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Dispersion Compensation for Huygens’ Sources and
Far-Zone Transformation in FDTD
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Abstract—The equivalence principle is utilized for generation
of both incident plane waves and for near- to far-zone transforma-
tion in the finite-difference time-domain (FDTD) method. Small er-
rors will appear due to numerical dispersion when a plane wave is
generated by Huygens’ sources using an analytical expression for
the incident field. These errors can be derived from the numerical
dispersion relation in the frequency domain. By using a second-
order approximation of the numerical wavenumber it is shown that
a simple approximative time-domain compensation procedure for
the dispersion can be derived. This has been implemented in a Huy-
gens’ source routine and in a time-domain near- to far-zone trans-
formation routine. It is shown that this compensation significantly
reduces the errors produced when calculating far-zone scattered
fields of low amplitude. It is also shown that it is sufficient to com-
pensate either the Huygens’ sources or the time-domain near- to
far-zone transformation with respect to dispersion. For validation,
plane wave propagation through empty space and scattering of a
dipole have been studied.

Index Terms—FDTD methods, numerical dispersion.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been frequently used for antenna and radar cross section

(RCS) simulations for over a decade. The method has been
popular due to its simplicity and its ability to accurately sim-
ulate electromagnetic problems over a wide frequency band.
One drawback is numerical dispersion, which, in practice,
limits the size of the computational volume. Fields propagating
over a large number of grid cells become distorted, which
causes errors. This issue has lately received a lot of attention
(for example, see [1]–[6]).

In applications where plane wave excitation is used such as
scattering calculations, the incident field is applied either on a
virtual surface enclosing the object (total field formulation) or as
current sources in the object (scattered field formulation). The
normal procedure in both cases is to use an analytical expression
for the incident field. This analytical expression will not satisfy
the finite-difference scheme, which results in a remaining error
due to dispersion. One way to partly overcome this problem is to
let the plane wave propagate in a one-dimensional (1-D) FDTD
grid with the phase velocity adjusted according to the dispersion
relation for FDTD and to use a table look-up procedure [5], [6].

In this paper, we introduce a new broad-band method of re-
ducing the dispersion errors by using an approximative time-do-
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main expression for the dispersion. It will also be shown that
for scattering simulations, this dispersion compensation can ei-
ther be applied on the sources for the incident field or in the
time-domain near- to far-zone transformation routine, but not
necessarily on both simultaneously.

II. NUMERICAL DISPERSIONCOMPENSATION

A plane wave propagating in an FDTD volume will be dis-
torted differently depending on frequency and propagation di-
rection. The amount of distortion can be derived from the dis-
persion relation [5]

(1)

where , and are vector components of the numerical
wave vector .

A common way to reduce the influence of dispersion errors
for plane wave excitation is to let a plane wave propagate in
a 1-D source grid and then apply the result in the three-di-
mensional (3-D) grid using a table look-up procedure [5]. This
method is very accurate for incidence along the-, -, or -axis
since the dispersion relation (1) is identical for 1-D and 3-D in
this case. For oblique incidence the numerical phase velocity
can be adjusted in the 1-D source grid by taking the angular
dependence of (1) into account. However, this compensation
factor must be calculated at a fixed frequency for example at the
center of the incident pulse spectrum. This yields a significant
improvement only in a limited bandwidth close to the center fre-
quency.

Below, we will derive a new simple broadband dispersion
compensation procedure for arbitrary angles of incidence,
although the examples given are mainly for incidence along
the -axis. An approximative expression for the numerical
wavenumber was derived in [7] using series expansions for

(2)
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where

(3)

(4)

and

(5)

(6)

This approximative expression for the numerical
wavenumber was used in a frequency-domain near- to
far-zone transformation in [7]. Below it will be shown that this
expression can be further simplified to yield a time-domain
operator that approximates the dispersion characteristics of
FDTD.

Since in (4) together with the Courant condition
[5] implies that , the expansion

(7)

can be used in (2) for the innermost square root, yielding

(8)

Using in (8) gives

(9)

Expanding the -term in (4) and keeping terms up to
yields

(10)

Combining (9) and (10) and neglecting terms higher than
gives an approximative expression for:

(11)

where

(12)

and . Note that is a function of and through
(3) and (6). Expressions (11) and (12) can be used for reducing
the errors in scattering simulations where Huygens’ sources are
generating the incident field. The compensation procedure can

either be applied directly on the Huygens’ sources or on the
time-domain near- to far-zone transformation routine.

