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Radiation Pattern Computation of Cavity-Backed and
Probe-Fed Stacked Microstrip Patch Arrays
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Abstract—In this paper, two different methods based on the
Floquet's harmonic expansion of the electromagnetic field in half-
space are proposed to determine the active element pattern of in-
finite planar arrays. They allow us to obtain the radiating charac-
teristics without the limitations of the conventional method from
the active reflection coefficient. Both are applied to analyze the
scan performance in the case of probe-fed and cavity-backed mi-
crostrip arrays from its generalized scattering matrix (GSM), com-
puted previously with a full wave numerical procedure. Numerical
results are presented and compared with other techniques.

Index Terms—Antenna radiation patterns, finite-element
methods, microstrip arrays, scattering matrices.

I. INTRODUCTION

ONE of the fundamental characteristics of the phased-array
antennas is the variation of gain and input impedance

when the array is scanned. It is well known [1] that the inter-
action between array elements makes these parameters depend
on the feeding phase shifts and, therefore, the principle of pat-
tern multiplication from the isolated element and the array factor
is not applicable. A usual way to characterize the scan perfor-
mance in phased arrays is the active element pattern, which is
defined as the field pattern radiated by an array when one el-
ement is excited and all the others are terminated in matched
loads [2]. The active element pattern will be different for each
element in a finite array owing to a different mutual coupling.
However, in the case of finite but large arrays the behavior of all
the elements is almost equal and it is possible to neglect the edge
effects and to apply the infinite array approach. Therefore, the
active element pattern is the same for all the radiating elements
and the superposition theorem may be applied from the active
element pattern and the array factor. All the mutual coupling ef-
fects are implicitly taken into account. The practical interest of
the active element pattern lies in the fact that it is proportional to
the gain of the array at a given scan angle [2] and it is relatively
easy to measure with only one excited element. In practice, it
provides a good estimation of the gain pattern for finite arrays
even with few elements.

For infinite arrays, the normalized active element power pat-
tern is frequently obtained from the active reflection coefficient,
which can be related intuitively applying power conservation
considerations [2] or using scattering parameters [3]. However,
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this technique has several restrictions since it is valid only when
losses are not present in the structure, it provides only power
patterns and no information can be obtained on field patterns
or cross-polarization levels. Besides, this expression is not valid
when grating lobes are present in the visible range since there
is no way to discern the power going to the main lobe from the
grating lobe power. A method to compute the active element
pattern that overcomes all these drawbacks is proposed in [4].
In this reference, the active element pattern is derived from the
current distribution on the patch, which is obtained by the inte-
gral equation and Green's function formalisms.

On the other hand, stacked microstrip patches with several di-
electric layers are used to improve the bandwidth, gain, or effi-
ciency antenna performance or to operate in dual frequency. The
insertion of metallic walls between the patch elements also has
been considered in the last years to prevent surface wave modes.
This configuration allows to utilize thick substrates in order to
increase the impedance bandwidth of the antenna without the
limitation in the scanning range or even to achieve a consid-
erable improvement in scan performance [5]. To analyze mul-
tilayer structures, full wave efficient numerical methods based
on modular approaches have been proposed [6]–[8]. In these
techniques, each interface or transition, including the feeding,
is considered as a building block and it characterized by a gen-
eralized scattering matrix (GSM). Multilayer structures are an-
alyzed with a modular approach in a more flexible and efficient
way that with an integrated approach since modifications on one
layer only require a single GSM calculation and not a whole re-
computation.

In this work, two procedures are proposed to compute the ac-
tive element power and field patterns in infinite planar arrays.
They are deduced from the Floquet's harmonic representation
of the electromagnetic field generated by the array and they are
applicable when grating lobes and losses are present. The active
element patterns are directly computed from the GSM which
characterizes the array. The methods are applied to obtain the ra-
diation characteristics of probe-fed and multilayer microstrip ar-
rays of patches in single and stacked configurations and backed
by metallic cavities, analyzed previously with the modular pro-
cedure proposed in [6]. Active element patterns for several ar-
rays and comparisons with other numerical predictions are pre-
sented.

