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Theory of Line-Source Radiation from a Metal-Strip
Grating Dielectric-Slab Structure

Hung-Yu David Yang, Fellow, IEEE,and David R. Jackson, Fellow, IEEE

Abstract—This paper describes the fundamental theory of line-
source radiation from a source on a dielectric slab backed by a
metal-strip grating. A continuous phased-array (CPA) method is
applied to treat the analytic and numerical problems of antenna
interaction with periodic structures. Both TE and TM mode cases
for a one-dimensional strip grating are investigated. It is found that
the strip grating on the dielectric surface may result in surface
wave elimination and may also be used to support leaky waves. It is
shown that high-efficiency and high-gain antennas on a dielectric
substrate are possible with such metal-strip gratings.

Index Terms—Dielectric slabs, gratings, Green’s functions.

I. INTRODUCTION

M ETAL-STRIP gratings on a dielectric surface have many
important applications, such as frequency selective sur-

faces [1]–[5], leaky wave antennas [6]–[8], and wave polarizers
in quasi-optical power combining [9]–[11]. A common tech-
nique for analyzing wave interaction with periodic structures
is the moment-method integral-equation technique in conjunc-
tion with the Floquet theorem [1]–[5]. This method can analyze
both plane-wave scattering from and guided-wave (leaky-wave)
propagation on a dielectric strip-grating structure.

Radiation and scattering from antennas or objects on a strip-
grating dielectric structure has much theoretical and practical
interest. In printed circuit and antenna structures, microstrip el-
ements are printed on the surface of a slab with a metal ground
plane on the opposite surface. There are tremendous microwave
and millimeter wave applications of such structures. However,
there are several inherent disadvantages of printed circuit struc-
tures. For example, antenna gain and bandwidth are usually
small and radiation efficiency is limited by the generation of sur-
face-wave modes. However, it is known that leaky-waves, which
usually result in high antenna gain and directivity, may exist in
a dielectric-slab strip-grating structure. Furthermore, due to the
periodic nature of the strip grating, there may exist frequency
bands where surface wave can be eliminated. It is therefore con-
ceivable that many of the disadvantages of printed circuit struc-
tures can be overcome with the use of a strip grating on the sur-
face of the ground plane (or a two-dimensional (2-D) periodic
grating on the ground plane, which is an extension of the present
work).
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Fig. 1. Geometry of line-source radiation from a dielectric slab with
metal-strip gratings.

A single printed antenna on a periodic strip-grating structure
is classified as an aperiodic structure, where conventional
periodic moment method techniques cannot be applied directly.
In such aperiodic structures, the geometry is almost periodic
except for localized radiators or scatterers. A general approach
to treat such aperiodic problems has been outlined and ap-
plied specifically for waveguide phased-array applications in
[12]–[14]. A similar approach using a Fourier transform tech-
nique for the Green’s function of a strip-grating structure was
discussed in [15]. In this approach, the aperiodic structure is
treated as continuous superposition of phased array structures.
We refer to this scheme as a continuous phased-array (CPA)
method. This unified approach, which treats the interaction of
continuous and discrete plane-wave spectrums, has not received
much attention.

As an initiation of the research in this direction, this paper
discusses a 2-D problem of a uniform line source on the surface
of a dielectric slab with an infinitely long metal-strip grating on
the opposite side. The solution to this problem is essentially the
Green’s function for a dielectric strip-grating structure. The line
source is regarded as a strip of finite widthfor convenience. A
longitudinal strip current corresponds to the TE mode case while
a line source with a transverse strip current corresponds to the
TM case. A numerically exact solution of the boundary value
problem allows for the investigation of the fundamental effects
of the strip grating on the antenna radiation characteristics and
the understanding of the radiated, surface-wave, and leaky-wave
power distributions.

