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Electromagnetic Diffraction of an
Obliquely Incident Plane Wave by a
Right-Angled Anisotropic Impedance Wedge
with a Perfectly Conducting Face

Giuliano ManaraSenior Member, IEEEBNd Paolo Nepavlember, IEEE

Abstract—The diffraction of an arbitrarily polarized electro-  analytical models may represent a viable alternative to more
magnetic plane wave obliquely incident on the edge of a right-an- rigorous numerical methods.
gled anisotropic impedance wedge with a perfectly conducting face In this context, it is worth noting that rigorous three-di-

is analyzed. The impedance tensor on the loaded face has its prin- . | (3-D It f lect fi ttering f
cipal anisotropy axes along directions parallel and perpendicular mensional (3-D) solutions for electromagnetic scattering from

to the edge, exhibiting arbitrary surface impedance values in these nonperfectly conducting wedges whose faces are modeled
directions. The proposed solution procedure applies both to the by anisotropic impedance boundary conditions (IBC's) are
exterior and the interior right-angled wedges. The rigorous spec- available only for a few specific electrical and geometrical

tral solution for the field components parallel to the edge is de- configurations [6]. This observation applies to the simpler case

termined through the application of the Sommerfeld—Maliuzhinets . - \ .
technique. A uniform asymptotic solution is provided in the frame- of isotropic IBC's as well [7]. A case of remarkable interest

work of the uniform geometrical theory of diffraction (UTD). The ~ for applications is that of a right-angled impedance wedge.
diffracted field is expressed in a simple closed form involving ratios  An exact integral solution for this canonical problem has been
of trigonometric functions and the UTD transition function. Sam-  derived in [8], when the wedge exhibits an isotropic impedance
ples of numerical results are presented to demonstrate the effec- face with the other face perfectly conducting. More recently, the

tiveness of the asymptotic expressions proposed and to show that b lution has b tended t | th in which
they contain as limit cases all previous three-dimensional (3-D) so- above solution has been extended to analyze the case in whic

lutions for the right-angled impedance wedge with a perfectly con- the perfectly conducting face is substituted by an anisotropic

ducting face. impedance face, with a vanishing surface impedance in the
Index Terms—Electromagnetic diffraction, surface impedance, direction transverse to the edge [9]. Moreover, a rigorous spec-
wedges. tral solution has been derived for a right-angled wedge with

both faces characterized by an impedance tensor exhibiting a

vanishing surface impedance in the direction parallel to the
|. INTRODUCTION edge [10]; it remains valid for an arbitrary interior wedge angle.

HE increasing interest in anisotropic composite materialg this framework, we note that from a practical point of view,

for realizing polarization selective surfaces has focusdde presence of a vanishing surface impedance in a principal

the attention on suitable methods for the analysis of tlaisotropy direction may allow us to account for the presence
scattering properties of such surfaces, including the effe@gstrip-loaded grounded dielectric slabs with the direction of
introduced by their edges. In most cases, approximate boundsiiyps coinciding with that of vanishing surface impedance [11].
conditions have proved effective to make the scattering problemA further rigorous spectral solution is derived in this paper
tractable and to achieve a solution simple to use [1]. For inhen a face of the wedge is characterized by an arbitrary sur-
stance, suitable boundary conditions have been derived tf@&e impedance tensor with the principal anisotropy axes par-

couple the tangential field components at the opposite siddiel and perpendicular to the edge and the other face is realized
of thin composite layers [2], realized by dense planar arrapy a perfect electric conductor (PEC) [12]. We note that the so-
of complex-shaped scatterers. Also, anisotropic bounddugion for the case in which this latter face is constituted by a
conditions have been applied for analyzing the scattering frgperfect magnetic conductor (PMC) can be obtained by directly
planar strip gratings [3] and other periodic surfaces [4], [3Ipplying duality to the solution valid for the PEC. The analysis
when the period of the structure is much smaller than tligcarried out in the case of an arbitrarily polarized plane wave,
free-space wavelength. A validation of the above conditiombliquely incident on the edge of the wedge, both for the ex-
has been performed in [4] and [5] through comparisons agaitgtior and the interior right-angled wedges. The exact integral
measurements and moment method data, confirming that thegjgresentation for the total field is determined by resorting to
the Sommerfeld—Maliuzhinets method [13]. A pair of decou-