II. M ETHOD I: ACTIVE ELEMENT PATTERN COMPUTED FROM

FLOQUET'SHARMONICS

In this section, an accurate relation to obtain the field and
power active element patterns in infinite planar arrays is de-
rived. The procedure is parallel to the method presented in [4]
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Fig. 1. Conventional infinite planar microstrip phased array of probe-fed rectangular microstrip patches with a same amplitude and a linear phase shift excitation
given byV .

from the Green's function but based on the identification with
Floquet's harmonics. Let us consider an infinite phased planar
array with a rectangular periodicity , all cells with an iden-
tical amplitude excitation voltage, and a linear phase shift de-
fined by in the and directions, respectively. Fig. 1
shows a case of a conventional microstrip patch array probe fed
via an inner conductor of coaxial transmission line. Next, the
total far-field radiated by the array scanned toward the direction

is expressed in two ways. On the one hand, the total
electromagnetic field over a periodic planar array with a linear
phase shift excitation may be represented using a Floquet's har-
monic expansion [1]. The electric field in the half-space (region

in Fig. 1) may be written as a summation of TE and
TM space harmonics

(1)

where

(2)

and are the complex coefficients of theth Floquet har-
monic and and are the components of the propaga-
tion vector given by

(3)

The two indexes and are reduced to oneby ordering
the Floquet's harmonics as the cutoff frequency increases. The
-component of the electric field for TM harmonics is obtained

directly from the plane wave relations. coincides with
the radiated plane wave direction corresponding to the funda-
mental space harmonic ( or ).

On the other hand, the radiated field is the superposition of the
active element field , which is written by separating
the spherical wave variation with the-coordinate and the array
factor (AF)

(4)

where

(5)

and is the free-space wave number.
If the array factor is expressed in (4) as a double summation

of Dirac-delta functions, the spherical wave as a plane wave
spectrum and after the calculation of the resultant integral, the
right-hand side of the equation results in

(6)

where and are defined in (3). This expression
corresponds with a summation of homogeneous and evanescent



504 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 4, APRIL 2000

Fig. 2. Elementary cell of an infinite array of stacked cavity-backed square
patches fed by coaxial lines. (l = 1:35 cm; l = 1:458 cm;h = 1:815 cm;
s = 1:75 mm;a = 2:378 cm; b = 2:215 cm;e = 2:42 mm; e = 1:5 mm;
e = 2:0mm;" = 2:61;" = 4:0;" = 1:0; Coaxial feed:" = 1:951;
r = 0:64 mm; r = 2:05 mm.)

space harmonics, which is expected from an infinite array under
the applied excitation. By ordering the harmonics as the cutoff
frequency increases and reducing the two indexesand to
one (6) results in

(7)

Taking the element pattern function inside the summation sign,
the total far field radiated may be expressed as

(8)

Identifying expressions (8) and (1) the following relationship is
obtained for each term of the summation, including both prop-
agating and evanescent harmonics:

(9)

Finally, the active element field pattern without the space factor
and corresponding to the main lobe scanned to is ob-
tained for

(10)

and are the complex coefficients of the TE and TM
components corresponding to the first Floquet harmonic

and will vary with the scanning angle. Taking
into account (2) and (3) for the first harmonic and the relation

between Cartesian and spherical unit vectors, we obtain the
active element field pattern in spherical coordinates

(11)

This expression provides field radiation patterns in a rigorous
way, is applicable when losses are included in the computation,
and when grating lobes are present. In such a case, also an iden-
tification from (9) can be done to yield an expression similar to
(11) for higher order harmonics.

This technique is directly applicable in the analysis of
probe-fed and multilayered infinite arrays of cavity-backed
microstrip patches in single or stacked configuration from
the space harmonics calculated previously with the full wave
method presented in [6]. Fig. 2 shows the unit cell of an
array of this type with square patches. The quoted procedure
combines the mode-matching (MM) GSM techniques and
the two-dimensional finite-element method (2-D FEM), and
it is based on the consideration of the elementary cell as an
open-ended succession of homogeneous waveguides of diverse
cross sections (multistepped structure), with the same direction
of propagation ( axis in Fig. 2) radiating into half-space. The
radiated field is expressed as a Floquet's harmonic expansion
and a modal representation, either analytical or numerical,
is used in the homogeneous waveguides. Each transition
between waveguides and the interface between the infinite
array of apertures and the free half-space are solved by the MM
technique to obtain their individual GSM. A hybrid MM-FEM
procedure is used for the analysis of discontinuities that involve
homogeneous waveguides of arbitrary cross section. A cascade
connection process for the GSM's of the waveguide disconti-
nuities and the aperture provides the GSM that characterizes
the array

(12)

which relates incident and reflected modes in
the coaxial line and incident and scattered Flo-
quet's harmonics in the half-space. The first element of
the column matrix is the amplitude of the TEM mode
reflected in the coaxial line and is the column matrix

, after the truncation
of the harmonic expansion (1) required to implement the MM
technique. Thus, if the array is excited by the TEM mode in
the coaxial feed, which corresponds to
and , the active reflection coefficient of the infinite
array, and the space harmonics coefficients
and from which the active element pattern is com-
puted (11), are the element matrix and

respectively. These coefficients and, therefore,
the matrix (12) must be computed for each considered direc-
tion in (11). However, the GSM that characterizes the
multistepped waveguide structure without including the array
of apertures half-space transition (see [6]) is computed once
because this matrix is independent of the scanning angle. Only
the GSM of the aperture problem will vary with the scanning
angle.
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III. M ETHOD II:
ACTIVE ELEMENT PATTERN FROM