II. THEORY OF A LINE SOURCE ON A DIELECTRIC

STRIP-GRATING STRUCTURE

The cross section of the structure is shown in Fig. 1. The line
source is a strip (width) with current in either the (TM) or
(TE) direction. The period of the strip grating isand the width
of the perfectly conducting metallic grating strips is. The ma-
terial dielectric constant is and the thickness of the slab is

0018–926X/00$10.00 © 2000 IEEE



YANG AND JACKSON: THEORY OF LINE-SOURCE RADIATION FROM DIELECTRIC-SLAB STRUCTURE 557

Fig. 2. Infinite phased array of line sources with metal-strip gratings. A unit
cell is within�a=2 � x � a=2.

. The line source and the center of the closest strip are offset
by the distance. Numerically exact solutions of the pertinent
problem cannot be formulated directly using periodic moment
methods. Therefore, instead of solving the problem directly, we
first consider the geometry of an infinite phased array of line
sources on the dielectric surface with the same strip grating on
the opposite side, as shown in Fig. 2. The periods of the two infi-
nite arrays (line sources and metallic strips) are the same. A pro-
gressive phase shift between the unit cells is assumed, and de-
noted as . This fictitious phased-array problem can be solved
with a standard periodic moment method integral-equation ap-
proach. In particular, with the use of the Floquet (or Bloch) the-
orem and periodic boundary conditions, the problem is simpli-
fied to the modeling of the fields and currents within a unit cell

. Within each unit cell, there is a single
line source and a metal strip. By integrating over the phase-shift
variable , the solution of this periodic phased-array problem
can be used to construct the solution to the original aperiodic
(single line source) problem, as explained in more detail later.
The solutions to the TM and TE cases will be considered sepa-
rately below.

A. TM Case

For the TM case, the current on the line source strip and also
on the strip grating is in thedirection and only and
components exist. As mentioned, the boundary value problem
in Fig. 2 (phased-array problem) is first solved and this solution
is then converted into the solution for the aperiodic structure in
Fig. 1.

The TM line-source current is assumed to be piecewise si-
nusoidal function (with zero current at the strip edge) and the
periodic strip currents on the grating are to be found. The rel-
evant electric field integral equation (EFIE) that is enforced on
the bottom strip in a unit cell is

(1)

where is the electric field at the bottom strip in the zero unit
cell due to the top line source in the absence of the strip grating.
In the method of moments, the strip current is expanded in
terms of several piecewise sinusoidal basis functionsand a

Galerkin’s procedure is applied to (1) to obtain the linear matrix
equation

(2)

Using the expression for the Green’s function for a planar slab
[3], [5] (without the grating strips), it can be shown that the inner
product of the line-source (primary) electric field and theth
testing (weighting) piecewise sinusoidal function (on the strip
grating in the unit cell) is

(3)

where with the number
of expansion functions

(4)

(5)

(6)

and . Also, and are the Fourier
transform of the piecewise sinusoidal functions for the line-
source and the strip-grating currents, respectively, given as

(7)

(8)

where and is the effective
wavenumber for the currents on the strips, chosen to best simu-
late the actual current distribution for narrow strips. In addition,
the self reaction of the strip-grating basis functions is

(9)

where . Equation (9) is obtained again using
the Green’s function for the grating strips on a planar slab [3].
The solution of the linear matrix equation in (2) provides the
current distribution on the grating strip in the zero unit cell. Once
the currents on the grating are known, the fields from the grating
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currents may be determined and added to the field of the periodic
line-source excitation to find the total field of the phased-array
problem. Omitting the details, the field for the phased-array
problem can be written in the following form:

(10)

The solution for in the structure shown in Fig. 1 can be found
from (10) through the following equation:

(11)

The integration in (11) represents a superposition of the solu-
tions to the periodic phased-array problem. The key is the su-
perposition principle and phase cancellation. When we perform
the integration in (11), we are in effect cancelling out all other
line sources except the one with zero phase angle, in the zero
unit cell. Using the summation form in (10), (11) can be written
in a form similar to that for radiation from a line source in the
absence of the grating, namely

(12)

This can be obtained by starting with

(13)
and then using the property that

It is then seen that

Similarly, the magnetic field in the structure can be written ac-
cording to (13) as

(14)
The magnetic field in (14) is due to both the line-source current
and the strip-grating currents.

