased periodic array the tan- S
gential field in spectral domain, (14) may be written from the &
, - < (— ) Method I
transformed field on a periodic cell as CHN|
(® ¢) From the active reflection
Eaac(y)(kwv ky) =AF- Eea;(y) (kxv ky) (15) enetficient
-8 (- -) Simulated in [10] without
with metallic cavities
- : -10 , - i
Eeotyy(basky) = //E(m(y)(x, )& ke Hho) o dy 0O 10 20 30 40 50 60 70 80 90
s Scan angle (degrees)

(16)

Fig. 4. Normalized active element pattern of the infinite array of rectangular
wheres is the elementary cell surface. After replacing (15) imicrostrip patches defined in Fig. 3 computed from different methds,1.21
(13) and identifying this one with (4), the active element fielH?
pattern may be calculated as

. N . where
E.(8,9) = 2mjk[(Bcosp — $sinpcosB)Ee. (6, ¢)
L R ~ _ hk'z ekT hk"r ek'z
+ (fsinf — ¢ cospcosO)Ee,(6,9)].  (17) dy = Kyt + k. d., = Glal + apfiy (19)

T s yl — .
VRE AR VRE AR
On the other hand, we may obtain the tangential electromag-

netic field over the su'rface of an infinite perlodlc ph_ased_ arn®¥nally, substituting (18) in (16), taking the integrals inside the
based on the Floguet's harmonic expansion by putiingl in g mmation sign, and after the integration over the elementary
(1). Substituting (2) into the resultant expression and after sog| we obtain for an array with a rectangular periodicity
algebraic manipulations the tangential field components may be

calculated as ~
Eern(y) (kma ky)

o o x sinf(ke + kat)a/2] sin[(ky + ky1)b/2]
E,, = dwlel(krll"f'kyly); E,, = d, lej(kwlx—'—kyly) =4 |:dr )l 5 .
; y ; y ; OV (hey + ko) (ky + ky1)

(18) (20)
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Fig. 5. Normalized active element field pattern of the infinite array of rectangular microstrip patches defined in Fig. 3 computed from the medhidds | a
f = 1.21 GHz. (a) Copolar component. (b) Cross-polar component.
which together with (17) provides the active element pattern 0
from the Floquet's harmonic coefficients. In practice, the infi-
nite summation in (20) must be truncated to a finite number of 5
Floquet's harmonics. This technique also allows to obtain field
and power radiation patterns when grating lobes and losses are
present. _ . . . o 4 (=) Method I
Inthe case of the analysis of cavity-backed microstrip patches ™~ ) )
from the method in [6], the coefficientg anda; in (19) are ob- S5 (=9 Sfmula“"'d in (10]
tained directly from the GSM that characterizes the array (12) as & without metallic
described in previous section. These coefficients may be com- cavities
puted at any anglék,;, k,:) but only once. Therefore, this ma- -8
trix and particularly the GSM of the aperture problem only must
be computed once, saving computer time unlike the technique -10 ‘ ‘ , X
proposed in the previous section. However, (17) is obtained from 0 10 20 30 40 50 60 70 80 90
the stationary phase approach and it is not applicable to points Scanangle (degrees)

close to the array plang = 0).
Fig. 6. Normalized active element pattern of the infinite array of rectangular
microstrip patches defined in Fig. 3 with= b = 15 cm., f = 1.21 GHz.

IV. NUMERICAL RESULTS

The preceding techniques are now applied to obtain the acting6], the scan performance of a conventional microstrip array
element pattern of different probe-fed cavity backed microstrgm an infinite and thin substraté < 0.02, is similar to the
arrays. Results from the proposed methods and compariseame array with metallic walls between the adjacent cells of the
with other numerical predictions are presented to evaluate thairay. For the considered array the substrate thickn@g¥i3,,
usefulness. The unit cell of the first considered array is depictatithe resonant frequency. Theand H-plane active element
Fig. 3. The patch elements are fed by the center conductor offaadd pattern of the copolar and cross-polar components are de-
SMA connector of 532. All the probe dimensions and the di-picted in Fig. 5(a) and (b), respectively. Results computed with
electric constant have rigorously been taken into account in ttie method from the space harmonics (method I) and from the
analysis method. Fig. 4 presents the active element pattén irmperture field (method Il) are compared. Both methods lead to
and H planes at the resonant frequency of 1.21 GHz computtntical results except faf, and scan angles close to endfire,
from method | and from the active reflection coefficient with théecause of the limitation in the stationary phase used in method
known expressioly. (6, ¢) = (1—|R(, ¢)|?) cos 6. Thisrela- Il. As stated in Sections Il and I1I, the GSM computation of the
tion is applicable in this case since no grating lobes are presemiltistepped waveguide structure without the aperture problem
(e = b = 0.4), at the resonant frequency). Both methods lead previous and common to the calculation of the AEP from both
to the same results since losses are not considered in the simthods and independent of the scanning angle. The calcula-
ulations. Moreover, the figure shows numerical results for thi®n of this matrix consumes 390 s central processing unit (CPU)
same array, analyzed in [10], but without metallic cavities (infiime to obtain the curves in Fig. 5 on a 400-MHz Pentium Il per-
nite substrate as shown in Fig. 1). A very good agreement wighnal computer. This time will depend on the number of wave-
the results in the reference is observed. This comparison is pgside discontinuities (dielectric substrates, stacked patches), the
sible since, as deduced from the analysis in [5] and also statednber of nodes of the used meshes and the number modes
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E(6) (dB)
E.(0) (dB)
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(@) (b)