III. I MPROVEMENT OFHUYGENS’ SOURCES

A. Time-Domain Expression for Dispersion Compensation

When generating a plane wave in FDTD using Huygens’
sources [8], an analytical expression is commonly used for the
incident field that is created by the current sources on the virtual
surface separating the total-field region and the scattered-field
region. This wave, however, will be distorted while propagating
through the computational volume. Transforming the field into
the frequency domain, the plane wave at a distancefrom a
reference point will propagate according to

(13)
Assuming that is a small quantity (13) can be written as

(14)

Hence, by using (12)

(15)

The part can be converted into a time-domain operator that
approximates the dispersion, simply by noting that

. The field in the FDTD grid at a distancefrom a ref-
erence point can then be written as

(16)

The errors produced when cancelling the incident field at the
boundary between the total field-region and scattered field-re-
gion can be reduced by using (16) in the source function that is
used to excite the equivalent currents on the Huygens’ surface.
If the incident plane wave is a Gaussian pulse, the corresponding
pulse for the Huygens’ sources then becomes

(17)

where

(18)

and is some initial time delay.
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B. Space Limits

Since it is assumed that is a small quantity, the com-
pensation procedure is only applicable for sizes of the compu-
tational volume where the approximation in (14) is valid. An
upper limit of can be estimated for a specific frequency range.
Assume that we are interested in wavelengths which correspond
to and that . The largest dispersion
errors occur in directions parallel to the Cartesian axes. There-
fore, choose which gives according to (3) and
(6). Then, since

(19)

according to (12), becomes

(20)

where it has been assumed that the time-step is close to the 3-D
Courant condition so that

(21)

If we estimate the maximum phase factor to be for
which the approximation in (14) is valid, then we can calculate
the maximum distance from the center of the computa-
tional volume to the outer Huygens’ surface. Using (20) yields

(22)

This means that it is possible to use the compensation procedure
for computational volumes of which the largest dimension is
below 900 cells, for a cubic FDTD lattice. Higher order errors
will of course still be present, but these are lower at wavelengths
longer than .

C. Validation for an Empty FDTD Volume

The dispersion compensation procedure for Huygens’
sources was validated by letting a plane wave propagate in the
-direction in a computational volume of 60 60 60 cubic

cells ( m). The outer boundary was
terminated by a six-cell-thick perfectly matched layer (PML)
[9]. A Huygens’ surface was positioned ten cells from the outer
boundary, which means that the pulse propagated a distance of
40 within the volume. Both a dispersion compensated and
an uncompensated Huygens’ routine was used. The reference
point ( ) for the dispersion compensated pulse (17) was
chosen to be the center of the computational volume. The pulse
width was 20 time steps or .

The FDTD calculated electric field one cell above the upper
Huygens’ surface and one cell below the lower Huygens’ sur-
face is shown in Figs. 1 and 2. As seen from the figures, the
electric field outside the Huygens’ surface is reduced using dis-
persion compensation. Note that the maximum amplitude in

Fig. 1. Electric field outside the Huygens’ surface in the forward direction
with and without dispersion compensation.

Fig. 2. Electric field outside the Huygens’ surface in the backward direction
with and without dispersion compensation.

Fig. 1 is nearly a 100 times higher than the maximum amplitude
in Fig. 2. This is because the upper Huygens’ surface fails to
cancel out the pulse that has propagated forward in the-direc-
tion across in the grid, while the error that appears below
the lower Huygens’ surface is due to thelocal dispersion error
between the electric and magnetic field-layers, apart, at
the Huygens’ surfaces. This is why there are two pulses in Fig. 2,
one for the lower Huygens’ surface (closest to the registration
point) and one for the upper Huygens’ surface.

The shapes of the pulses in Fig. 2 are caused by integration
of local errors over the lower and upper surfaces respectively,
giving essentially a geometric optics contribution plus delayed
edge contributions. These integrated local errors do also occur
in the forward direction but since they are much smaller than
the cancellation errors discussed above, they cannot be seen in
Fig. 1.
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Fig. 3. Frequency-domain response of electric field outside the Huygens’
surface in the forward and backward direction with and without dispersion
compensation. The electric field is normalized with respect to the incident
pulse.