In this work, the quantities of interest are the radiated
power, surface-wave power, and the associated parameters. If
the structure were assumed lossless, the radiated power and
surface-wave power would determine the radiation efficiency
of the line source. Equation (14) describes the magnetic field
in the structure shown in Fig. 1. Radiated far-zone fields are
found from (14) by using the method of steepest descent [16].
The saddle point is at ( ) for the
upper-space radiation, where is the angle measured from
the -axis (Fig. 1). Normally, the saddle point will only be
encountered in the Floquet mode term, assuming only

(a)

(b)

Fig. 3. TM surface-wave and leaky-wave mode diagram for a dielectric
strip-grating structure:" = 10; h = 5 mm,w = 2 mm, s = 0, anda = 8

mm.

one propagating mode. As a result, the far-zone magnetic field
in the upper space region is

(15)

where is the term in (14) with and
. The far-zone average radiated power density is

and the total radiated power per unit length
(in the direction) in the upper space region is

(16)

The saddle-point method can also be applied to calculate the
radiation in the lower-space region in a similar way as
described in connection with (15) and (16).
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The surface-wave fields are found from (14) by using a
pole-residue technique [17]. The surface-wave magnetic field
is written as

if

if (17)

where is the surface-wave pole. Note that the far-zone sur-
face waves propagate on a periodic structure and are in an in-
finite summation form (infinite number of Floquet modes as-
sociated with each surface wave mode). The energy-transport
velocity for a surface-wave mode is equal to the group velocity
[18] and, hence, total surface wave power per unit length in
the direction is

(18)

where is the propagation constant for theth surface wave
mode and the energy stored in a unit cell is

(19)

The above integrations can be performed analytically, although
the details are omitted here.

B. TE Case

For the TE case, the strip current is in thedirection (Fig. 1)
and only , and components exist. Similar to the TM
mode case, we first solve the boundary value problem shown in
Fig. 2 and convert the solution to that for the aperiodic structure
shown in Fig. 1. The line-source current for the TE case is taken
as a pulse function over the width(an approximation that al-
lows for a nonzero edge-current). The EFIE for the metallic strip
in the zero unit cell is

(20)

where is the electric field at the bottom strip due to the top
line source in the absence of the strip grating. In the method
of moments, the strip-grating current is expanded in terms
of several pulse functions (since is nonzero at the strip
edge, pulse-expansion functions are more appropriate than si-
nusoidal functions) and a Galerkin’s procedure is applied to ob-
tain a linear matrix equation

(21)

Fig. 4. Radiation patterns of a TM line source radiating from a dielectric strip
grating structure:F = 5 GHz and all other parameters are described in Fig. 3.

Fig. 5. Radiation patterns of a TM line source radiating from a dielectric strip
grating structure:F = 13GHz and all other parameters are described in Fig. 3.

Similar to the TM case, it can be shown from the Green’s func-
tion for a dielectric slab that

(22)

where with the number of
expansion functions and

(23)
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Also, and are the Fourier transforms of the pulse functions
for the line source and the strip grating, respectively, given as

(24)

(25)

In addition, the self reaction of the pulse-basis functions can be
expressed as

(26)

where and is the width of the pulse functions
on the grating strips. The solution for the field componentof
the phased-array problem due to both the line source and grating
strips can be written in the following form similar to that for the
TM case as:

(27)

The solution for in the structure shown in Fig. 1 can be found
from (27) by integrating over the interelement phase-shift vari-
able as before. The component for the TE case is then written
as

(28)
Similar to the TM case, a saddle point exists at
( ), and the far-zone electric field in the upper-
space region is then

