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Electromagnetic Diffraction of an
Obliquely Incident Plane Wave by a

Right-Angled Anisotropic Impedance Wedge
with a Perfectly Conducting Face
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Abstract—The diffraction of an arbitrarily polarized electro-
magnetic plane wave obliquely incident on the edge of a right-an-
gled anisotropic impedance wedge with a perfectly conducting face
is analyzed. The impedance tensor on the loaded face has its prin-
cipal anisotropy axes along directions parallel and perpendicular
to the edge, exhibiting arbitrary surface impedance values in these
directions. The proposed solution procedure applies both to the
exterior and the interior right-angled wedges. The rigorous spec-
tral solution for the field components parallel to the edge is de-
termined through the application of the Sommerfeld–Maliuzhinets
technique. A uniform asymptotic solution is provided in the frame-
work of the uniform geometrical theory of diffraction (UTD). The
diffracted field is expressed in a simple closed form involving ratios
of trigonometric functions and the UTD transition function. Sam-
ples of numerical results are presented to demonstrate the effec-
tiveness of the asymptotic expressions proposed and to show that
they contain as limit cases all previous three-dimensional (3-D) so-
lutions for the right-angled impedance wedge with a perfectly con-
ducting face.

Index Terms—Electromagnetic diffraction, surface impedance,
wedges.

I. INTRODUCTION

T HE increasing interest in anisotropic composite materials
for realizing polarization selective surfaces has focused

the attention on suitable methods for the analysis of the
scattering properties of such surfaces, including the effects
introduced by their edges. In most cases, approximate boundary
conditions have proved effective to make the scattering problem
tractable and to achieve a solution simple to use [1]. For in-
stance, suitable boundary conditions have been derived that
couple the tangential field components at the opposite sides
of thin composite layers [2], realized by dense planar arrays
of complex-shaped scatterers. Also, anisotropic boundary
conditions have been applied for analyzing the scattering from
planar strip gratings [3] and other periodic surfaces [4], [5]
when the period of the structure is much smaller than the
free-space wavelength. A validation of the above conditions
has been performed in [4] and [5] through comparisons against
measurements and moment method data, confirming that these
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analytical models may represent a viable alternative to more
rigorous numerical methods.

In this context, it is worth noting that rigorous three-di-
mensional (3-D) solutions for electromagnetic scattering from
nonperfectly conducting wedges whose faces are modeled
by anisotropic impedance boundary conditions (IBC's) are
available only for a few specific electrical and geometrical
configurations [6]. This observation applies to the simpler case
of isotropic IBC's as well [7]. A case of remarkable interest
for applications is that of a right-angled impedance wedge.
An exact integral solution for this canonical problem has been
derived in [8], when the wedge exhibits an isotropic impedance
face with the other face perfectly conducting. More recently, the
above solution has been extended to analyze the case in which
the perfectly conducting face is substituted by an anisotropic
impedance face, with a vanishing surface impedance in the
direction transverse to the edge [9]. Moreover, a rigorous spec-
tral solution has been derived for a right-angled wedge with
both faces characterized by an impedance tensor exhibiting a
vanishing surface impedance in the direction parallel to the
edge [10]; it remains valid for an arbitrary interior wedge angle.
In this framework, we note that from a practical point of view,
the presence of a vanishing surface impedance in a principal
anisotropy direction may allow us to account for the presence
of strip-loaded grounded dielectric slabs with the direction of
strips coinciding with that of vanishing surface impedance [11].

A further rigorous spectral solution is derived in this paper
when a face of the wedge is characterized by an arbitrary sur-
face impedance tensor with the principal anisotropy axes par-
allel and perpendicular to the edge and the other face is realized
by a perfect electric conductor (PEC) [12]. We note that the so-
lution for the case in which this latter face is constituted by a
perfect magnetic conductor (PMC) can be obtained by directly
applying duality to the solution valid for the PEC. The analysis
is carried out in the case of an arbitrarily polarized plane wave,
obliquely incident on the edge of the wedge, both for the ex-
terior and the interior right-angled wedges. The exact integral
representation for the total field is determined by resorting to
the Sommerfeld–Maliuzhinets method [13]. A pair of decou-
pled IBC's for each face of the wedge is obtained by expressing
the same conditions in terms of suitable linear combinations
of the electric and magnetic field components tangential to the
loaded face. The problem is then reduced to the solution of a
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Fig. 1. Geometry for the scattering problem.

