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Performance Analysis of an AutomatedE-Pulse
Target Discrimination Scheme

Jon E. Mooney, Member, IEEE, Zhi Ding, Senior Member, IEEE, and Lloyd S. Riggs, Senior Member, IEEE

Abstract—An automated -pulse scheme for target discrimina-
tion was initially presented by Ilavarasanet al.in [1] without an an-
alytic performance evaluation. Assuming that target responses are
contaminated with white Gaussian noise, an automated -pulse
scheme is rigorously analyzed to yield a reliable measure of perfor-
mance. The discrimination performance of this automated -pulse
scheme is determined quantitatively through the use of energy dis-
crimination numbers (EDN's). Statistics of the EDN's are evalu-
ated analytically to derive the probability of correct identification.
The probability of identification as a function of signal-to-noise
ratio (SNR) is evaluated using the theoretical scattering data for
all potential targets to predict the performance of the automated

-pulse scheme. These theoretical results are corroborated by di-
rect simulation of the discrimination scheme. In addition, the prob-
ability density functions of the EDN's are presented providing new
physical insights into -pulse performance as a function of target
geometries and SNR.

Index Terms—Pattern classification, radar target recognition.

I. INTRODUCTION

T HE concept of resonance based target discrimination has
been studied by a number of researchers for many years.

As evidenced by the many papers on the subject, the-pulse
and -pulse techniques, which are closely related to Kennaugh's
kill pulse [2], are popular and viable methods for performing
resonance-based aspect-independent target discrimination. The

-pulse and -pulse techniques, as described in the works by
Rothwell et al. [3]–[5], provide a basis for target discrimina-
tion by selectively annihilating the resonant modes from the
late-time transient response of a specific target. In these and sub-
sequent works [6], [7], the discrimination performance of the

pulse methods were validated using theoretical as well as
measured signature data. Recently, Ilavarasanet al.[1] quantita-
tively investigated the performance of an automated pulse
scheme under varying signal-to-noise ratio (SNR) conditions.

However, to date there has not been an accurate theoretical
analysis of the performance of an automated-pulse scheme.
An accurate performance analysis allows one to evaluate the

-pulse discrimination scheme without having to resort to sim-
ulations. Furthermore, it allows one to better understand the fun-
damental principles of the -pulse technique and it provides
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clearer insight into how performance improvements can be de-
veloped without having to undergo numerous simulation tests.

The approach taken in this investigation is to analyze the
automated -pulse scheme based on a standard probabilistic
model. Based on the assumption that such an automated-pulse
scheme is designed to discriminate among a set oftargets
whose signatory resonance modes are known, the objective of
this paper is to develop an analytic performance measure in
terms of the probability of identification. This measure is simply
used to describe the probability of identifying any target be-
longing to the target library. In addition to the development of
the probability of identification, numerical issues concerning
the computation of this measure are addressed. Performance re-
sults, which are displayed for various levels of SNR, are given
for different target library sizes. These performance results are
verified by directly simulating the automated-pulse scheme
under varying SNR conditions.

II. E-PULSE TECHNIQUE

The purpose of this section is to provide a brief overview of
the -pulse technique in order to establish notations and con-
cepts, which will be used in the subsequent analysis. Although
there are many published works on the-pulse technique, the
synopsis given here generally matches the discussions given by
Ilavarasanet al. [1] and Rothwellet al. [5].

Based on the singularity expansion method (SEM) developed
by Baum [8], [9], the late-time representation of the far-scat-
tered field from a target due to a bandlimited transient excitation
can be modeled as a sum of weighted exponentially damped si-
nusoids

(1)

where is the aspect independent natural fre-
quency of the th mode, and and are the aspect-depen-
dent amplitude and phase of theth mode, respectively. The
term , which is also aspect dependent, denotes the beginning
of the late-time period. The number of modesin the response

depends on both the target and the frequency content of the
excitation waveform.

As noted previously the -pulse , which is a finite du-
ration waveform, is constructed to annihilate the late-time re-
sponse of a particular target or

for (2)

where denotes the duration of the-pulse waveform. The
Laplace transform of is denoted as . In
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Fig. 1. The block diagram of anM -targetE-pulse discrimination scheme.

order for the convolution in (2) to be zero, the following condi-
tion must be met:

for (3)

where the are the natural frequencies of the target excited by
the incident waveform.

