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Signal-Processing Techniques to Reduce the
Sinusoidal Steady-State Error in the FDTD Method

Levent Girel Senior Member, IEEEgnd Wur Ojuz

Abstract—Techniques to improve the accuracy of the finite-dif- Z
ference time-domain (FDTD) solutions employing sinusoidal exci- @ \ y
tations are developed. The FDTD computational domain is consid- Hard Source
ered as a sampled system and analyzed with respect to the aliasing
error using the Nyquist sampling theorem. After a careful exam- PML/
ination of how the high-frequency components in the excitation
cause sinusoidal steady-state errors in the FDTD solutions, the use IFA <.
of smoothing windows and digital low-pass filters is suggested to ﬁ/iQ\ A
reduce the error. The reduction in the error is demonstrated for
various cases.

Intepgolation
°
Index Terms—Aliasing, digital filters, electromagnetic scat-
tering, finite-difference time-domain, incident-field array,
sampling, signal processing, smoothing windows.

b
|. INTRODUCTION ' /

HE finite-difference time-domain (FDTD) method has x °

been used to solve a wide variety of problems in the are:
of computational electromagnetics during the last three decade
[1]-[5], [14]. These problems include “frequency-domain”
problems [2]-[13], where the excitation is a monochromatic
time-harmonic source, in addition to truly “time-domain” PML IFA
problems containing multifrequency sources. Although the
real power of the FDTD method lies in its ability to handléig. 1. The IFA excitation scheme in the separate-field formulation. The 1-D
mulifrequency signals, the simpliciy of the method and e 1 () ot i he decton of popagation, uhih s sy s
ability to easily model complicated inhomogeneities at No extt@ues in the computational domain are interpolated from the two closest
cost cause the method to become a preferable alternative giements of the 1-D source grid (when linear interpolation is used).
single-frequency problems. For instance, in order to compute

the radar cross section (RCS) of an object at multiple frequen-The ysefulness of the error-reducing techniques presented in
cies, some researchers preferred to employ the FDTD methag paper will be demonstrated using plane-wave excitations
to solve several independent scattering problems, where {{ign sinusoidal time dependence. However, the applicability of
object is illuminated by a single-frequency sinusoidal signal ihese techniques are not limited to the plane-wave excitations;
each solution. they are valid for any form of sinusoidal excitation. Indeed,
In this paper, we will investigate the errors due to the progince the plane waves are generated using an incident-field array
agation of the high-frequency components of signals that gtEA) [4], [24], [25] (in a separate-field formalism [9], [10],
introduced to the FDTD grid through user-defined excitationg23]) in this work, even the plane waves are actually generated
Specifically, we will investigate the errors observed in the FDTDsing “hard sources” and, thus, the error-reducing techniques
solutions when the excitation is sinusoidal. Errors in the form @fe actually applied to finite-sized sources in the FDTD compu-
nonphysical dc offsets, signal distortions, and added noise h&¥#ons.
been reported in the literature [10], [11], [13], [18] when sinu- Il. SINUSOIDAL INCIDENT-WAVE EXCITATION

soidal excitation is used. Upon gaining a better understandingynen the EDTD method is used to investigate the sinusoidal
of these types of errors in Section I, techniques to reduce sindaady-state response of an electromagnetic system, the usual
soidal steady-state errors will be presented in Sections Ill aW&y of supplying the excitation is to turn on a sinusoidal source
IV. att = 0 [8]. Then, a finite period of time, whose length de-
pends on the specific problem, must pass before all the transients
vanish and the steady-state is reached at every FDTD node. Fur-
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where fo = 1 GHz andu(¢) is the unit step function. In other
words, the sinusoidal excitation is started at 0, similar to the
earlier practice in this area [8]. Fig. 2(a) shows the maximum
value of the error in thé, component over both the total-field
and scattered-field domains at each time step. It is seen that
the maximum error in the computational domain decreases very
: : slowly and does not reach its steady-state value after 800 time
10 : : steps, which correspond to about 10 periods at 1 GHz.
0 ZOOTim:OSOtepSBOO 800 In ordgr to have a better understanding of the nature of the
@ error, Fig. 2(b) shows the frequency spectrum of the error in
the E. component at the first cell the incident wave touches
the total-field domain. With the chosen FDTD time-steyt)
value, frequencies up to about 41.5 GHz can be resolved, thus
the spectrum of the error signal is computed (via FFT) from dc
to 41.5 GHz.
Upon examining the error plots of Fig. 2, the following points
become evident.