(29)
where is the term in (28) with and

. The far-zone average radiated power density
per unit length is and the total radiated
power per wavelength (in the direction) in the upper-space
region is

(30)

The far-zone surface-wave fields are found from (28) from the
pole residue. The surface-wave magnetic field is written as

if

if (31)

The total surface wave power is given by the same formula
as the TM formula (18) except that it is now more convenient to
express the stored energy in the unit cell as

(32)

III. RESULTS AND DISCUSSIONS

The validity of the present analysis has been justified by com-
parisons with several limiting cases where results are known.
For example, when the line source is placed within the grating
and the slab dielectric constant is set to one, identical field pat-
terns in the upper and lower space are found. When the strip
width is close to the grating period (to simulate a ground plane),
the results approach those for the case of a grounded slab struc-
ture. The leaky-wave beam angle is also validated by comparing
to the phase constant (real part of the complex wavenumber) for
the leaky mode on the structure.

A printed antenna on a grounded dielectric-slab structure usu-
ally has a low gain and the radiation efficiency is limited by sur-
face wave losses. The strip grating on the back of the dielectric
slab can significantly affect the radiation characteristics. An ex-
ample of the mode diagram for TM guided waves excited by a
TM line source is first shown in Fig. 3. At low frequencies, the
guided-wave mode is a perturbation of the surface wave mode
without the grating. When approaches , the guided-wave
propagation constant become complex valued and the solution
appears as a complex-conjugate pair. The modes in this region,
where , are nonpropagating modes (evanescent), where
the attenuation corresponds to reactive decay and not radiation.
In periodic waveguides, the frequency range where the modes
are complex modes is often called the propagation (or photonic)
bandgap [18]. Within the bandgap zone surface-wave propaga-
tion is eliminated, which may result a significant increase in an-
tenna radiation efficiency. The line in Fig. 3(a) is also
the boundary of the Brillouin irreducible zone. Due to the peri-
odic nature of the structure, if is above the boundary of this
zone (there are infinite number of such values), there is a cor-
responding below the boundary (within the Brillouin zone)
that represents the same mode. As the frequency increases be-
yond the stopband region, the wavenumber once again becomes
pure real, corresponding to a propagating mode.

As frequency further still increases, the phase constant
eventually crosses below the line and the propagation
wavenumber becomes complex-valued due to radiation. In
this case, the guide-wave mode becomes a fast (physically
meaningful) leaky-wave mode. When the phase constant is less
than the free-space wave number, as seen from (6), there exists
a Floquet mode (usually the mode) such that is no
longer real and positive. In the leaky-mode region the real part
of is negative and the imaginary part is positive. Because
the wave propagates as away from the structure,
there is energy propagating into the upper or lower space and
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Fig. 6. TM surface-wave and leaky-wave mode diagram for a dielectric
strip-grating structure:" = 10; h = 5 mm,w = 6 mm, s = 0, anda = 8

mm.

the guided surface wave becomes leaky, with an exponential
increase transversely from the structure. It is seen from Fig. 3(a)
that the surface-wave bandgap and the leaky-wave phenomenon
are found for not only the fundamental mode, but also the
higher order modes (i.e., higher order slab modes that are
perturbed by the grating). It is noted that when the frequency is
high enough such that , all the propagating surface
wave modes turn into leaky wave modes (there is always an
such that is a complex value). Fig. 3(b) shows the same
diagram for the fundamental mode but in a more customary
way for a periodic structure [18], [19]. The stopband region is
clearly seen as the “gap” that occurs at .

A typical radiation pattern of a TM line source on a dielectric
strip grating structure without leaky-wave excitation is shown
in Fig. 4. The parameters are the same as for the results in Fig. 3
and the frequency is at 5 GHz. As is expected, the antenna gain
is low with a null on the horizon. It is interesting to observe that
there is about 10-dB higher gain for the main beam in the lower
space than the one in the upper space. This implies that most of
the power is radiating into the lower space. In other words, the
strip grating acts more like a director than a reflector.