set of decoupled functional equations, of the same form as those
solved by Maliuzhinets in [13]. The final expressions for the an-
gular spectra of the longitudinal field components can be written
in terms of simple trigonometric functions. We note that these
spectra involve four constants that are needed to satisfy the edge
condition. However, imposing the cancellation of all nonphys-
ical poles enables us to unequivocally determine each constant.

The rigorous spectral representations are then asymptotically
evaluated to provide suitable high-frequency expressions for the
diffracted field in the format of the uniform geometrical theory
of diffraction (UTD). Particular attention is devoted to the phe-
nomenon of surface wave excitation at the edge of the wedge
and their propagation along the anisotropic impedance face. As
far as the surface wave propagation constants and lit regions are
concerned, we note that the results obtained by this analysis re-
main valid for more general anisotropic wedge configurations,
provided that the principal anisotropy directions are parallel and
perpendicular to the edge. Finally, it is worth pointing out that
the high-frequency expressions proposed yield a uniform be-
havior of the total field at the shadow boundaries of both the
geometrical optics (GO) and the surface wave fields.

The paper has been organized as follows. The formulation of
the problem is provided in Section II. The procedure used to re-
duce the original vector issue to a couple of simpler scalar prob-
lems is presented in Section III. Exact integral representations
for the longitudinal field components are given in Section IV
and suitable uniform asymptotic expressions are provided in
Section V. Finally, some numerical results are shown in Sec-
tion VI to demonstrate that data calculated by these asymptotic
expressions exactly coincide with those obtained by all previous
solutions for specific configurations contained in the present one
as limit cases [8]–[10].

II. FORMULATION

The geometry for the scattering problem is shown in
Fig. 1. The wedge has its edge overlapped with the-axis

Fig. 2. Integration contours on the complex plane.

of a Cartesian coordinate system ; the exterior
wedge angle is being a real parameter (
for the exterior right-angled wedge, for the
interior right-angled wedge). The observation point has
coordinates in a cylindrical reference frame
with the -axis coincident with that of the above Cartesian
system. The face of the wedge lies on the
plane. The wedge is illuminated by an arbitrarily polarized
plane wave impinging from a direction determined by the
two angles and . The angle is a measure of the
incidence direction skewness with respect to the edge of
the wedge ( corresponds to normal incidence). An

time dependence is assumed and suppressed. The
longitudinal components of the incident field are expressed
as

(1a)

(1b)

where and are the wave number and intrinsic impedance
of free-space, respectively, and denotes the
transverse component of the wave vector. Since the electric
properties of the wedge are supposed to be independent of
, the scattered field exhibits the same

dependence on as the incident field that will be understood
in the following.

Anisotropic IBC's hold on the face of the wedge. In the
hypothesis that the principal anisotropy directions are parallel
and perpendicular to the edge, the surface impedance is repre-
sented by the tensor , with .
Consequently, the IBC’s on the face are expressed

(2)

Furthermore, the following boundary conditions must be satis-
fied at the other face:

(3)



MANARA AND NEPA: EM DIFFRACTION OF OBLIQUELY INCIDENT PLANE WAVE BY WEDGE WITH PERFECTLY CONDUCTING FACE 549

All field components can be written in terms of the longi-
tudinal field components and . The latter components
must satisfy the two-dimensional Helmholtz equation and can
be expressed in the following spectral form:

(4a)

(4b)

where is the Sommerfeld integration path depicted
in Fig. 2. To satisfy the radiation condition, the spectral func-
tions and must be regular in the strip

, except for a first-order pole at , accounting
for the incident field. Moreover, the edge condition requires that

and when . The
problem is now reduced to the determination of the spectral
functions in (4).