1) The transient error is yet to diminish even after 800 time

Maximum error on E

10 ' ' steps.
0 10 20 30 40 ) . ) .
GHz 2) The error is falling very slowly with respect to time.
() 3) The error is a high-frequency error peaking around

Fig. 2. Error results for the IFA excitation with no smoothing window, and 16-17 GHz as seen in Fig. 2(b), despite the fact that the

no digital filter. (a) Maximum error orf, in the computational domain. (b) input signal (the plane-wave excitation) is a sinusoidal at
Frequency-domain representation of the error sign@loat a particular point. 1 GHz. Fig. 2(a) also displays rapid oscillations, which

clearly indicate the high-frequency nature of the error.
technigue to extract the sinusoidal steady-state amplitude oftae third observation in the above concerning the high-fre-
signal is outlined in [24, Appendix]. guency content of the error signal can be explained by realizing
In addition to the transients that are related to the physitsat the abrupt application of a sinusoidal signal is equivalent
of the problem (such as multiple-scattering delays), the FDTID multiplication by a step function as in (1). The Fourier
method also adds other transients to the solution as the probleamsform of the signaid(¢) in (1) is given by
is transformed from an analytical description to a computa-

tional representation. Some of these transients may be decaying E(w) =1 |jmé(w +wo) — jmé(w — wo)

very slowly or not decaying at all. Thus, these transients

cause slowly-decaying or resident errors in the FDTD results. 1 1 1 . @)
These computational transients (or errors) are controlled by the wtwy w—wo

parameters of the FDTD method, including the representatlﬁxﬂe signal itself and the spectrum thereof are shown in Fig. 3.

of the excitation. ST . .
. . his signal, which clearly contains frequency components
In order to separate these computational transients from the .
hysical transients of the problem, FDTD simulations of the eXe " 41.5 GHz, is sampled at a rate/fof = 83 GHz and,
pnys nep ’ . onsequently, is aliased with an aliasing intervalbgf= 2« f,.
citation and propagation of plane waves in homogeneous medja

are considered as shown in Fig. 1. A three-dimensional (3- utsr,ulanfrtsrmesn?:f tzegéfrﬂlﬁfgﬁths;guﬁr:ﬁi ar?a?(iasfmi/((jeénb
empty computational domain composed of 880 x 30 Yee ' q ysp P 9 g y

cells and terminated by eight-cell-thick perfectly matched layer 1
(PML) walls [15]-[17] is set up for this purpose. The PML walls B(w) =7 > Elw-—nw,) (3)
are designed to have a theoretical normal reflection &fio) * n=—oo

of 10~* and parabolic conductivity profile. The space samplingherer, = 1/£,. The error due to aliasing\E: Aliasing Eror)
period isA = 0.625 cm. The time step is selected at the Couraf defined as

stability limit as At = 12.0281 ps. Separate-field formulation

is employed with a total-field region of 18 18 x 18 cells and

a six-cell-thick scattered-field region. The incident plane-wave AE =
values are computed with the IFA scheme and fifth-order inter-

polation as described in [24] and [25]. The plane wave is in-

cident atd = 90° and¢ = 45°. The incident electric field is in the frequency range from dc t /2 = 41.5 GHz, which
polarized in thez direction and its amplitude is unity. The in-is the highest frequency component that can be resolved by
cident magnetic field is polarized in the directionfj. The Ssampling at a rate of, = 83 GHz due to the Nyquist sam-

time dependence of the incident plane wave is given by~ pling theorem [19], [20]. Fig. 4(a) depicts the aliasing error as
defined in (4). Thus, the frequency components of the signal

e(t) = u(t) sin(2n fot) (1) shown in Fig. 3 above 41.5 GHz contaminate the frequency

=)=
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Fig. 3. (a) Time and (b) frequency representations of the input signal in (1). No smoothing window is applied to the input. The sinusoidal sigpke gt
step function at = 0, (c) time, and (d) frequency representations of the input signal in (6). A Hanning window with |[Brgtf} is used for smoothing at= 0.