pled IBC's for each face of the wedge is obtained by expressing
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Fig. 2. Integration contours on the complex plane.
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of a Cartesian coordinate systerfx,y,z); the exterior
. . wedge angle isnm, n being a real parametem (= 3/2
Fig. 1. Geometry for the scattering problem. for the exterior right-angled wedgep = 1/2 for the
interior right-angled wedge). The observation point has
set of decoupled functional equations, of the same form as th@ggrdinatesP = (p,¢,z) in a cylindrical reference frame
solved by Maliuzhinets in [13]. The final expressions for the afyith the z-axis coincident with that of the above Cartesian
gular spectra of the longitudinal field components can be writteystem. The facep = 0 of the wedge lies on théz, z)
in terms of simple trigonometric functions. We note that thesftane. The wedge is illuminated by an arbitrarily polarized
spectra involve four constants that are needed to satisfy the eggghe wave impinging from a direction determined by the
condition. However, imposing the cancellation of all nonphyswo angles3’ and ¢’. The angles’ is a measure of the
ical poles enables us to unequivocally determine each constaitidence direction skewness with respect to the edge of
The rigorous spectral representations are then asymptoticag wedge 6 = 7/2 corresponds to normal incidence). An
evaluated to provide suitable high-frequency expressions for {88, (jwt) time dependence is assumed and suppressed. The
diffracted field in the format of the uniform geometrical theoryongitudinal components of the incident field are expressed
of diffraction (UTD). Particular attention is devoted to the phegg
nomenon of surface wave excitation at the edge of the wedge
and their propagation along the anisotropic impedance face. As
far as the surface wave propagation constants and lit regions are ‘ sk ,
concerned, we note that the results obtained by this analysis re- (H! = hoemikzcos @ gikepcos(o=d) (1b)
main valid for more general anisotropic wedge configurations,
provided that the principal anisotropy directions are parallel afghere & and ¢ are the wave number and intrinsic impedance
perpendicular to the edge. Finally, it is worth pointing out thgjt free-space, respectively, and = ksing’ denotes the
the high-frequency expressions proposed yield a uniform Beansverse component of the wave vector. Since the electric
havior of the total field at the shadow boundaries of both thgoperties of the wedge are supposed to be independent of
geometrical optics (GO) and the surface wave fields. 2, the scattered field exhibits the sameep(—jkzcos ')
The paper has been organized as follows. The formulation@dpendence on as the incident field that will be understood
the problem is provided in Section Il. The procedure used to - the following.
duce the original vector issue to a couple of simpler scalar prob-apjsotropic IBC's hold on the faeg = 0 of the wedge. In the
lems is presented in Section Ill. Exact integral representatioRgnothesis that the principal anisotropy directions are parallel
for the longitudinal field components are given in Section I\ynq perpendicular to the edge, the surface impedance is repre-
and suitable uniform asymptotic expressions are provided dgnted by the tensd = Z.2% + Z, 44, with Re{Z, .} > 0.

Section V. Finally, some numerical results are shown in Segpnsequently, the IBC’s on the fage= 0 are expressed
tion VI to demonstrate that data calculated by these asymptotic

expressions exactly coincide with those obtained by all previous
solutions for specific configurations contained in the present one
as limit cases [8]-[10].

E; _ eze—jkzcos,B’ijtpcos(qb—qb,) (1a)

E,=Z,H., E.=—-Z.H, $=0. @)

Furthermore, the following boundary conditions must be satis-
Il. FORMULATION fied at the other face:

The geometry for the scattering problem is shown in
Fig. 1. The wedge has its edge overlapped with thexis E,=0, E.=0, ¢=nnu. 3)
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All field components can be written in terms of the longi- 2.5 T r T T ] .
tudinal field component#, and{H.. The latter components B=n/2 Anisotropic face (¢=0)
must satisfy the two-dimensional Helmholtz equation and ca )
be expressed in the following spectral form:

EN
L= — [ scla+¢—nn/2)eF P da  (4a) k=
27§ J, %
1 o , 1
(H, = — / sp(a4 ¢ —nn/2)e P> o (4b) =
275 J, o A
=~ F A U
05 f | § B=ns3
wherey = vt 4+~ isthe Sommerfeld integration path depicted
in Fig. 2. To satisfy the radiation condition, the spectral func: 0 ! . , . , L »
tions s.(«) andsy(a) must be regular in the strifRe{a}| < 0 30 60 9 120 150 180 210 240 270
nmw/2, exceptfor afirst-order pole at = ¢’ —nw /2, accounting Observation angle, ¢ (degrees)
for the incident field. Moreover, the edge condition requires that @

se(a) = O(1) andsy,(«) = O(1) when|lin(«)| — oo. The
problem is now reduced to the determination of the spectr

functions in (4). | B'=§/3 TM_ polarization | |

1.2 T T T I T T

I1l. SOLUTION PROCEDURE ;
0.8 |

EN e s
By expressing the IBC's in terms &f. and(H. we obtain B=n/6 p-mpm4 B=n/2-1/36
the following differential equations for the anisotropic face: E 0.6 ‘_;_v Nl - /: \ g
o C 5 NN ‘\\\ s pm2-nT
S N
{;a—d)—jktsinﬁ’z—z}Ez =
a
— cos /Jla—p(CHz) =0, ¢=0 (5a)
10 Zy
{_8_ — jky sinﬁ’—} (CH>)
pI¢ ) ¢ Observation angle, ¢ (degrees)
+cosF—E. =0, ¢=0. (5b) (b)
dp

Fig. 3. Amplitude of the (a) copolar and (b) cross-polar longitudinal
. components of the total field in the presence of a right-angled impedance
Conversely, on the perfectly conducting fdge= nr) the elec-  wedge with the face = 37/2 perfectly conducting. The wedge is illuminated

tric and magnetic longitudinal field components must satisfy thg a TM. polarized(E. = 1,(H. = 0) plane wave, impinging from
¢’ = m/12, with different values of the skewness angte Other geometrical

standard boundary conditions at the interface witha PEC 77 om0 parametertp sin 7' = 10, Z. /¢ = —4j. Z, /¢ = 0.25.