The effects of the dispersion compensation are best illus-
trated in the frequency domain. The time-domain fields in
Figs. 1 and 2 were transformed into the frequency domain
and divided with the incident pulse spectrum. The results can
be seen in Fig. 3 and as seen from the figure, the level has
been reduced by 40 dB at 1.5 GHz ( ). The slope
of the curves in the forward direction indicates a change
from a - to a -dependence in agreement with (12).
The slopes for the backward direction indicates a variation
with one unit lower exponent; and , respectively, due
to the integration effects discussed above.

The incident pulse was computed at each time-step and po-
sition on the Huygens’ surface during the execution. The total
execution time increased by only 3% when using (17) in the
Huygens’ routine instead of a simple Gaussian pulse. The time
difference would be negligible if a table look-up procedure was
used.

The procedure above was applied on the Huygens’ sources
for generation of plane waves in the total-field/scattered-field
formulation. It can also be applied in the scattered field formu-
lation where the incident field is applied as sources directly in
the scattering material. However, this has not been implemented
in this study.

IV. NEAR- TO FAR-ZONE TRANSFORMATION

An improved near- to far-zone transformation was proposed
in [7], where the spatial shift between the equivalent electric
and magnetic currents was preserved. The improved accuracy
was illustrated for a frequency-domain near- to far-zone trans-
formation routine. The transform was also further improved by
adjusting the phase factor in the Green’s func-
tion with an approximative numerical wavenumber valid in the
FDTD grid.

Fig. 4. Far-zone transformation surface outside the Huygens’ surface.

In [7], a time-domain version of the near- to far-zone trans-
form without any dispersion compensation was also presented.
The resulting vector potentials are

(23)

(24)

where the lower indexesand denote positions in the electric
and magnetic grid, respectively, and where

(25)

are the equivalent electric and magnetic surface currents.
Normally when transforming the near-zone fields into the

far-zone, the equivalent currents are integrated according to (23)
and (24) on a virtual surface in the scattered field regionoutside
the Huygens’ sources. If the Huygens’ sources are applied using
an analytical expression for the incident pulse without any dis-
persion compensation, the remaining dispersion errors will ap-
pear as current sources at the Huygens’ surface, inside the vir-
tual near- to far-zone transformation surface. This means that
they inevitably will contribute to the far-field (see Fig. 4). Ap-
plying the compensation procedure for the Huygens’ sources,
this error will be reduced.

An alternative approach is to apply the compensation proce-
dure in the near- to far-zone transformation routine and perform
the transformation on a virtual surfaceinsidethe Huygens’ sur-
face (see Fig. 5). In this case, both the scattered and the inci-
dent field will be transformed into the far-zone. The incident
field will not contribute to the far-zone in an analytical case.
However, the numerical dispersion errors in the FDTD calcu-
lated incident field, will yield a net contribution to the far-zone
when integrating the vector potentials (23) and (24). If the dis-
persion compensation is included when calculating the vector
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potentials, the errors will be reduced. This can be achieved after
first transforming the time-domain vector potentials into the fre-
quency domain. The dispersion compensation can also be com-
bined with a method for improving the time interpolation of the
quantized far-zone vector potentials.

A. Time Interpolation

When extracting the field values from FDTD representing the
equivalent currents and in (23) and (24), it is neces-
sary to use some type of time interpolation since the relative
time-delay generally will not coincide with a multiple of the
time-step. This is commonly solved using linear interpolation
[10]. We will present a different procedure here which will re-
quire some extra storage for the far-zone vector potentials, but
that will be more accurate than linear interpolation, when it is
combined with a dispersion compensation procedure.

It is exemplified by the vector potential and the current .
In practice, the contributions from both the electric and mag-
netic surface currents will be added simultaneous to a single
far-zone storage variable since these are related by

(26)

where is the free-space wave impedance.
The current component , on the far-zone trans-

formation surface contributes to the far-zone vector potential
according to (23), where is determined analogous to the

time-delay in (18)

(27)

where
: far-zone direction;
: position vector of the surface current (the sub-

script is removed for sake of readability);
: where is the distance to the point of observation.