band below 41.5 GHz due to aliasing. It can be assumed thdhdow is also used by Kunz and Luebbers [5]. In this section,
it is these high-frequency components that cause the slowly-aee will investigate the effects of other smoothing windows on
caying errors seen in Fig. 2. This assumption will be tested in tttee aliasing and the FDTD errors.
following sections by using techniques to reduce the high-fre- The Hanning, Hamming, and Blackman windows are defined
guency components of the excitation and observing the effectasf (5), shown at the bottom of the page. Fig. 3(c) and (d) shows
this reduction on the aliasing error [as in Fig. 4(a)] and the errarsignal
in the FDTD computations (as in Fig. 2).
ew(t) = w(t) sin(2x fot) (6)
[ll. USE OF SMOOTHING WINDOWS

One way to reduce the high-frequency components of thed its frequency spectrum, respectively, whefe) is a Han-
signal shown in Fig. 3(a) is to multiply it by a window thatning window withL = 75 = 1/ fo. Comparing Fig. 3(d) to (b),
is smoother than the rectangular window (step function). e observe that,,(¢) has smaller high-frequency components
triangular (Bartlett), Hanning (Hann), Hamming, or Blackmathane(¢). Next, we will investigate how the aliasing error as de-
window [19], [21] can be used for this purpose. The trianguldined in (4) will change using various smoothing windows.

(0, ift<0
t )
(Hanning) 0.5 — 0.5 cos <%)
t .
w(t) = { (Hamming) 0.54 — 0.46 cos <%) . ifo<t<L (5)
t 2t

(Blackman) 0.42 — 0.5 cos <%) + 0.08 cos <%

1, otherwise
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Fig. 4. (Continued) Aliasing errors (AE) versus frequency for smoothing windows: (a) no smoothing windlow (0). (b) Hanning withL = T,/4. (c)
Hanning withL = T, /2. (d) Hanning withL = 37},/4. (e) Hanning withL = Ty, (f) Hanning withL = 37,/2. (g) Hanning withL = 2Tj. (h) Blackman
with L = 275. (i) Hamming with. = 275.

As in (4), the aliasing errorXE) for windowed signals is de- that it is lower for the case of = 75 /2 than forL = 37;,/4.

fined by Fig. 4(h) shows that the performance of the Blackman window
of length L = 2Ty, is very close to the performance of the Han-
1 = ning window of the same length, shown in Fig. 4(g). In fact, this
AE= | > Bu(w —nws) (7) s the case for all Blackman windows with lengths= 15 /4,
° iy 16/2, 310/4, Ty, 315/2, and2Ty. Only theL = 215 case is

shown in Fig. 4, since the others perform very similar to the
Hanning windows. The performance of the Blackman window

- with length L = 75 /2 is better than the Blackman window with
= |37 > W (w—nws +wo) — W(w — nw, — wo)] length L = 31} /4, similar to the Hanning windows. In Fig. 4,
i [y only the . = 27 case is shown for the Hamming windows.

(8) When Fig. 4(i) is compared to Fig. 4(a), it can be deduced that
the Hamming window reduces thE, like the other window
whereFE,,(w) andW (w) are the Fourier transforms of the win-types. However, the Hamming window’s performance does not
dowed signak,,(¢) and the windowing functiom(), respec- change with the window length. THeE results forL = T/4,
tively. TheAEfor Hanning windows of lengths = 74 /4, 70 /2, Tv/2, 31u/4, Tp, and 315 /2 are very close to the results for
316/4, 1o, 315 /2, and2T; are shown in Fig. 4(b)—(g). Although L = 275. That is, no improvement is obtained by increasing
theAEis generally reduced as the window length increases, nobe length of the Hamming window. This is probably due to the
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Fig. 5. Error results for the IFA excitation with Hanning window of lengthFig. 6. Error results for the IFA excitation with Hanning window of length
L = T,/2: (@) maximum error orE. in the computational domain and (b) L = 75: (@) maximum error onE. in the computational domain and (b)
frequency-domain representation of the error signakorat a particular point. frequency-domain representation of the error signatorat a particular point.

finite jump of the Hamming window at = 0. This jump pre- 10
vents the smoothing @t= 0 and induces high-frequency com-
ponents with larger amplitudes than the Hanning and Blackman
windows do.