E.=0, ¢=nnw (6a) Furthermore, on the perfectly conducting fdge= n~) both
10 B _ E. andH,, as well as any linear combination of the two, must
S 9g(CH) =0, ¢=nm. (6b) satisfy a soft condition. As far a&, and H, are concerned,

we note that they must meet a hard condition at the same face;

As apparent, the IBC's in (5) are coupled, i.e., each equatieﬁ course, the same condition must be fulfilled by any linear
contains bothE. and¢H.. However, for the configuration ana-Combination of the same components. As a consequence of the

ﬁ{ﬁ)ve observations, the IBC's on the face- nw assume the

lyzed in this paper, the problem can be scalarized by express .
owing form:

the IBC’s on both wedge faces with respect to the folIowinE?
linear combinations of the field components:
10

5g(CH=0, g=nr ©)

£ =0,
E=(E./Z.+ (H, (7a)
=7,H, — F,. 7b . . .
CH (70) Since bothe and{H in (7) are solutions of the scalar Helmholtz
equation, they can be expressed in terms of Sommerfeld inte-
Indeed, by expressing the IBC's at the faéce 0 interms of  grals
and’H we obtain
1 .
— _ Jkipcosa
£=0, (H=0, ¢=0. 8) €= 2 Ltf(a +¢—nm/2)e dev (10a)
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CH = L / tr (a4 ¢ — nm /2)e?* P> oy (10b) IV. EXACT SPECTRAL SOLUTION
2l

27 By accounting for the radiation and the edge conditions, the

o ) _ ) solution for the functional equations in (11) can be expressed as
By substituting the previous spectral representations into tm], [14]

IBC’s in (8) and (9), a set of decoupled first-order difference

equations is obtained [14
q 4] te(a) = Ago(a) + Cg + Cg sin(a/n) (15a)

te(a Fan/2) —te(—aFnn/2)=0 (11a) cos( & + %)
ty(aFnw/2) Fty(—aFnn/2)=0. (11b) tn(a) = %[AHO’(&) + Cy + Cyy sin(a/n)]
cos| 5~

They are similar to those obtained by Maliuzhinets for the (15b)

isotropic impedance wedge, illuminated at normal incidence
[13]. Strictly speaking, the Maliuzhinets theorem in [14]{yhere
requires the inclusion of a forcing term at the second member ,
of (11), consisting of a polynomial itbs(«). However, we note 1 Sin(%)
that for the configuration under analysis, these polynomials o) = — ) ; (16)
must not be introduced since the solution of (11) itself satisfies "sin($) + COS( )
both the radiation and the edge conditions. Once the expressions . .

C¢ = €, = 0 whenn = 1/2. The functiono(«) intro-

for te(«r) andty(a) have been derived, the rigorous solutiof"9“e =

for the spectra of the longitudinal field components can Hjéjces a first order pole_sir_lgulari_ty@t_: ¢ _.”W/Z' Wh?Ch is .
obtained by (12), shown at the bottom of the page, where needed to recover the incident field; in particular, by imposing
’ ' that the residues of. (o) ands;, () coincide with the complex

_ o _ ./ amplitude of the incident field longitudinal components in (1),
A(a) = (sina — sin §'(/Z. )(sin o — sin 3" Z, /() i.e., e. andh., the following values for the constant and
+ cos® awcos® F Ay are determined:

= sin? #/(sina — sin 97 ) (sine — sin® ™) (13)

n

Ae = —[(sing’ —sin'¢/Z.)e.

with —cos ¢’ cos B'h.]/sin (17a)
Asg = —[(sin g/ —sin ' Zo /b
. 1 Z, ¢ Z. ¢\’ cos Fle,]/ sin B 17b
+_ Lo S V| (%= _ 5 + cos ¢’ cos e;]/sin . (17b)
sin ) 28111/3’{ < ¢t ZZ) < ¢ ZZ)

Z. 1/2 The other constants appearing in the solution provide the

+4 <7 - 1) cos” 3 (14)  proper behavior of the spectral functions whan(a)| — oo;
. they are determined by imposing the cancellation of specific

nonphysical poles introduced by the tefia +nw/2) in (12).
and0 < Re(9F) < /2. Complete expressions fog (o) and  Indeed, the termA(« + nar/2) introduces pole singularities

t2.(c) will be provided in the next section. which are located at
Itis worth noting that the definition of suitable potential func-
tions is a crucial point to decouple the anisotropic IBC’s on oz?f _ (_1)NQ9i —nx )2+ Na (18)

both wedge faces and reduce the original issue to a couple of
scalar problems. The potential functions defined in (7) differ
from those applied in previous papers [6], [9], and [10]; indeedjith N = 0,+1,42,.... The poles in (18) lying in the strip
their choice strongly depends on the geometrical and electri¢Bk{«}| < n7 /2 must be cancelled out since they give rise to
configuration under analysis. residue contributions not satisfying the radiation condition. The

—sin 3 [tg(a) (sin(a +25) - Sinﬁ’%) + ty () cos(a + ZF) cos /3’}
se(0) = Ala+nw/2) (122)