The excitation of leaky waves may greatly enhance the an-
tenna gain (directivity). An example of such a radiation pattern
is shown in Fig. 5. The results are for the case in Fig. 3 again but
at 13 GHz, where there is a leaky wave radiating at beam angle

. It is seen that due to the excitation of a leaky wave the
antenna pattern is highly directive. Such a high-gain leaky-wave
antenna had been experimentally demonstrated [6], [7].

It is observed from Fig. 3 that the transition from a surface
wave to a leaky-wave is essentially continuous. This obser-
vation is not always true, especially when the grating strips
are wide (slot width is narrow). An example is shown in
Fig. 6 where the parameters are the same as those in Fig. 3
except that the grating strip width is now 6 mm. It is seen

Fig. 7. Power emanating from a TM-line source on a dielectric strip-grating
structure. Total power is 1 W." = 10; h = 5 mm,w = 2 mm,s = 0; t = 1

mm anda = 8 mm. (a) Power into upper space. (b) Power into lower space. (c)
Power into surface waves.

that there is a mode discontinuity near the boundary of the
physical leakage region.

The strip-grating structure may result in surface-wave
elimination within the propagation bandgap zone. The
radiation efficiency of an antenna within such a zone may
be greatly enhanced. An example is shown in Fig. 7(a)–(c).
The power distributions versus frequency among the radi-
ated powers in the upper and lower spaces and the surface
wave are shown. There are two cases shown in the figures,
with a grating strip width of 2 mm (the mode diagram is
shown in Fig. 3) and 6 mm (the mode diagram is shown
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(a)

(b)

Fig. 8. TE surface-wave and leaky-wave mode diagram for a dielectric
strip-grating structure:" = 10; h = 5 mm,w = 2 mm, s = 0, anda = 8

mm.

in Fig. 6). The grating period is 8 mm in both cases. At very
low frequencies (large wavelength), the dielectric substrate
has no effect on the radiation, there is very little surface-wave
power, and the radiated power is evenly divided above and
below the line source. As the frequency increases, the effects
of the dielectric substrate and strip grating increase, so that
the upper-space radiated power decreases and the lower-space
radiated power increases until minimum and maximum are
reached, respectively (this occurs at a frequency lower than 5
GHz). As frequency increases further, the lower space power
decreases and upper space power increases, as is observed
in Fig. 7(a) and (b) and also Fig. 4. The surface-wave power
increases with frequency before the bandgap zone. Within
the surface-wave bandgap (without surface wave losses), it
is seen that there is a dramatic increase in the percentage
of power radiated into the upper and lower spaces. The

Fig. 9. Radiation patterns of a TE line source radiating from a dielectric strip
grating structure:F = 5 GHz and all other parameters are described in Fig. 8.

Fig. 10. Radiation patterns of a TE line source radiating from a dielectric strip
grating structure:F = 12GHz and all other parameters are described in Fig. 8.

surface-wave bandgap zone is very much dependent on the
width of the strip grating. It is seen that wider strips result
in a wider bandgap, and that the bandgap occurs at lower
frequencies. The frequency at which leakage begins occurs
when the phase constant is equal to free-space wave number.
In the illustrated case, Fig. 7(c), this frequency is 11.58 GHz
for mm and is 10.4 GHz for mm. At these
frequencies the surface-wave power goes to zero (there is
no longer a surface wave, but only a leaky wave).

Although the examples discussed so far are for the TM case
(the line current is in the direction), similar observations also
hold for the TE case (line current in thedirection). An example
of the mode diagram for the guided waves excited by a TE line
source is shown in Fig. 8. The parameters of the dielectric strip-



YANG AND JACKSON: THEORY OF LINE-SOURCE RADIATION FROM DIELECTRIC-SLAB STRUCTURE 563

grating structure are the same as for the TM case in Fig. 3. It is
seen that the bandgap zone occurs at lower frequencies for the
TE case. This is due to the fact that the TE surface-wave mode
phase constant increases with frequency more rapidly than in
the TM case.