In order to investigate the effects of the smoothing windows
on the FDTD error, a number of simulations are performed with
the empty computational domain setup described in the pre-
vious section. The results for the Hanning windows of lengths
L = Ty/2, Ty, and2T;, are shown in Figs. 5-7, respectively.

All of these results show great improvement with respect to the
results obtained with no smoothing, shown in Fig. 2. Figs. 5(a),
6(a), and 7(a) show that the steady-state error level decreases
as the window length is increased. In Fig. 5(b), it is observed
that the dominant frequency component of the error signal is
around 16-17 GHz for the Hanning window of lendgth/2.

This high-frequency component is suppressed with longer Han-
ning windows, as shown in Figs. 6(b) and 7(b). Fig. 8 shows the
steady-state error level with respect to the length of the Han-
ning window. A comparison of Figs. 4 and 8 reveals the par- 1'0 2'0 3’0 20
allelism between how the window length influences Ateand GHz

the overall FDTD error, respectively, including the local minima ®)

of both types of errors foL. = T, /2.

Maximum error on E

0 200 400 600 800
Time Steps

@

Fig. 7. Error results for the IFA excitation with Hanning window of length
L = 2T3: (a) maximum error orE, in the computational domain and (b)
IV. USE OFDIGITAL FILTERS frequency-domain representation of the error signaligrat a particular point.

The smoothing windows of the previous section reduce the
high-frequency components of the input signal. This helps fiiter should be usedbeforethe sampling of the input signal.
increase the accuracy since the FDTD algorithm cannot profhat would require aanalogfilter, which would be difficult to
erly handle the sampled and, hence, aliased signals contairimglement and would increase the incident-field computation
high-frequency components. time enormously. Instead,digital low-pass filter can be used
The goal of suppressing the high-frequency componentsaf the already sampled input signal before it is fed into the hard
the input signals can also be achieved by using a low-pass filtsource of the IFA. Note that a digital filter usafter the sam-
However, note that in order to prevent the aliasing, a low-paghng cannot prevent the aliasing. Nevertheless, it still reduces
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Fig. 8. Steady-state error level versus length of the Hanning window used for 5 1074
smoothing in term§,—the period of the incident wave. LE
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Fig. 10. Error results for the IFA excitation with the digital filter, but no
smoothing window: (a) maximum error dn. in the computational domain and
(b) frequency-domain representation of the error signakgnat a particular
point.

0 10 20 30 40
Frequency (GHz)

Fig. 9. The frequency response of the digital filter. 10

the FDTD error since it reduces the high-frequency input to the
computational domain.

The frequency response of the 32-point digital filter [26],
[27], [28] used in the FDTD simulations is shown in Fig. 9. This
filter has unity gain and 10-GHz cutoff. Figs. 10 and 11 show _ :
the error plots obtained by using this filter on two input signals: 0 200 400 600 800
1) with no smoothing window and 2) with Hanning window of Time Steps
length L = Ty/2, respectively. A comparison of Figs. 2 and (@)

10 shows the improvement in the error results when the input P
signal in (1) is passed through the filter before it is fed into the
hard source. A similar comparison can be made for Figs. 5 and
11. The steady-state error is decreased below thé [K¥el, as
shown in Fig. 11(a). Fig. 11(b) shows that the component of the
error signal around 16—17 GHz is significantly reduced by using
the filter together with the Hanning window. The dominant fre-
guency component of the error in Fig. 11(b) is 1 GHz, which is

Maximum error on E

the operating frequency of the incident wave. The amplitude of 0 10 20 3>0 40
the 1-GHz component of the error cannot be reduced by using GHz
smoothing windows or filters since it is produced by the nu- (b)

merical dispersion. Examining the Figs. 5(b), 6(b), 7(b), 1O(baig. 11. Errorresults for the IFA excitation with the Hanning window of length
and 11(b) carefully, it can be observed that the amplitude of the= 7, /2 and also passed through the digital filter: (a) maximum erraEon
1-GHz component of the error remains the same regardlesé”df‘e computational domain and (b) frequency-domain representation of the
the smoothing window or the filter used. Thus, the 1-GHz conm- " signal onf ata particular point.
ponent constitutes a threshold for the error level.