—sin [tH(oc) (Sin(a +25) — sinﬁ’Z%) — te(a) cos(a + 2F) cos /3’}
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T T T T T T tained, and vice versa. In the right-angled exterior wedge case

2.5 . ,
Z/6=2,/6=0.25] Z /G=-4j, Z /5=0.25j (n = 3/2), four poles arise with residue contributions not satis-
, L - ] fying the radiation condition; indeed, these poles lie in the strip
N // YL _ Re{a}| < 3n/4 : 9F — 37 /4, —9F 4 7 /4. By applying (19)
w ,' Y N . X or (20), a linear equation system is obtained
g 1.5 I l/ ".‘\ '/' \ ‘-\‘\ -
it d0N AN [sin 0% — sin ' Z, /CJte (9 — 37/4)
g /I N v 1 + cos 8 cos 9ty (9F — 3w /4) = 0 (21)
-— { - 9
CEE AN "X
0.5 b | Z/G=Z (=4 N\ _
!
! Z /(=0.25j, Z /C=-4] -
! 1 ) 1 * 1 1 z L | = - .
0 : [sin9F — sin 3’ Z,. /CJte(—0F + 7 /4)

0 30 60 90 120 150 180 210 240 270 , I i
Observation angle, ¢ (degrees) — cos 3 cos 9Tty (0T +7/4) =0 (22)

a
@ from which the constaniSe, C, Cy andC%, can be evaluated.
0.7 ‘ ‘ ' ’ ' T ‘ Conversely, in the right-angled interior wedge case= 1/2),
only two poles lie in the strigRe{a}| < n/4 : 9* — 7/4.
By imposing the cancellation of these poles a linear equation
system is obtained from which the two constafits and C

0.6

0.5 F

NN
-~
oW
N
»
-~
e
!|
&
1

z 2,/6=0.25, Zz/§=-;1j can be determined
g 04 L e e N _
3 N N S
£ . e =t +
-g_ 03 L [sind™ —sin 3’ Z, /(]te (05 — 7w /4)
3 . Z /=4, Z /(=025 + cos ' cos 9Tty (0F — 7 /4) = 0. (23)
e
o1l BT =T Tl ) Finally, we observe that the rigorous expressions for the
Trme T spectratg (o) andty () in (15) and, consequently, those for
0 ’ 1 ' . : : : "‘ ; the longitudinal component&.(«) and s («) in (12), do not
0 30 60 %0 120 150 180 210 240 270 explicitly contain the Maliuzhinets special function [13]. This
Observation angle, ¢ (degrees) is in agreement with previous solutions [8]-[10] since for

(b) n = 3/2 the Maliuzhinets special function reduces to a ratio of

Fig. 4. Amplitude of the (a) copolar and (b) cross-polar Iongitudina‘?’lmple trigonometric functions.

components of the total field in the presence of a right-angled impedance wedge
with the face¢ = 3= /2 perfectly conducting. The wedge is illuminated by a V. ASYMPTOTIC ANALYSIS

TM. polarized(Ei = 1,(H! = 0) plane wave, impinging fron3’ = = /6, o o
¢ = m/12. Anisotropic casesZ./{ = —4j, Z./( = 0.25j (continuos By taking into account (4), (12), and (15), the longitudinal

lines); Z. /¢ = 0.25j, Z, /¢ = —4j (dashed-dotted lines). Isotropic casesfjg|d componentsE, and (H. are expressed in a form suit-
Z.]¢ =Z./( = —4j (dashed lines)?./¢ = Z./¢ = 0.255 (dotted lines). . . . . .
The field is evaluated at a normalized distakgesin 3’ = 10 from the edge. able for their un'_form asymptotic eva_lu.at'or_‘- In particular, by
applying the residue theorem, the original integral representa-
cancellation of these nonphysical poles is obtained by imposifigh for the total field along the _Somnprfeld integration con-
the following conditions: tour ~ is reduced to the contr|but.|on of: 1) the reS|due_s of both
GO and surface wave poles, which can be captured in the con-
oy o N tour deformation process and 2) two integrals defined along the
[sin(aj +nm/2) —sin ' Z, /(] te (o) steepest descent pat¥BP... through the saddle points #tr
+cos 3 COS(oc]jf + nm/2) ty (O‘zj):) =0 (19) (Fig. 2), providing the edge diffracted field contribution. A uni-
form asymptotic expression for the field diffracted by the edge,
valid also when the poles; cross the integration path away
from the saddle points, is given by [15]

e—Im/4e—ikip

)
0 @) E= e
= se(=m+¢—nr/2) =3 Res{sc(a), o = o}

[Sin(aff +nw/2) —sin (/2] tn (a?f

— cos 3 cos(air + nm/2) te (o) = <39(7T + ¢ —nw/2)
which guarantee the vanishing of the residues of bpth) and
sp(a) ata = ag:_ However, it can be shown that once the can-
cellation of the nonphysical poles ef(«) has been imposed, % 1= F(/kyp[1 + cos(ai — ¢ +nw/2)]) (24a)
also the elimination of the poles ef,(«) is automatically ob- 2cos((a; — ¢+ nw/2)/2)
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T T T T | T l T impedance face. This verifies even when the corresponding sur-
) YT NG TM, polarization face wave does not satisfy the excitation condition on the same