III. SOLUTION PROCEDURE

By expressing the IBC's in terms of and we obtain
the following differential equations for the anisotropic face:

(5a)

(5b)

Conversely, on the perfectly conducting face the elec-
tric and magnetic longitudinal field components must satisfy the
standard boundary conditions at the interface with a PEC

(6a)

(6b)

As apparent, the IBC’s in (5) are coupled, i.e., each equation
contains both and . However, for the configuration ana-
lyzed in this paper, the problem can be scalarized by expressing
the IBC’s on both wedge faces with respect to the following
linear combinations of the field components:

(7a)

(7b)

Indeed, by expressing the IBC's at the face in terms of
and we obtain

(8)

(a)

(b)

Fig. 3. Amplitude of the (a) copolar and (b) cross-polar longitudinal
components of the total field in the presence of a right-angled impedance
wedge with the face� = 3�=2 perfectly conducting. The wedge is illuminated
by a TM polarized(E = 1; �H = 0) plane wave, impinging from
� = �=12, with different values of the skewness angle� . Other geometrical
and electrical parameters:k� sin � = 10; Z =� = �4j; Z =� = 0:25j.

Furthermore, on the perfectly conducting face both
and , as well as any linear combination of the two, must

satisfy a soft condition. As far as and are concerned,
we note that they must meet a hard condition at the same face;
of course, the same condition must be fulfilled by any linear
combination of the same components. As a consequence of the
above observations, the IBC's on the face assume the
following form:

(9)

Since both and in (7) are solutions of the scalar Helmholtz
equation, they can be expressed in terms of Sommerfeld inte-
grals

(10a)
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(10b)

By substituting the previous spectral representations into the
IBC’s in (8) and (9), a set of decoupled first-order difference
equations is obtained [14]

(11a)

(11b)

They are similar to those obtained by Maliuzhinets for the
isotropic impedance wedge, illuminated at normal incidence
[13]. Strictly speaking, the Maliuzhinets theorem in [14]
requires the inclusion of a forcing term at the second member
of (11), consisting of a polynomial in . However, we note
that for the configuration under analysis, these polynomials
must not be introduced since the solution of (11) itself satisfies
both the radiation and the edge conditions. Once the expressions
for and have been derived, the rigorous solution
for the spectra of the longitudinal field components can be
obtained by (12), shown at the bottom of the page, where

(13)

with

(14)

and . Complete expressions for and
will be provided in the next section.

It is worth noting that the definition of suitable potential func-
tions is a crucial point to decouple the anisotropic IBC’s on
both wedge faces and reduce the original issue to a couple of
scalar problems. The potential functions defined in (7) differ
from those applied in previous papers [6], [9], and [10]; indeed,
their choice strongly depends on the geometrical and electrical
configuration under analysis.

IV. EXACT SPECTRAL SOLUTION

By accounting for the radiation and the edge conditions, the
solution for the functional equations in (11) can be expressed as
[13], [14]

(15a)

(15b)

where

(16)

and when . The function intro-
duces a first order pole singularity at , which is
needed to recover the incident field; in particular, by imposing
that the residues of and coincide with the complex
amplitude of the incident field longitudinal components in (1),
i.e., and , the following values for the constants and

are determined:

(17a)

(17b)

The other constants appearing in the solution provide the
proper behavior of the spectral functions when ;
they are determined by imposing the cancellation of specific
nonphysical poles introduced by the term in (12).
Indeed, the term introduces pole singularities
which are located at

(18)

with . The poles in (18) lying in the strip
must be cancelled out since they give rise to

residue contributions not satisfying the radiation condition. The

(12a)

(12b)
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(a)

(b)

Fig. 4. Amplitude of the (a) copolar and (b) cross-polar longitudinal
components of the total field in the presence of a right-angled impedance wedge
with the face� = 3�=2 perfectly conducting. The wedge is illuminated by a
TM polarized(E = 1; �H = 0) plane wave, impinging from� = �=6;
� = �=12. Anisotropic cases:Z =� = �4j; Z =� = 0:25j (continuos
lines);Z =� = 0:25j; Z =� = �4j (dashed-dotted lines). Isotropic cases:
Z =� = Z =� = �4j (dashed lines);Z =� = Z =� = 0:25j (dotted lines).
The field is evaluated at a normalized distancek� sin � = 10 from the edge.