In the far-zone case, the time delaycan be arbitrary as long
as is positive for all . Let us define a shifted time variable

(28)

so that (the -dependence will be omitted
in the derivation below for sake of readability). To store the cur-
rent values at discrete time steps, the time must be quantized
according to

ROUND (29)

The stored currents will then be slightly shifted in time where
the time shift is

(30)

By introducing a new time shifted current variable,, we can
write

(31)

which represents the current value that is stored in the far-zone
array. Transforming (31) into the frequency domain, the rela-
tionship between the stored current and the desired current

becomes

(32)

Since and, hence, , we can expand the
exponential function in (32)

(33)

B. Dispersion Compensation

The dispersion compensation expressed in the frequency do-
main, can now be added to (33). The time-delay (27) which is
dependent on the position vector, represents a phase factor in
the frequency-domain surface integral for the vector potential

, i. e.,

(34)

By replacing in the integrand of (34) with the numerical
wavenumber according to (11), we can define a compensated
surface current as

(35)

This dispersion compensated surface current will compensate
for the numerical dispersion of the total field if the near- to
far-zone transformation is performed in the total-field region.
The major impact will be on the incident field which will be
cancelled out more effectively, in the same manner as the dis-
persion compensated Huygens’ sources.

Defining a new variable , from (12) where

(36)

and combining (33) and (35), the dispersion compensated sur-
face current can be written as

(37)

where terms of higher order than have been neglected. Equa-
tion (37) can easily be transformed into a time-domain filter.
However, note that is a function of the current position. For
each current component, the filtering requires the time history
at five time-steps together with five filter coefficients, uniquely
defined at the current positions. An alternative way is to store
each coefficient in front of in (37), multiply them with the
surface current at each time-step and accumulate
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Fig. 5. Far-zone transformation surface inside the Huygens’ surface.

the results in five far-zone arrays. The filtering can then be per-
formed after the FDTD execution in the frequency domain, di-
rectly on the far-zone arrays after these have been transformed
into the frequency domain.

The procedure can be implemented in FDTD as follows: five
far-zone arrays are used and the values accumulated in these
arrays are symbolically written as

(38)

where the -dependence of the different variables has been em-
phasized. Except for the storage of the time-delay, this re-
quires only storages for the five-dependent entities to the right
of in (38). After the FDTD execution is finished and the
arrays – are transformed into the frequency domain, the
vector potential is determined by

(39)

Since is a small quantity and and are proportional to
, these two correction terms will dominate over and .

C. Validation for an Empty FDTD Volume

The dispersion compensated near- to far-zone transformation
was implemented both with and without the dispersion com-
pensation [ in (38)]. A plane wave was incident in the
-direction in an FDTD volume of 60 60 60 cubic cells.

The Huygens’ surface was positioned five cells from the PML
boundary. The near- to far-zone transformation with the disper-
sion compensation included, was performed in the total field re-
gion ten cells from the PML boundary and five cells inside the

Fig. 6. Radar cross section of an empty FDTD volume. The far-zone
transformation is performed in the total-field region. Solid lines shows results
with dispersion compensated near- to far-zone transformation routine.

Fig. 7. Radar cross section of an empty FDTD volume. The near- to far-zone
transformation is performed in the scattered-field region. Solid lines shows
results with dispersion compensated Huygens’ routine.

Huygens’ surface. This corresponds to the situation in Fig. 5.
The dispersion compensation was not included in the Huygens’
sources. The RCS of the empty volume was calculated at three
scattering angles in the-plane, 0 (forward scattering), 45, and
180 , and the results are presented in Fig. 6.

Also, in a second run, the near- to far-zone transformation
without dispersion compensation was applied in the scattered-
field region, 5 cells outside the dispersion compensated Huy-
gens’ surface. The Huygens’ surface was positioned 10 cells
from the PML boundary in this case. This corresponds to the
situation in Fig. 4. The RCS of the empty volume was calcu-
lated at the same scattering angles as in previous case and the
results are presented in Fig. 7.