:,’ % W Z /5=-j(0.6+3) face. In the latter case, when the observation point moves to-

: " W Z /G=-j(0.6-8) || ward the impedance face, the specific complex pole approaches

f 0 N the SDP_,. but does not cross the path. However, although al-

| ) \ ways remaining external to the closed contour formed layd

.',.' ‘: the SDP ., the vicinity of the pole to the integration path pro-

] oo vides a contribution to the diffraction integral which is compa-

rable with the standard UTD approximation [16]. By comparing

—
wn
i
'

z

—
1

J the results obtained by (24) with reference data provided by a
""""" 8=0.02 ] direct numerical integration of the diffraction integral along the
— 0 SDP.,, avery good agreement is observed [17] even when the
oL LA R ' ' ' L L observation point is close to the impedance face.
0 3 6 % 120 150 180 210 240 270 The residues of the pole singularitiesf o) ands;, («) at
Observation angle, ¢ (degrees) a = ¢ —nn/2anda = —¢' 4 3nw/2 provide the contribution
@ of the incident field in (1) and that of the field reflected by the

perfectly conducting facép = nw), respectively. In particular,

0.6 . . . .
A —Y the latter contribution has the following expression:
- TM, polarization

ZX/C='j(0.6+8) n o _ Jkepcos(2nr—¢—¢) , B
Z,/t=-i(0.68) Bl =—cc Ur + ¢/ + ¢ — 2n)

| (25a)
--- 0=04 CH" = hzejktpcos(Qnﬂ'—qb—qb’)Uv(ﬂ_ o+ b — 2nm)

-—= §=0.2

Field amplitude, |E |

e
w

o
=

(25b)

Field amplitude, |CH |
e
[+
/’

wherelU(.) is the Heaviside unit step function.

) Moreover, the pole at = —¢’ — nw/2 accounts for the field
el T reflected from the anisotropic impedance fdge= 0). The
0 L L ' ' L ' ! = expression for this residue contribution is

0 30 60 9 120 150 180 210 240 270

Observation angle, ¢ (degrees . )
gle, ¢ (degr ) ES _ [REEG;: + REHhZ]ejktpcos(qH—qb )l/'(,n_ _ (/)/ _ (/))
b
®) (26a)
Fig. 5. Amplitude of the (a) copolar and (b) cross-polar longitudinal 0 ik Sto’ ’
components of the total field in the presence of a right-angled impedanceCHz = [RHth + RHEGz]CJ 1P cos( )U(W —¢ — ¢)
wedge with the faceé = 37 /2 perfectly conducting. The wedge is illuminated (26b)
by a TM, polarized(E: = 1,(H. = 0) plane wave, impinging from
8" = =/4, ¢’ = =/6. The normalized surface impedances are equal to:
Z.]¢ = —j(0.6 —6). Z./¢( = —j(0.6 + 6). Dashed linesé = 0.4; where

dashed-dotted line$: = 0.2; dotted lines® = 0.02; continuous linesé = 0
(isotropic impedance face). The field is evaluated at a normalized distance

kpsin 8’ = 10 from the edge. Rpw = ((sin # +sin /3’Zm/(’)(sin & — Sinﬁ’C/ZZ)
— cos? ' cos? ¢/) [ A(—¢), @7)

e~ IT/4e=ikep
- V2rkyp
—sp(—m+p—nr/2) — ZRes{sh(oc), o=}

Ryn = ((sind +sin §'¢/Z.)(sing’ — sin3'Z, /¢)
) (24b)

CHg:— <sh(7r—|—<f)—n7r/2)

- F(\/kp[l + cos(a; — ¢+ nw/2)])

2cos((c; — p+nw/2)/2) — cos® ' cos® ¢) A(=¢) (28)

and
where F(-) is the UTD transition function [16] generalized to
complex arguments as in [15]. The summation appearing in
(24) includes all those pole singularities, which result to be the
closest to the steepest descent p&th® ., when the obser-
vation angle varies betweeh = 0 and¢ = nw. It is worth Moreover, in the case of the right-angled interior wedge the
noting that those terms of the summation in (24) accounting fpoles ate, = ¢’ — 57/4 anda, = ¢’ + 37 /4 account for
the surface wave poles (complex poles) provide significant caite double reflection term. More precisely, just one of these two
tributions to the field when the observation point approaches theles lies between the tw&DP .., the former whenp < ¢

Rpg = —Rpp = —cos ' sin(2¢4') /A(=¢'). (29)
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guarantee the cancellation of the above poles:ifer 3/2 and