cancellation of these nonphysical poles is obtained by imposing
the following conditions:

(19)

(20)

which guarantee the vanishing of the residues of both and
at . However, it can be shown that once the can-

cellation of the nonphysical poles of has been imposed,
also the elimination of the poles of is automatically ob-

tained, and vice versa. In the right-angled exterior wedge case
, four poles arise with residue contributions not satis-

fying the radiation condition; indeed, these poles lie in the strip
. By applying (19)

or (20), a linear equation system is obtained

(21)

(22)

from which the constants and can be evaluated.
Conversely, in the right-angled interior wedge case ,
only two poles lie in the strip .
By imposing the cancellation of these poles a linear equation
system is obtained from which the two constantsand
can be determined

(23)

Finally, we observe that the rigorous expressions for the
spectra and in (15) and, consequently, those for
the longitudinal components and in (12), do not
explicitly contain the Maliuzhinets special function [13]. This
is in agreement with previous solutions [8]–[10] since for

the Maliuzhinets special function reduces to a ratio of
simple trigonometric functions.

V. ASYMPTOTIC ANALYSIS

By taking into account (4), (12), and (15), the longitudinal
field components and are expressed in a form suit-
able for their uniform asymptotic evaluation. In particular, by
applying the residue theorem, the original integral representa-
tion for the total field along the Sommerfeld integration con-
tour is reduced to the contribution of: 1) the residues of both
GO and surface wave poles, which can be captured in the con-
tour deformation process and 2) two integrals defined along the
steepest descent paths through the saddle points at
(Fig. 2), providing the edge diffracted field contribution. A uni-
form asymptotic expression for the field diffracted by the edge,
valid also when the poles cross the integration path away
from the saddle points, is given by [15]

(24a)
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(a)

(b)

Fig. 5. Amplitude of the (a) copolar and (b) cross-polar longitudinal
components of the total field in the presence of a right-angled impedance
wedge with the face� = 3�=2 perfectly conducting. The wedge is illuminated
by a TM polarized(E = 1; �H = 0) plane wave, impinging from
� = �=4; � = �=6. The normalized surface impedances are equal to:
Z =� = �j(0:6 � �); Z =� = �j(0:6 + �). Dashed lines:� = 0:4;
dashed-dotted lines:� = 0:2; dotted lines:� = 0:02; continuous lines:� = 0
(isotropic impedance face). The field is evaluated at a normalized distance
k� sin � = 10 from the edge.

(24b)

where is the UTD transition function [16] generalized to
complex arguments as in [15]. The summation appearing in
(24) includes all those pole singularities, which result to be the
closest to the steepest descent paths , when the obser-
vation angle varies between and . It is worth
noting that those terms of the summation in (24) accounting for
the surface wave poles (complex poles) provide significant con-
tributions to the field when the observation point approaches the

impedance face. This verifies even when the corresponding sur-
face wave does not satisfy the excitation condition on the same
face. In the latter case, when the observation point moves to-
ward the impedance face, the specific complex pole approaches
the but does not cross the path. However, although al-
ways remaining external to the closed contour formed byand
the , the vicinity of the pole to the integration path pro-
vides a contribution to the diffraction integral which is compa-
rable with the standard UTD approximation [16]. By comparing
the results obtained by (24) with reference data provided by a
direct numerical integration of the diffraction integral along the

, a very good agreement is observed [17] even when the
observation point is close to the impedance face.

The residues of the pole singularities of and at
and provide the contribution

of the incident field in (1) and that of the field reflected by the
perfectly conducting face , respectively. In particular,
the latter contribution has the following expression:

(25a)

(25b)

where is the Heaviside unit step function.
Moreover, the pole at accounts for the field

reflected from the anisotropic impedance face . The
expression for this residue contribution is

(26a)

(26b)

where

(27)

(28)

and

(29)

Moreover, in the case of the right-angled interior wedge the
poles at and account for
the double reflection term. More precisely, just one of these two
poles lies between the two , the former when
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(a)

(b)