If the natural frequencies of a target are knowna priori, then
an -pulse waveform can be synthesized by representing
as a sum of subsectional basis functions

(4)

where represents the subsectional basis function of width
. Laplace transforming the expansion while enforcing the cri-

terion given in (3) leads to a matrix equation for the amplitudes
. Letting results in a homogeneous matrix equation

which has solutions for certain values of. Solutions of the ma-
trix equation exist for values of given by

(5)

To quantify the performance of the-pulse technique for au-
tomation, the energy discrimination number (EDN) was devel-
oped [6]. The purpose of the EDN is to measure how much of
the filtered signal is present after normalizing
by the energy of the -pulse filter response

(6)

The target that yields the smallest EDN is then chosen as the
correct target. Ideally, the energy discrimination number is zero
provided the -pulse is matched to the target producing the re-
turn. However, noise inevitably corrupts the return and prevents

from vanishing completely. The choice of the time window
used in the computation of is somewhat arbitrary, but should
at most be limited by the duration of the return.

III. A NALYTICAL MODEL

As a preface to our analysis, consider the block diagram
shown in Fig. 1. The block diagram illustrates an automated

-pulse scheme designed to discriminate among a set of
targets. The diagram consists of parallel signal paths which
are fed by the receiving antenna. Theth path contains a

Fig. 2. An example of the pdf of the EDN.

sampler followed by an -pulse filter designed to annihilate
the late-time response of theth target. At the output of ,
an energy discrimination number is computed and the path
having the smallest is chosen as the correct target. For the
purpose of mathematical tractability, the sample period of the

th sampler corresponds to the width of the subsectional
basis function used to construct . In this fashion, the con-
volution operation in (2) can be represented as matrix-vector
product (discrete convolution). Because of the presence of the

samplers, it is understood that the configuration shown
in Fig. 1 is not necessarily a practical implementation of an
automated -pulse discrimination scheme. In previous works
on the -pulse technique, the measured responses were all
sampled at a uniform rate, and the convolution was carried
out as discussed in [10]. This approach avoids the use of
different samplers, but the convolution operation is inherently
more complicated than the discrete convolution approach used
here.

Assuming that a target exists and it belongs to the set of
possible candidates, the late-time portion of the received signal
from the th target can be expressed as

(7)

where is zero mean white Gaussian noise with variance
. The Gaussian noise assumption is justified for two rea-

sons. First, it creates a mathematically tractable problem. Often,
a suboptimal model for the randomness in the noise is used
in order to obtain a final solution. Second, in an environment
where a large number of noise sources exist, the central limit
theorem dictates that the joint probability density of the noise
will be Gaussian [11]. Furthermore, the white noise assumption
is normally valid unless there is strong evidence that the noise
is highly correlated.

The sampled version of at a rate is denoted by the
vector and (7) becomes

(8)

where is the sampled vector of at the rate , and
is a normal random vector with zero mean and variance(
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Fig. 3. Illustration of the four targets used in the analysis.

Fig. 4. The� = 75 backscattered response from the 45swept-wing aircraft.

denotes the identity matrix). Furthermore, if we assumecon-
tains samples, then the-pulse filter can be represented
in matrix form as

...
...

...
...

. ..
...

. . .
...

...
. ..

...

(9)
Recall that represents the number of natural resonant modes
that is designed to extinguish. The energy discrimination
number can be computed in terms of and as

(10)

where is a submatrix of containing the time window
or

(11)

where denotes extracting rows through
and columns through , and is a vector containing the am-
plitudes of the subsectional basis functions of theth -pulse

filter. The indexes and denoting the beginning and ending
of the time window are given by

(12)

(13)

and denotes the smallest integer above. To compute (12)
and (13) the beginning of the late-time periodmust be deter-
mined. As shown by Ilavarasanet al. [1], the beginning of late
time for backscattered responses is given by

(14)

where is the maximum transit time of the target, is the
effective pulse duration used in the system, andis an estimate
of the time when the incident wave strikes the leading edge of
the target. The time is estimated from a threshold voltage,
which needs to be large enough to detect small signals, but small
enough to maintain a small false alarm rate.