2 1 I I ! I
TE_ polarization n = 1/2, respectively. This cancellation was expected since the
. 3 7 /E=0-1+0-8j face¢ = nx is perfectly conducting and cannot support any
_Ls|E o0 A * . surface wave. Finally, for both right-angled configurations the
g / ' e Z/ei poles atait = —n - 9t — /2 are associated with the two
g 1] Anisotropicface (9=0)\,\, . surface waves, which can be excited at the edge and propagate
2 1 ] i\ S along the impedance fa¢e = 0). Their contributions assume
g N —— Z/6=0 the following form:
2 :
£ 0.5 B ‘ Eit _ Cél:efjktpcos(q5+19i)
; x U(gd(lm(9F)) — Re(9*) —¢)  (31a)
0 ke i i lleC (?—SE/ZI) 1 4. CH;E = Cfe_jktpcos(qb-i—ﬂi)
0 30 60 9 120 150 180 210 240 270 x U(gd(Tm(9%)) — Re(9F) — ¢) (31b)
Observation angle, ¢ (degrees)
@) where gd(-) denotes the Gudermann function. The corre-
0.5 , , , ] , - | , sponding expressions for the complex amplitudes of the surface
~ TE, polarization waves are shown .in (32) at the pottom of t_he n_ext page.
i PR 7 /£=0_1+0.8. | However, by resorting to the functional equations in (11) it
0.4 7 ] . .
-\, N * comes out that (23), which guarantees the cancellation of the
= ~ \\'/ \ o s nonphysical poles fon = 1/2, also impliesC+ = C,“L—L = 0.
E 03 | RN \\ 3 T Moreover, since both the spectral functiong«) and sp,(«)
3 RUPTRANR N N = Z/8=0.5] are periodic with perio@r whenn = 1/2, the diffracted field
E TN A - Z/=02j | rigorously vanishes as well. As expected, for= 1/2 this
£ o2t N 4 . o .
5 N — Z/=0.1j spe<_:tra| solufuor.] reduces to the GO solution in agreement with
2 A\ ‘ the image principle.
0.1} "\ ]
o VI. NUMERICAL RESULTS
0 ' . . l R R—— e Samples of numerical results are provided in this section to
0 30 60 90 120 150 180 210 240 270 mperically demonstrate that this solution smoothly reduces
Observation angle, ¢ (degrees) to all previous 3-D solutions for the right-angled impedance

(b) wedge problem with a perfectly conducting face. In all figures,
Fig. 6. Amplitude of the (a) copolar and (b) cross-polar IongitudinaYve_ShOW the a_mp“tUde of the total field in Fhe presence of
components of the total field in the presence of a right-angled impedar@efight-angled impedance wedge as a function of the obser-
\tl)vedge with tf?e facg = 3m/2 perfectly cond)uctling-The wedge is illumifnatedvation angleg; the field is calculated at a constant distance
y a TE. polarized(E. = 0,(H: = 1) plane wave, impinging from _ s _ ;
8 = =/4, ¢’ = =/12. The normalized surface impedance alangs (ktp - kpsmﬁ - 10) fron_] the edge. The face N 01s
Z,/¢ = 0.1+ 0.85. (a) Dashed lineZ. /¢ = j; dotted line:Z. /¢ = 0.2;; Characterized by a surface impedance tensor, while the other
continuous lineZ../¢ = 0. (b) Dashed lineZ./¢ = j; dashed-dotted line: face (¢ = 3x/2) is perfectly conducting. A first example is
Z-/¢ = 0.5); dotted line:Z. /¢ = 0.2;; continuous lineZ../¢ = 0.1j.The  yannrted in Fig. 3; the normalized impedance values along
field is calculated at a normalized distarigesin 3’ = 10 from the edge. e ] ” .
and z are equal to—4;5 and 0.255, respectively. Each curve
dthe | h o hei id incide. th plotted in the figure refers to a different value of the incidence
anl the ;tter w eﬁ;] > ¢ ,d_smcefc eir resl U?S_If:r?'ng' eb’lt €skewness anglé’, while ¢’ = x/12; the incident plane wave is
soﬂutlond oes notfshom? a _|scdo_nt||n:cj_|t?/d</at_ ¢'. The c;]u Y TM. polarized Ei = 1,¢H! = 0). As apparent from Fig. 3(a),
;e”ectle terms ol t e. ongitudinal field components have t}?ﬁe amplitude of the copolar component of the total fighl )
ollowing eXpressions. smoothly reduces to the continuous line, corresponding to
the case of normal incidence, when the incidence skewness
angle tends ter/2. The continuous line has been reported as
ik Y ference in the figure; it has been calculated by resorting to
HO = [Ryyh. + Rype.]e kweose=¢)  (30p) 2 T€" © fnigure, . . : .
CH. Ruuh: + Rupe:]e (30b) the rigorous Maliuzhinets solution [13], assuming an isotropic
normalized surface impedance equal tdj on the loaded

Other poles which can be captured in the integration path daee(¢ = 0). As expected, the cross-polar compongf#..)
formation process are those introduced by the tAfm+n=/2)  of the total field continuously reduces at the increasingof
in (12) and external to the strifRe{a}| < nx/2. In partic- eventually vanishing fof’ = = /2 (Fig. 3(b)). In order to give
ular, this conditions may be met by the poleaﬁt = 9% + evidence to the scattering effects introduced by the anisotropic
5m/4,—9F + 9r /4, for n = 3/2, andef = —9* + 3n/4 characteristics of the loaded face of the wedge, a further
for n = 1/2, respectively. However, by resorting to the funcexample is shown in Figs. 4(a) and (b). Again the incident wave
tional equations in (11) it can be shown that (21)—(23) al$e TM,, polarized(E? = 1,¢(H! = 0); its direction of incidence