Fig. 6. Amplitude of the (a) copolar and (b) cross-polar longitudinal
components of the total field in the presence of a right-angled impedance
wedge with the face� = 3�=2 perfectly conducting. The wedge is illuminated
by a TE polarized(E = 0; �H = 1) plane wave, impinging from
� = �=4; � = �=12. The normalized surface impedance alongx is
Z =� = 0:1 + 0:8j. (a) Dashed line:Z =� = j; dotted line:Z =� = 0:2j;
continuous line:Z =� = 0. (b) Dashed line:Z =� = j; dashed-dotted line:
Z =� = 0:5j; dotted line:Z =� = 0:2j; continuous line:Z =� = 0:1j. The
field is calculated at a normalized distancek� sin � = 10 from the edge.

and the latter when ; since their residues coincide, the
solution does not show a discontinuity at . The doubly
reflected terms of the longitudinal field components have the
following expressions:

(30a)

(30b)

Other poles which can be captured in the integration path de-
formation process are those introduced by the term
in (12) and external to the strip . In partic-
ular, this conditions may be met by the poles at

for , and
for , respectively. However, by resorting to the func-
tional equations in (11) it can be shown that (21)–(23) also

guarantee the cancellation of the above poles for and
, respectively. This cancellation was expected since the

face is perfectly conducting and cannot support any
surface wave. Finally, for both right-angled configurations the
poles at are associated with the two
surface waves, which can be excited at the edge and propagate
along the impedance face . Their contributions assume
the following form:

(31a)

(31b)

where denotes the Gudermann function. The corre-
sponding expressions for the complex amplitudes of the surface
waves are shown in (32) at the bottom of the next page.
However, by resorting to the functional equations in (11) it
comes out that (23), which guarantees the cancellation of the
nonphysical poles for , also implies .
Moreover, since both the spectral functions and
are periodic with period when , the diffracted field
rigorously vanishes as well. As expected, for this
spectral solution reduces to the GO solution in agreement with
the image principle.

VI. NUMERICAL RESULTS

Samples of numerical results are provided in this section to
numerically demonstrate that this solution smoothly reduces
to all previous 3-D solutions for the right-angled impedance
wedge problem with a perfectly conducting face. In all figures,
we show the amplitude of the total field in the presence of
a right-angled impedance wedge as a function of the obser-
vation angle ; the field is calculated at a constant distance

from the edge. The face is
characterized by a surface impedance tensor, while the other
face is perfectly conducting. A first example is
reported in Fig. 3; the normalized impedance values along
and are equal to and , respectively. Each curve
plotted in the figure refers to a different value of the incidence
skewness angle , while ; the incident plane wave is
TM polarized . As apparent from Fig. 3(a),
the amplitude of the copolar component of the total field
smoothly reduces to the continuous line, corresponding to
the case of normal incidence, when the incidence skewness
angle tends to . The continuous line has been reported as
a reference in the figure; it has been calculated by resorting to
the rigorous Maliuzhinets solution [13], assuming an isotropic
normalized surface impedance equal to on the loaded
face . As expected, the cross-polar component
of the total field continuously reduces at the increasing of,
eventually vanishing for (Fig. 3(b)). In order to give
evidence to the scattering effects introduced by the anisotropic
characteristics of the loaded face of the wedge, a further
example is shown in Figs. 4(a) and (b). Again the incident wave
is TM polarized ; its direction of incidence
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(a)

(b)

Fig. 7. Amplitude of the (a) co polar and (b) cross-polar longitudinal
components of the total field in the presence of a right-angled impedance
wedge with the face� = 3�=2 perfectly conducting. The wedge is illuminated
by a TE polarized(E = 0; �H = 1) plane wave, impinging from
� = �=4; � = �=3. The normalized surface impedance in the direction
of the edge isZ =� = j. Dashed lines:Z =� = 0:5j; dotted lines:
Z =� = 0:1j; continuous lines:Z =� = 0. The field is calculated at a
normalized distancek� sin � = 10 from the edge.

is identified by the angles . Four curves
are plotted in both figures for different values of the tensor
surface impedance on the loaded face . In particular,
the continuous line is related to a surface impedance tensor
exhibiting the following normalized impedance values along
the principal anisotropy axes: .