Fig. 7. Normalized copolar and cross-polar active element pattern of the infinite array of rectangular microstrip patches defined in Fig=3with 5 cm,
f = 1.21 GHz. (a) E-plane. (b)H -plane. Results obtained from the method I.
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Fig. 8. Normalized copolar and cross-polar active element pattern of the infinite array of rectangular microstrip patches defined in Fig=3bwithl5 cm
and a substrate thicknegds= 1 cm, f = 1.21 GHz. (a)E-plane. (b)H -plane. Results obtained from the method I.

needed to obtain convergent results as described and discusedesults in [10] for the same array without metallic cavities. A

in [6]. For the first method, nine more seconds for each addjood concordance is observed between both predictions except
tional scanning angle, consumed to solve the aperture problat#0.7. This fact is explained in Fig. 7 where the predicted co
are required using 114 TE plus 114 TM space harmonics. Taed crosspolar components are depicted. The curves show that
second method from which the space harmonics are computaking a sufficient number of points in the axis corresponding to
only once, requires 23 more seconds to obtain a whole curtlee scan angle, a blind spot also appears irHhgane at 40.7,
Therefore, to obtain the curve of Fig. 5 with 90 points, methaahd the cross polar component is considerably incremented at
| spends around three times the CPU time in method II. The the same scanning angle. In the case of cavity-backed patches

quired memory is similar for both methods. the coupling due to the excitation of a surface wave of the di-
In the second example, the same array is considered, but vatactric slab is suppressed and the blindness coincides here with
a new element spacing larger than/2 (¢ = b = 15 cm = the appearance of the first grating lobe. In Fig. 8, results for the

0.6\, at the resonant frequency of 1.21 GHz). Grating lobesame array with a new substrate thicknéss 1 cm = 0.04,

and the scan blindness effect will appear. For the considere plotted. The position of the blind spot (copolar components)
array, the appearance of the first grating lobe and the excitati@mains at the same angle in spite of the thick substrate. For the
of the first TM surface wave will occur practically at the sameame array with a conventional infinite substrate, a displacement
scan angl€é = 40.7°) owing to the thin substrate thicknessof this one toward broadside may be expected.

In Fig. 6, the active element pattern ifand H planes com-  As a third example, the stacked cavity-backed microstrip
puted with the first method proposed here are compared witray with the unit cell given in Fig. 2 is considered. Fig. 9
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Fig. 9.

in Fig. 2 in single and stacked patch configuratigns 5.0 GHz. (In the single
patch design, the upper patch is suppressed:and 0.)

shows the broadside active reflection coefficient versus fre-

guency and the active element field patternfband H planes

(a) Broadside active reflection coefficient magnitude versus [(b) and
(c)] frequency and normalized copolar and cross-polar active element patternin
E and H planes of the infinite array of rectangular microstrip patches define
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computed by the methods | and Il. As in the former case of
single patches, both methods lead to similar results except
for angles close to endfire. Th&-plane cross-polarization
component is almost zero. The CPU time consumed to solve
the multistepped waveguide structure is 480 s in this case. From
the first method, 11 more seconds for each additional scanning
angle are required using 178 TE plus 178 TM space harmonics,
whereas the method Il only requires 35 more seconds to obtain
a whole curve in Fig. 9. The same array in a single patch
configuration (upper patch suppressed agd = 0) is also
analyzed. A bandwidth enhancement and a reduction of the
crosspolarization level in thé/ plane are achieved with the
stacked configuration.

V. CONCLUSION

Two efficient methods to compute the active element pat-
tern of infinite phased arrays have been presented. They have
been applied to obtain field and power radiating patterns of
cavity-backed and probe-fed microstrip arrays. In both cases,
the active element patterns are computed from the amplitudes of
the Floquet's harmonics when the array is excited by the TEM
mode in the coaxial feed. These amplitudes are a column of the
GSM that characterizes the array. Since the modular approach
based on the cascading of GSM's is very flexible for the analysis
of multilayer arrays, both methods proposed here are very ap-
propriated to compute the active element patterns and to analyze
the scanning performance of such printed arrays. A good agree-
ment has been obtained between both methods and with other
numerical predictions, except for the method Il at angles close
to enfire owing to the stationary phase approximation. However,
this method requires appreciably less computer time since the
GSM computation of the aperture array is accomplished once
in contrast to the first proposed method.
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