E%" = [-Rpgpe. — Rpgh:)e M7 e*=¢) (30a)
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2 T . . T ' l l 1 Conversely, the dashed-dotted line refers to a different surface
! ~ — impedance tensor witl,, /{ = —4j, Z./¢ = 0.25j. Finally,
\\ TE, polarization the dashed and the dotted lines refer to different isotropic
ZJ&] ] impedance cases with normalized valugg¢ = Z,./¢ = —4j
andZz./¢{ = Z,/¢ = 0.25j, respectively.
A third example is reported in Fig. 5 to demonstrate that this
] solution smoothly converges to that for the isotropic impedance
right-angled wedge [7], [8]. The incident plane wave impinges
on the edge fron’ = w/4, ¢/ = =/6 and is TM, polarized
(E! = 1,(H! = 0). The surface impedance tensor on the
loaded face(¢ = 0) is defined in terms of the parametér
Z./¢ = —j(0.6 — §), Z,/¢ = —34(0.6 + ). In particular,
0 ' : : : L . : . the dashed, dotted-dashed and dotted lines correspahd-to
0 30 6 %0 120 150 180 210 240 270 0.4,6 = 0.2,andé = 0.02, respectively. As is apparent, both the
Observation angle, ¢ (degrees) copolar [Fig. 5(a)] and the cross-polar [Fig. 5(b)] components
(a) of the field smoothly reduce to those obtained in the case of the
corresponding isotropic impedance right-angled wedge (,
continuous line) [7], [8].
TE, polarization Anisotropic face (¢=0) In the remaining examples we check this solution against the
08 1| Z/&] rigorous ones determined for the right-angled wedge when the
surface impedance in one of the principal anisotropy directions
- vanishes [9], [10]. In particular, the first case shown in Fig. 6(a)
and (b) refers to a wedge with the loaded fdge= 0) ex-
hibiting the following normalized surface impedance in the di-
rection perpendicular to the edgg; /¢ = 0.1 + 0.8, while
the normalized surface impedance in the direction parallel to
. the edge assumes different values. The wedge is illuminated by
a TE. polarized plane wavér: = 0,(H’ = 1) impinging on
0 o , , : ; the edge frony’ = n/4,¢' = x/12. In Fig. 6(a), the normal-
0 30 60 9 120 150 180 210 240 270 ized surface impedance in the direction parallel to the edge is
equaltoZ, /¢ = j (dashedline)Z. /¢ = 0.2; (dotted line) and
®) Z./¢ = 0(continuous line). The continuous line in Fig. 6(a) has
been plotted as a reference; it has been evaluated by resorting to

Fig. 7. Amplitude of the (a) co polar and (b) cross-polar longitudinglhe asymptotic approximation of the rigorous solution proposed

components of the total field in the presence of a right-angled impedance .
wedge with the face = 37 /2 perfectly conducting. The wedge is illuminated!N [10]' We observe that the amp“tUde of the copolar compo-

by a TE, polarized(E: = 0,(H! = 1) plane wave, impinging from nent of the field plotted in Fig. 6(a) tends to the continuous line

B = w/4, ¢ = = /3. The normalized surface impedance in the directiofyhen the value o, /¢ decreases, eventually overlapping with

of the edge isZ./¢( = j. Dashed linesZ,./¢( = 0.55; dotted lines: h . line in the limi : b) th

Z./¢ = 0.1j7; continuous linesZ, /¢ = 0. The field is calculated at a the pontlnuous '.ne In the 'm'ZZ/C = 0. !n Fig. 6(b), the nor- )

normalized distanckp sin 3’ = 10 from the edge. malized surface impedance in the direction parallel to the edge is
equal to:Z. /¢ = j (dashed line)Z. /¢ = 0.55 (dashed-dotted

is identified by the angle§’ = «/6, ¢’ = «/12. Four curves line), Z./¢ = 0.2j (dotted line) andZ. /¢ = 0.15 (continuous

are plotted in both figures for different values of the tensdine). As apparent, the amplitude of the cross-polar component

surface impedance on the loaded fdge= 0). In particular, in Fig. 6(b) decreases when the modulusZf ¢ decreases; it

the continuous line is related to a surface impedance tensagctly vanishes faZ. /{ = 0, as expected. In fact, in the latter

exhibiting the following normalized impedance values alongase the IBC's on the loaded face decouple [see (5)] so that a

the principal anisotropy axe<. /¢ = —4j, Z./¢ = 0.25;5. cross-polar component is not present anymore. A last example