Comparing Figs. 2(a) and 11(a), we note that, in addition twte that these calculations are performed in an empty compu-
reducing the level of the steady-state error considerably, the agttonal domain and that the duration of the transient period will
of smoothing windows and filters also helps shorten the trabe mostly determined by the size of the inhomogeneity in FDTD

sient period required to reach the steady state. However, we atatculations involving large objects.
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TABLE |
MAXIMUM STEADY-STATE ERROR LEVELS ON THE AMPLITUDE OF E. 2.63
AT NORMAL INCIDENCE
2.628} -
IFA excitation scheme using ... Error —><2'626 -
r
No smoothing window or filter 1.0 x 1078 2.624}-- _ : :
A digital filter 0.3x107° 26221} - S ERERREEE »
A half-period long Hanning window 0.4 x 10~° 2.620 5(:)0 10200 15:00
Hanning window and digital filter together | 1.2 x 1078 Time Steps
(CY
1 -3
2.63 5.98X 0
262811 |- 5.978"""'5 ,,,,,,,,,, .........
_2626f | 59761 |- ’ :
= w®
2.6241 1 T5.9741 ||
2.622) | 5.972
2.62 : ' ‘ 5.97 ' ‘ :
0 500 1000 1500 0 500 1000 1500
Time Steps Time Steps
(@ (b)
Fig. 13. Results for the metal-plate scattering problem. The incident fields
5.98 i i are computed with the IFA excitation using a digital filter, but no smoothing
YeYRII B | A S : window. (a) Amplitude of the induced curredt, at a particular point. (b)
5.978 : : Amplitude of the far-zone electric-field componeB% in the direction of
: . 6 = 90°, ¢ = —4b°.
_q>5976 dH--0- -1l - - - - .........
ur :
So7ann 1 suggests that there is still room for improvement. Table | shows
5.972 that the error level is decreased by about two orders when either
597 : , a digital filter or a Hanning window of length = T /2 is used,
o 500 1000 1500 and by another three orders when both of them are used.
Time Steps
(b) B. Scattering from a Patch

Fig. 12. Results for the metal-plate scattering problem. The incident fields are The problem of scattering from a square metal plate of size
computed with the IFA excitation using no smoothing window or digital filterg() x 1 % 20 Yee cells is used to demonstrate the effects of re-
() Ampliud of e induced curer, at a paricular poit () ATIPI g ing the high-frequency components of the input. The plate
—45°, lies on thez-z plane, in the middle of a computational do-
main consisting of 40< 20 x 40 cells, which is divided into
V. OTHER INTERESTING CASES atotal-field region of 28« 8 x 28 Yee cells and a six-cell-thick
scattered-field region. The incident plane wave is identical to
the one in Section Il. The center of the bright face of the plate is
The special case of normal incidence is obtained when tballed “the origin” of the 3-D grid and given the indéx 0, 0).
direction of the incident wave i&x, +y, or +z. For such spe- Figs. 12(a) and 13(a) show thecomponent of the induced sur-
cial cases, the FDTD algorithm may generate exactly zero erffage current observed at the pojats, 0, —5) on the bright face
which was defined in the previous sections as the differenceaifthe plate.
the total-field and incident-field values. However, this does not Figs. 12(b) and 13(b) present theomponent of the far-zone
mean that the total-field signal is free of errors in the sense tlaectric field, £y, which is extrapolated at a far-zone point,
it is exactly the same as the desired perfect sinusoid. The réa-f, ¢) = (20004, 90°, 225°). A time-domain far-zone ex-
sons behind this are explained in [25], Section VI. trapolation scheme [22] is used for this purpose. The integration
Table | uses a definition of the error that is different from thaturface used for the far-zone transformation is a parallelepiped
of the previous sections to present the error in the case of noruoalated two cells out of the total field/scattered field interface.
incidence. The error is defined as the maximum difference of The results shown in Fig. 12 are obtained by using the input
the amplitude (computed at every time step using the methgiden in (1); that is, no smoothing windows or filters are used
outlined in [24, Appendix]) of the total-field signal from unityto reduce the high-frequency components of the input. Fig. 13
for steady state (after 500 time steps). shows the results obtained when the digital filter in Fig. 9 is ap-
The nonzero error presented on the first line of Table I, wheatied to the inputin Fig. 12. The oscillations in the final periods
no smoothing window or digital filter is applied to the inputof the amplitude levels can be regarded as convergence errors,

A. Normal Incidence
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