APERTURETHEORY AND FLOQUET'SHARMONICS

In this section, the active element pattern is derived from the
aperture theory and the space harmonic representation of the
electromagnetic field on the array surface. The far field gener-
ated in for an arbitrary aperture field situated in the
plane, calculated from the plane wave spectrum representation
of electromagnetic fields [9], and using the stationary phase ap-
proximation is written as

(13)

where and are the Cartesian components of the tan-
gential electric field and in the spectral domain

(14)

This approach rejects the contribution of the surface waves to the
angular spectrum of plane waves in half-space and is applicable
to points sufficiently separated from the plane.

Equation (13) will be applicable to compute the radiated field
of a planar array if the tangential electric field is known on the
entire surface of the array. For a phased periodic array the tan-
gential field in spectral domain, (14) may be written from the
transformed field on a periodic cell as

(15)

with

(16)

where is the elementary cell surface. After replacing (15) in
(13) and identifying this one with (4), the active element field
pattern may be calculated as

(17)

On the other hand, we may obtain the tangential electromag-
netic field over the surface of an infinite periodic phased array
based on the Floquet's harmonic expansion by putting in
(1). Substituting (2) into the resultant expression and after some
algebraic manipulations the tangential field components may be
calculated as

(18)

Fig. 3. Elementary cell of an infinite array of cavity backed rectangular patches
in single configuration fed by probe-coaxial lines. (a = b = 10 cm; l = 6 cm;
h = 4 cm;m = 9:95 cm; s = t = 1 cm; " = 4:32; d = 0:8 mm; Coaxial
feed:" = 1:951; r = 0:64 mm; r = 2:05 mm.)

Fig. 4. Normalized active element pattern of the infinite array of rectangular
microstrip patches defined in Fig. 3 computed from different methods,f = 1:21

GHz.

where

(19)

Finally, substituting (18) in (16), taking the integrals inside the
summation sign, and after the integration over the elementary
cell we obtain for an array with a rectangular periodicity

(20)
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(a) (b)

Fig. 5. Normalized active element field pattern of the infinite array of rectangular microstrip patches defined in Fig. 3 computed from the methods I and II,
f = 1:21 GHz. (a) Copolar component. (b) Cross-polar component.

which together with (17) provides the active element pattern
from the Floquet's harmonic coefficients. In practice, the infi-
nite summation in (20) must be truncated to a finite number of
Floquet's harmonics. This technique also allows to obtain field
and power radiation patterns when grating lobes and losses are
present.

In the case of the analysis of cavity-backed microstrip patches
from the method in [6], the coefficients and in (19) are ob-
tained directly from the GSM that characterizes the array (12) as
described in previous section. These coefficients may be com-
puted at any angle but only once. Therefore, this ma-
trix and particularly the GSM of the aperture problem only must
be computed once, saving computer time unlike the technique
proposed in the previous section. However, (17) is obtained from
the stationary phase approach and it is not applicable to points
close to the array plane .

IV. NUMERICAL RESULTS

The preceding techniques are now applied to obtain the active
element pattern of different probe-fed cavity backed microstrip
arrays. Results from the proposed methods and comparisons
with other numerical predictions are presented to evaluate their
usefulness. The unit cell of the first considered array is depicted
Fig. 3. The patch elements are fed by the center conductor of an
SMA connector of 50 . All the probe dimensions and the di-
electric constant have rigorously been taken into account in the
analysis method. Fig. 4 presents the active element pattern in
and planes at the resonant frequency of 1.21 GHz computed
from method I and from the active reflection coefficient with the
known expression . This rela-
tion is applicable in this case since no grating lobes are present
( at the resonant frequency). Both methods lead
to the same results since losses are not considered in the sim-
ulations. Moreover, the figure shows numerical results for the
same array, analyzed in [10], but without metallic cavities (infi-
nite substrate as shown in Fig. 1). A very good agreement with
the results in the reference is observed. This comparison is pos-
sible since, as deduced from the analysis in [5] and also stated

Fig. 6. Normalized active element pattern of the infinite array of rectangular
microstrip patches defined in Fig. 3 witha = b = 15 cm.,f = 1:21 GHz.

in [6], the scan performance of a conventional microstrip array
on an infinite and thin substrate is similar to the
same array with metallic walls between the adjacent cells of the
array. For the considered array the substrate thickness is
at the resonant frequency. Theand -plane active element
field pattern of the copolar and cross-polar components are de-
picted in Fig. 5(a) and (b), respectively. Results computed with
the method from the space harmonics (method I) and from the
aperture field (method II) are compared. Both methods lead to
identical results except for and scan angles close to endfire,
because of the limitation in the stationary phase used in method
II. As stated in Sections II and III, the GSM computation of the
multistepped waveguide structure without the aperture problem
is previous and common to the calculation of the AEP from both
methods and independent of the scanning angle. The calcula-
tion of this matrix consumes 390 s central processing unit (CPU)
time to obtain the curves in Fig. 5 on a 400-MHz Pentium II per-
sonal computer. This time will depend on the number of wave-
guide discontinuities (dielectric substrates, stacked patches), the
number of nodes of the used meshes and the number modes
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(a) (b)