—
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—

LY/ --- Z/=05]
~~~~~~~~~ Z /5=0.1j
— Z/t=0

Field amplitude, |CH |
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ot - (sinz?i — sin 3’%) te (—m — 0% — 2F) + cos F cos9F by (—m — 9F — 2F) (322)
¢ +sin B’ cos ¥E(sin 9t — sin )
— (sinz?i — sinﬁ’Z%) tH (—7r — 9 — %) — cos 3 cos 9Fte (—7r —9F — %)

+sin 3 cos 9E(sin 9+ — sin9—)

(32b)
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is shown in Figs. 7(a) and (b). Again the incident plane wave is[7] R.G. Rojas, “Electromagnetic diffraction of an obliquely incident plane
TE. poIarized(Ei =0, CHz‘ — 1). it impinges from a direc- wave field by a wedge with impedance facelsEE Trans. Antennas
z z ’

. . _ ;- N Propagat, vol. 36, pp. 956-970, July 1988.
tion determined by the anglg = 7 /4,¢’ = =/3. This time [8] V. G. Vaccaro, “Electromagnetic diffraction from a right-angled wedge

we fix the value of the normalized impedance in the direction  with soft conditions on one faceQpt. Acta vol. 28, no. 3, pp. 293-311,
parallel to the edgez.. /¢ = j. Conversely, the normalized sur- 1981.

. . . . [9] G. Manara, P. Nepa, and G. Pelosi, “Electromagnetic scattering by a
face |mpedance alon‘gva”es as fOIIOWSZ%‘/C =0.5j (daShed right angled anisotropic impedance weddeléctron. Lett, vol. 32, no.

line), Z, /¢ = 0.1 (dotted line),Z,. /¢ = 0 (continuous line). 13, pp. 1179-1180, 1996.
Again, the continuous line has been plotted in both Figs. 7(aD10] , “A UTD solution for plane wave diffraction at an edge in an ar-

. ; tificially hard surface: Oblique incidence casé&lectron. Lett, vol. 31,
and (b) as a reference; it has been calculated by resorting to the |’ 19y pp. 1649-1650 1395_ & ¢

uniform asymptotic evaluation of the rigorous solution in [9]. It [11] P.-S. Kildal, “Artificially hard and soft surfaces in electromagnetics,”

is seen that when the modulus 8f /¢ decreases this solution IEEE Trans. Antennas Propagatol. 38, pp. 1537-1544, Oct. 1990.
hatin 191 both for th | Fig. 7 d hélZ] G. Manara and P. Nepa, “Electromagnetic scattering from a right-angled
converges to that in [9], both for the co-polar (Fig. 7(a)) and t anisotropic impedance wedge with a perfectly conducting faceysin

cross-polar (Fig. 7(b)) components of the total field. Radio Sci. MeetBoulder, CO, Jan. 1998, p. 237.
We finally note that. as apparent in all p|0tS reported in thigd13l G. D. Maliuzhinets, “Excitation, reflection and emission of surface
. . ' . . waves from a wedge with given face impedanc&sV. Phys. Doklno.
section, the solution proposed is uniform also at the shadow  3",,"752 755, 1958.
boundaries of the surface waves excited by the diffraction phegi4] , “Inversion formula for the Sommerfeld integra§ov. Phys. Dok|.

nomenon at the edge and propagating along the loaded face of MO 3. pp. 52-56, 1958. o
the wedge [15] R.G.Kouyoumjian, G. Manara, P. Nepa, and B. J. E. Taute, “The diffrac-

tion of an inhomogeneous plane wave by a wed&adio Sci.vol. 31,
no. 6, pp. 1387-1397, Nov./Dec. 1996.

[16] R. G. Kouyoumijian and P. H. Pathak, “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surfac@ydc. IEEE

; ; ; ; _an. vol. 62, pp. 1448-1461, Nov. 1974.
A rigorous spectral solution for the scattering by a right-an 17] G.Manara, P.Nepa, R. G. Kouyournjian, and B. J. E. Taute, “The diffrac-

gled anisotropic impedance wedge with a _pe_rfect_ly conductin tion of an inhomogeneous plane wave by an impedance wedge in a lossy
face has been presented, when the wedge is illuminated by an ar- medium,” IEEE Trans. Antennas Propagatol. 46, pp. 1753-1755,

bitrarily polarized plane wave impinging at oblique incidenceon ~ Nov- 1998.
its edge. The surface impedance tensor on the loaded face of the
wedge may exhibit arbitrary values, but the principal anisotropy
directions must be parallel and perpendicular to the edge of '
wedge. The solution is determined by resorting to the Somm:
feld—Maliuzhinets method and is expressed in a simple clos
form, containing only ratios of trigonometric functions. It re-
covers as limit cases all previous 3-D solutions for the right-a
gled impedance wedge with a perfectly conducting face. Ur
form asymptotic expressions have been derived from the ab _
spectral solution in the framework of UTD; they provide a co Ygseéehzehgiréeelﬂycﬁﬁéﬁi ;Stir?ng‘;i'thtrr?efeszgg%“;i
tinuous behavior of the fields also at the shadow boundary @fgiectrical Engineering, The Ohio State University, Columbus, OH, where,
the surface waves, which can be excited by the diffraction phethe summer and fall of 1987, he was involved in research at the Electro-

nomenon at the edge and propagate along the loaded face oﬁh'%me Le_lboratory. His_current research intgrests inc!ude numer!ca_l and asymp-
totic techniques as applied to electromagnetic scattering and radiation problems
wedge. (both in frequency and time domain), scattering from rough surfaces, and elec-

tromagnetic compatibility.

VII. CONCLUSION
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