A typical radiation pattern of a TE line source on a dielectric
strip-grating structure without leaky-wave excitation is shown
in Fig. 9. The parameters are the same as for the results shown
for the TM case (Fig. 4). It is interesting to observe that there is
almost a 10-dB higher gain for the main beam in the upper space
than for the one in the lower space, opposite to the TM case. This
implies that most power radiates into the upper space; that is, the
strip grating acts more like a reflector than a director.

An example of a leaky-wave radiation pattern for the TE case
is shown in Fig. 10. The results are for the case in Fig. 9, but
the frequency is at 12 GHz instead. It is seen from Fig. 10 that
the directivity of the TE line source is not high as for the TM
case shown in Fig. 5. In fact, sharp nulls are observed in the TE
case instead of the sharp beams in the TM case. This is probably
due to the fact that for this set of parameters, the leaky-wave ra-
diation pattern is almost perfectly cancelling the “space-wave”
pattern due to the rest of the continuous spectrum (representing
direct radiation from the line source into space), at the beam
peak.

An example of power distributions versus frequency for the
powers in the upper and lower spaces and the surface wave, is
shown in Fig. 11(a)–(c) for the TE case. There are two cases
shown in the figures, corresponding to a grating strip width of
2 and 6 mm, with period of 8 mm in both cases. It is seen that
at low frequencies, the behavior of the radiated powers in the
upper and lower space versus frequency is opposite to the TM
case. There are several interesting observations for the TE case.
First, the surface-wave mode has a smoother transition to the
bandgap zone than for the TM case. Also, inside the bandgap
zone, for the small grating strip width ( mm), most of
the radiated power is into the lower space (little into the upper
space) and the grating strips therefore act somewhat transparent.
For the large grating strip width ( mm), the opposite ob-
servation is found and the grating strips act more like a metal
shield inside the band gap. The frequency at which leakage be-
gins in Fig. 11(c) is 10.3 GHz for mm and 10.2 GHz for

mm. Once again, the surface-wave power goes to zero at
these frequencies.

IV. CONCLUSIONS

In this paper, the theory of radiation from a line source on
a dielectric slab backed by a periodic metal strip grating was
described. A continuous phased-array approach was applied
to solve for the fields of the corresponding aperiodic structure
(single source in the presence of the periodic structure). A
moment method was first applied to the periodic phased-array
structure where an infinite periodic array of line source exists,
with an arbitrary interelement phase shift. The superposition of
the corresponding phased-array solutions over all the possible
phase-shift angles (from to ) results in the solution of
the pertinent aperiodic structure. Both TM and TE line-source
excitation problems were investigated. It was found that the

Fig. 11. Power emanating from a TE-line source on a dielectric strip-grating
structure. Total power is 1 W." = 10; h = 5 mm,w = 2 mm,s = 0; t = 1

mm, anda = 8 mm. (a) Power into upper space. (b) Power into lower space.
(c) Power into surface waves.

strip grating affects significantly the radiation characteristics of
the line source. The strip grating introduces surface-wave band
gap frequency regions (surface wave elimination), resulting in
significant increases in antenna radiation efficiency. The strip
grating structure may also support leaky waves. It was found
that the excitation of the leaky waves greatly enhances antenna
gain (directivity) for the TM case but not for the TE case,
when the line source is on top of the slab. Power distributions
among the radiated waves and the surface waves as a function
of structural parameters were also investigated. It was observed
that the surface-wave bandgap zone is very much dependent
on the width of the strip grating. Further problems involving
planar-strip gratings on a dielectric slab using microstrip
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dipoles and patches as the radiating elements are presently
under investigation.
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