Fig. 7. Normalized copolar and cross-polar active element pattern of the infinite array of rectangular microstrip patches defined in Fig. 3 witha = b = 15 cm,
f = 1:21 GHz. (a)E-plane. (b)H-plane. Results obtained from the method I.

(a) (b)

Fig. 8. Normalized copolar and cross-polar active element pattern of the infinite array of rectangular microstrip patches defined in Fig. 3 witha = b = 15 cm
and a substrate thicknessd = 1 cm,f = 1:21 GHz. (a)E-plane. (b)H-plane. Results obtained from the method I.

needed to obtain convergent results as described and discussed
in [6]. For the first method, nine more seconds for each addi-
tional scanning angle, consumed to solve the aperture problem
are required using 114 TE plus 114 TM space harmonics. The
second method from which the space harmonics are computed
only once, requires 23 more seconds to obtain a whole curve.
Therefore, to obtain the curve of Fig. 5 with 90 points, method
I spends around three times the CPU time in method II. The re-
quired memory is similar for both methods.

In the second example, the same array is considered, but with
a new element spacing larger than ( cm

at the resonant frequency of 1.21 GHz). Grating lobes
and the scan blindness effect will appear. For the considered
array, the appearance of the first grating lobe and the excitation
of the first TM surface wave will occur practically at the same
scan angle owing to the thin substrate thickness.
In Fig. 6, the active element pattern in and planes com-
puted with the first method proposed here are compared with

the results in [10] for the same array without metallic cavities. A
good concordance is observed between both predictions except
at 40.7 . This fact is explained in Fig. 7 where the predicted co
and crosspolar components are depicted. The curves show that
taking a sufficient number of points in the axis corresponding to
the scan angle, a blind spot also appears in theplane at 40.7,
and the cross polar component is considerably incremented at
the same scanning angle. In the case of cavity-backed patches
the coupling due to the excitation of a surface wave of the di-
electric slab is suppressed and the blindness coincides here with
the appearance of the first grating lobe. In Fig. 8, results for the
same array with a new substrate thickness cm
are plotted. The position of the blind spot (copolar components)
remains at the same angle in spite of the thick substrate. For the
same array with a conventional infinite substrate, a displacement
of this one toward broadside may be expected.

As a third example, the stacked cavity-backed microstrip
array with the unit cell given in Fig. 2 is considered. Fig. 9
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Fig. 9. (a) Broadside active reflection coefficient magnitude versus [(b) and
(c)] frequency and normalized copolar and cross-polar active element pattern in
E andH planes of the infinite array of rectangular microstrip patches defined
in Fig. 2 in single and stacked patch configurationsf = 5:0GHz. (In the single
patch design, the upper patch is suppressed ande = 0.)

shows the broadside active reflection coefficient versus fre-
quency and the active element field pattern forand planes

computed by the methods I and II. As in the former case of
single patches, both methods lead to similar results except
for angles close to endfire. The -plane cross-polarization
component is almost zero. The CPU time consumed to solve
the multistepped waveguide structure is 480 s in this case. From
the first method, 11 more seconds for each additional scanning
angle are required using 178 TE plus 178 TM space harmonics,
whereas the method II only requires 35 more seconds to obtain
a whole curve in Fig. 9. The same array in a single patch
configuration (upper patch suppressed and ) is also
analyzed. A bandwidth enhancement and a reduction of the
crosspolarization level in the plane are achieved with the
stacked configuration.

V. CONCLUSION

Two efficient methods to compute the active element pat-
tern of infinite phased arrays have been presented. They have
been applied to obtain field and power radiating patterns of
cavity-backed and probe-fed microstrip arrays. In both cases,
the active element patterns are computed from the amplitudes of
the Floquet's harmonics when the array is excited by the TEM
mode in the coaxial feed. These amplitudes are a column of the
GSM that characterizes the array. Since the modular approach
based on the cascading of GSM's is very flexible for the analysis
of multilayer arrays, both methods proposed here are very ap-
propriated to compute the active element patterns and to analyze
the scanning performance of such printed arrays. A good agree-
ment has been obtained between both methods and with other
numerical predictions, except for the method II at angles close
to enfire owing to the stationary phase approximation. However,
this method requires appreciably less computer time since the
GSM computation of the aperture array is accomplished once
in contrast to the first proposed method.
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