Because the response is random, the EDN is a random
variable. Furthermore, since the noise is assumed to be white
and Gaussian, the EDN in (10) represents a sum of independent,
squared Gaussian random variables. In addition, if we assume
that the sample rates in Fig. 1 do not commensurate, then
it also follows from the white noise assumption that thefor
each signal path are independent. The assumption that thedo
not commensurate is valid since it is not likely that thein (5)
for all targets are the same or are related by a rational number.
As will be seen in the following section, the fact that theare
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TABLE I
THE NATURAL FREQUENCIES OF THEFOUR

TARGETSUSED IN THE ANALYSIS

independent is crucial to developing a tractable expression for
the probability of identification.

IV. PROBABILITY OF IDENTIFICATION

Assuming that the th target is present, the probability of
identifying the th target is simply the probability theth EDN

is smaller than all the others, or

(identifying th target th target present)

th target present) (15)

Applying the theorem of total probability [11] to (15), the ex-
pression for becomes

(16)

where the denotes the probability density function (pdf) of
. To conserve notation, the condition that theth target is

present has been implied in (16).
In general, evaluating (16) would be difficult because of the

joint probability term. However, because theare independent
under the assumption of incommensurate sampling rates and
white Gaussian system noise , the joint conditional density
in (16) can be simplified into products of individual conditional
densities

(17)

from which follows:

(18)

TABLE II
RELEVANT DATA FOR THEE-PULSE DISCRIMINATION SCHEME SHOWN IN FIG. 1

where is the pdf of given the th target response.
Recall that the expression in (18) is only the probability of iden-
tifying the th target assuming theth target is present. By ob-
taining a similar expression for the other targets, we ob-
tain a measure of the discrimination capability of the-pulse
scheme or, equivalently, an average probability of identification

Average (19)

where denotes the probability of the th target being
present. For our analysis, we will assume all targets are
equally likely to be present or .

V. COMPUTING THEPROBABILITY DENSITY FUNCTION

In order to evaluate (18) and, consequently, (19), the pdf
must be computed. The derivation of the pdf is iden-

tical for all and . Hence, to conserve notation, the subscripts
and on the variables in the following analysis are dropped.
As noted earlier, the quadratic form of the random variable
in (10) essentially represents a weighted sum of squared

Gaussian random variables. Performing an eigen-decomposi-
tion on the matrix , one obtains

(20)

where denotes the eigenvalues of and is of the form

(21)

and contains the associated (generalized) eigenvectors. Note
that is unitary. Since is a Gaussian random vector, the linear
transformation produces a Gaussian random vector
with mean and variance . Expanding (20), the
expression for becomes

(22)

where is the th element of . The expansion in (22) rep-
resents a weighted sum of squared Gaussian, nonzero mean
random variables. If the were all unity, which would re-
quire to be idempotent, then would have a noncentral

distribution [11]. Since is generally not idempotent,
we have to compute the pdf numerically.

The most efficient way to acquire the pdf ofis through the
use of characteristic functions. The characteristic function of the
random variable is defined as

(23)
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Fig. 5. Analytical and simulated results as a function of SNR for different aspect angles using targets 1 and 2.

which represents the Fourier transform of the pdf . By
letting in (22), the characteristic function of can
be computed as

(24)

since the are independent random variables [11]. Further-
more, the form of the characteristic function ofis well known
[12] and is given by

(25)

where is the th element of the mean vector . To obtain
, we use the inverse Fourier transform

(26)

An illustration of a typical density function for the
EDN is shown in Fig. 2. The initial step in computing
numerically begins with computing the characteristic function

. In order to compute numerically, a sample
frequency must be chosen judiciously. As can be seen from
Fig. 2, is essentially band limited. Thus, following the
Nyquist sampling theorem, an appropriate choice foris

(27)

where denotes some point on the tail end of . From
the mean and variance of , it is possible to develop an

expression for that will prevent aliasing. As shown in Fig. 2,
a judicious choice for is given by

(28)

Since the mean and variance ofare known, and follow
from (22) and are expressed as

(29)

(30)

The following steps summarize the computation of the pdf
.

• Specify the average noise power.
• Perform an eigen-decomposition of the matrix for

the th -pulse filter.
• Let be the sampled response from theth target.
• Compute the mean vector .
• Compute and using (29) and (30), respectively.
• Compute the sample frequency using (27) and (28).
• Compute using (25) for .
• Multiply to obtain .
• Inverse Fourier transform to obtain .
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Fig. 6. Analytical and simulated results as a function of SNR for different aspect angles using targets 1, 2, and 3.