Conversely, the dashed-dotted line refers to a different surface
impedance tensor with . Finally,
the dashed and the dotted lines refer to different isotropic
impedance cases with normalized values
and , respectively.

A third example is reported in Fig. 5 to demonstrate that this
solution smoothly converges to that for the isotropic impedance
right-angled wedge [7], [8]. The incident plane wave impinges
on the edge from and is TM polarized

. The surface impedance tensor on the
loaded face is defined in terms of the parameter:

. In particular,
the dashed, dotted-dashed and dotted lines correspond to

, and , respectively. As is apparent, both the
copolar [Fig. 5(a)] and the cross-polar [Fig. 5(b)] components
of the field smoothly reduce to those obtained in the case of the
corresponding isotropic impedance right-angled wedge ( ,
continuous line) [7], [8].

In the remaining examples we check this solution against the
rigorous ones determined for the right-angled wedge when the
surface impedance in one of the principal anisotropy directions
vanishes [9], [10]. In particular, the first case shown in Fig. 6(a)
and (b) refers to a wedge with the loaded face ex-
hibiting the following normalized surface impedance in the di-
rection perpendicular to the edge: , while
the normalized surface impedance in the direction parallel to
the edge assumes different values. The wedge is illuminated by
a TE polarized plane wave impinging on
the edge from . In Fig. 6(a), the normal-
ized surface impedance in the direction parallel to the edge is
equal to: (dashed line), (dotted line) and

(continuous line). The continuous line in Fig. 6(a) has
been plotted as a reference; it has been evaluated by resorting to
the asymptotic approximation of the rigorous solution proposed
in [10]. We observe that the amplitude of the copolar compo-
nent of the field plotted in Fig. 6(a) tends to the continuous line
when the value of decreases, eventually overlapping with
the continuous line in the limit . In Fig. 6(b), the nor-
malized surface impedance in the direction parallel to the edge is
equal to: (dashed line), (dashed-dotted
line), (dotted line) and (continuous
line). As apparent, the amplitude of the cross-polar component
in Fig. 6(b) decreases when the modulus of decreases; it
exactly vanishes for , as expected. In fact, in the latter
case the IBC's on the loaded face decouple [see (5)] so that a
cross-polar component is not present anymore. A last example

(32a)

(32b)
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is shown in Figs. 7(a) and (b). Again the incident plane wave is
TE polarized ; it impinges from a direc-
tion determined by the angles . This time
we fix the value of the normalized impedance in the direction
parallel to the edge: . Conversely, the normalized sur-
face impedance alongvaries as follows: (dashed
line), (dotted line), (continuous line).
Again, the continuous line has been plotted in both Figs. 7(a)
and (b) as a reference; it has been calculated by resorting to the
uniform asymptotic evaluation of the rigorous solution in [9]. It
is seen that when the modulus of decreases this solution
converges to that in [9], both for the co-polar (Fig. 7(a)) and the
cross-polar (Fig. 7(b)) components of the total field.

We finally note that, as apparent in all plots reported in this
section, the solution proposed is uniform also at the shadow
boundaries of the surface waves excited by the diffraction phe-
nomenon at the edge and propagating along the loaded face of
the wedge.

VII. CONCLUSION

A rigorous spectral solution for the scattering by a right-an-
gled anisotropic impedance wedge with a perfectly conducting
face has been presented, when the wedge is illuminated by an ar-
bitrarily polarized plane wave impinging at oblique incidence on
its edge. The surface impedance tensor on the loaded face of the
wedge may exhibit arbitrary values, but the principal anisotropy
directions must be parallel and perpendicular to the edge of the
wedge. The solution is determined by resorting to the Sommer-
feld–Maliuzhinets method and is expressed in a simple closed
form, containing only ratios of trigonometric functions. It re-
covers as limit cases all previous 3-D solutions for the right-an-
gled impedance wedge with a perfectly conducting face. Uni-
form asymptotic expressions have been derived from the above
spectral solution in the framework of UTD; they provide a con-
tinuous behavior of the fields also at the shadow boundary of
the surface waves, which can be excited by the diffraction phe-
nomenon at the edge and propagate along the loaded face of the
wedge.
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