As expected, the highest RCS occurs in the forward direc-
tion. Note that the RCS levels for the two different approaches



500 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 4, APRIL 2000

Fig. 8. Monostatic RCS of dipole using MoM and FDTD—with and without
a dispersion compensated Huygens’ routine. Corresponding FDTD results with
the scatterer removed are shown as dotted lines.

are nearly the same. We conclude that either approach is equally
good for reduction of dispersion errors of the incident pulse. The
RCS levels in Figs. 6 and 7 represent the lower limits of RCS
that are possible to simulate for an object for a specific size of
the computational volume, a specific incident direction, and at
specific scattering directions. Since the RCS can vary much de-
pending on object properties, the importance of the compensa-
tion procedure depends on the RCS levels of the object.

The compensation procedure applied on the near- to far-zone
transformation can to some extent also reduce the dispersion er-
rors of the scattered field. However, tests on different objects
has shown that this effect is generally much smaller than effects
on the dispersion errors of the incident pulse. Using only the
dispersion compensated Huygens’ surface without a dispersion
compensated near- to far-zone transformation routine is prob-
ably sufficient in most practical situations.

V. SCATTERING FROM A DIPOLE

A resonant dipole was chosen as an example of a scattering
object. Obviously the scattered field formulation would be the
best choice for this type of problem since no dispersion error
would occur for the incident pulse, if normal incidence was con-
sidered. However, the dipole is just an example of an object type
that has a reasonably low RCS over a large bandwidth just as
many other “realistic” objects.

The dipole length was 0.17 m and the radius 1 mm. The
RCS of the dipole was calculated using the method of moment
(MoM) program NEC-3 and the FDTD method, both with and
without dispersion compensation. For FDTD, both compensa-
tion procedures described above were used but the results from
the two approaches were nearly indistinguishable. Therefore,
only the results for the dispersion compensated Huygens’
sources are presented in this section.

The size of the computational volume and the cell size were
the same as in Section IV (60 60 60 cells and 0.01 m,

Fig. 9. Bistatic RCS in the forward direction of dipole using MoM and
FDTD—with and without a dispersion compensated Huygens’ routine.
Corresponding FDTD results with the scatterer removed are shown as dotted
lines.

respectively). The near- to far-zone transformation surface was
positioned five cells from the PML boundary in the scattered-
field region. The Huygens’ surface was positioned ten cells from
the PML boundary. This means that the distance between the
surfaces where dispersion compensation was applied, was 30
cells.

A thin wire model according to [5] was used for the dipole
which was oriented in the-direction. The dipole was modeled
using 16 cells, which is the true dipole length adjusted with a
half cell size at each end due to the staircasing effects in FDTD.
The plane wave was incident in the positive-direction using a
Gaussian pulse. The dipole was modeled using 17 segments in
the NEC program.

The monostatic RCS ( ) and the bistatic RCS in the
forward direction ( ) were calculated using FDTD with
both the uncompensated Huygens’ routine and the compensated
Huygens’ routine. Ideally, due to the symmetry, the results in
both directions would be identical.

The monostatic results below 3 GHz (10 cells/) can be seen
in Fig. 8 and the bistatic results in the forward direction can be
seen in Fig. 9. The corresponding results for the empty FDTD
volume according to Fig. 7 are also shown as dotted lines for
comparison.

In the monostatic case both FDTD solutions follows the
NEC solution closely, although the uncompensated FDTD
result starts to wiggle at higher frequencies. The RCS levels for
the corresponding FDTD volume with the dipole removed are
low enough for both cases.

The situation becomes different in the forward direction
where the dispersion errors are much higher. As seen in Fig. 9
the uncompensated FDTD result diverges from the NEC-result
at 1 GHz (30 cells/) while the compensated FDTD result starts
to diverge at 2.5 GHz (12 cells/). As seen from these results,
a margin of approximately 10 dB between the results of the
empty FDTD volume and the object is necessary. In this case,
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the dispersion compensation makes it possible to simulate RCS
values 20 dB lower in the backscattering direction and 30 dB
lower in the forward scattering direction.

VI. CONCLUSION

A time-domain dispersion compensation procedure has been
derived and applied on Huygens’ sources and in the near- to
far-zone transformation routine. The compensation procedure
reduces the errors caused by numerical dispersion of the inci-
dent pulse in scattering simulations. In most cases, it is suffi-
cient to apply the compensation procedure either at the Huy-
gens’ sources or in the near- to far-zone transformation. In the
first case the near- to far-zone transformation should be per-
formed outside the Huygens’ sources, in the scattered-field re-
gion. In the second case, this order should be reversed.
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