As noted earlier, before can be determined, the pdf's for
the remaining EDN's must be obtained. Hence, the above
process is repeated times.

VI. A NALYTICAL AND SIMULATION RESULTS ONSPECIFIC

TARGETS

In this section, we demonstrate the reliability of our analytical
model. Results demonstrating the performance of the automated

-pulse discrimination scheme shown in Fig. 1 are provided.
The performance results are represented by plotting the proba-
bility of identification as a function of SNR. Results are given
for different target library sizes as well as varying aspect an-
gles. The probability of identification is determined analytically
using (18) and (19). To verify the analytical results, the prob-
ability of identification is determined directly through Monte
Carlo simulation.

The targets used in developing the analytical and simulated
results are shown in Fig. 3. Target 1 is a simple 1 meter
long thin cylinder lying along the axis and centered at the
origin. Target 2 is a swept wing aircraft model. The fuselage
of the aircraft lies along the axis with forward and aft
sections of m and m, respectively. The wings are
swept back 45 from the normal to the fuselage and are

m in length. Target 3 is a perturbed symmetric tripole.
Two of its arms are have a length of m, and the third
arm is 0.5238 m long. Target 4 is also a swept wing aircraft
model similar to Target 2. The only distinguishing feature

between the two is the angle at which the wings are swept
back. The wings on target 4 are swept back 60from the
normal to the fuselage. As illustrated in Fig. 3, the aspect
angle is defined to be in the plane of the target and is
measured from the axis. All of the targets discussed here
are constructed with thin cylinders having radii of 0.005 m.

The scattering data used in the experiment are the theoretical
impulse responses of the four targets mentioned above. These
responses were obtained using the SEM, which was cast into
numerical form via the method of moments [13]. The poles that
were used in obtaining the backscattered field from each target
are listed in Table I. Note that the poles have been normalized
by the speed of light. The first eight complex conjugate pole
pairs were used in computing the backscattered field impulse
response of the 1-m-thin cylinder. In order to ensure that the
same bandwidth was used among each of the four targets, it
was necessary to use the first 15 conjugate poles pairs to com-
pute the impulse responses of the 45and 60 swept wing air-
craft models. Similarly, the first twelve poles of the perturbed
symmetric tripole were used in computing its impulse response.
Fig. 4 shows the backscattering response of the 45(target 2)
due to an impulsive plane wave incident from . It should
be noted here that the impulse responses for all targets were
computed using a Class I coupling coefficient [14]; thus, the
early time portion of the responses are inaccurate.

Based on the target data given, Table II presents all the rel-
evant data for a four target -pulse discrimination scheme as
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(a)

(b)

Fig. 7. The pdf’s of the energy discrimination numbers for the three target
case. The pdf's were computed using the scattering data for the thin cylinder at
two different values of SNR. (a)SNR = 30 dB. (b)SNR = 20 dB.

illustrated in Fig. 1. As discussed in Section II, theth signal
path contains the -pulse filter designed to annihilate the re-
sponse from theth target. For example, the second signal path
contains the -pulse filter matched to Target 2. The-pulse
filters for all targets in Fig. 3 are constructed using their respec-
tive resonances as listed in Table I. Furthermore, the sampling
period for each target given in Table II is the smallest sampling
period that can be calculated based on the resonance data given
in Table I.

A. Analytical Results

The initial step in determining the probability of identifica-
tion analytically for a specific SNR value is to evaluate
for each of the targets. Evaluating as shown in (18) re-
quires us to assume that theth target is present. Consequently,
the pdf of each EDN must be computed using the signature data
from the th target. In order to compute each pdf for a specific
SNR value, the average power of the noise-free return from the

Fig. 8. A comparison of the EDN pdf's for varying length ratios of the thin
cylinder. The pdf's were computed using the scattering data for the 1-m thin
cylinder at an SNR of 10 dB.

th target must be determined. The average power of
is defined in the usual way as

(31)

Knowing , the average noise power can be calculated for
a specific SNR (in dB) as

(32)

For the signature data used in these results, the end timeof
the integration is arbitrarily chosen to be 50 ns.

Once is known, the pdf of each EDN in is computed
numerically as discussed in Section V. A critical step in com-
puting the pdf is the eigen-decomposition of the matrix .
Before this operation can be performed, the matrix, whose
size is dependent on the size of the integration window as de-
fined in (12) and (13) must be formed. Since we are using the
theoretical impulse responses as the scattering data, the begin-
ning of the late-time period is taken to be twice the maximum
transit time of the target. Furthermore, the integration window

for the EDN is arbitrarily chosen to be 15 ns. Following
the eigen-decomposition operation, the characteristic functions
used in obtaining each pdf are computed using 2048 equally
spaced points. This choice of the number points allows the op-
eration in (26) to be carried out using the fast Fourier transform
(FFT).

B. Simulation Results

To verify the analytical results, the probability of identifica-
tion is determined using a Monte Carlo simulation. The Monte
Carlo simulation is essentially a direct implementation of the
scheme illustrated in Fig. 1. In each simulation, a target from
the target library is selected at random. The selection process is
conditioned by the assumption that each target is equally likely
to be present. Once a target has been selected, white Gaussian
noise is added to the corresponding signature data of the target.
The noise is scaled appropriately using (32) to yield a specific
SNR.

After adding noise to the signature, the corrupted return is
passed down each of the signal paths as shown in Fig. 1. The
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Fig. 9. Pole locations of the 1- and 2-m thin wires with radii of 0.005 m.

EDN in each signal path is computed using (10). As in the ana-
lytical results, the integration window used in computing the
EDN is arbitrarily chosen to be 15 ns. The path containing the
minimum EDN is selected as the correct target. This process is
repeated 1000 times at a specific value of SNR, and the number
of correct identifications is tallied. The simulation is performed
over a range of SNR values.

C. Results

Figs. 5, 6, and 11 show performance results for library sizes
of two, three, and four targets, respectively. The results shown in
Fig. 5 were obtained using only targets 1 and 2 as illustrated in
Fig. 3. The analytical and simulated results, which were com-
puted over an SNR range of20 to 50 dB, agree remarkably
well for all aspect angles considered. At low values of SNR, the
probability of identification is approximately , which means
the performance in not any better than a random guess. This re-
sult is expected since we initially assumed that each target in the
library has an equal probability of being present. As the SNR
increases, the probability of identification gradually approaches
unity. Depending on the aspect angle, the probability of identi-
fication reaches unity at approximately 30 dB.

Fig. 6 shows the performance results for a target library con-
sisting of the thin cylinder, the 45swept wing model, and the
perturbed tripole. The agreement between the analytical and
simulation results is very good for all aspect angles. The proba-
bility of identification is at 20 dB and eventually reaches
unity at approximately 40 dB. To provide physical insight, the
density functions of the EDN's for the three target scheme are
shown in Fig. 7. The pdf's were computed using the scattering
data from the thin cylinder (Target 1). Figs. 7(a) and (b) il-
lustrate the pdf's assuming an SNR of 30 and 20 dB, respec-
tively. A significant attribute of Fig. 7 is it provides the range
and relative frequency of the energy discrimination numbers
for a specific SNR when the thin cylinder is assumed present.
As shown in Fig. 7(a), the pdf , which corresponds to
the correct target, is densest at a lower EDN value compared to
the densest regions of and . Hence, in this case, the thin
cylinder will, on the average, be chosen as the correct target.
When the SNR is decreased to 20 dB as in Fig. 7(b), the pdf's
overlap and broaden in range. The overlapping characteristic of
the pdf's is directly related to the performance of the discrim-
ination scheme. By studying the distribution of the EDN's, the

Fig. 10. The probability density functions of the energy discrimination
numbers for thel =l = 2:0 case. The pdf's were computed using the
scattering data for the 2-m cylinder with an SNR of 10 dB.

effects of aspect angle, observation window, and other target pa-
rameters on the performance of the discrimination scheme can
be determined.

To determine how the physical size of a target affects the per-
formance of the -pulse discrimination scheme, a parametric
analysis of thin cylinders of varying lengths was performed.
The thin cylinders used in the analysis have lengths of 1, 1.1,
1.2, 1.3, 1.4, 1.5, and 2 m and radii of 0.005 m. The natural
frequencies of the thin cylinders were found numerically, and
their corresponding -pulse filters were constructed as outlined
in Section II. The analysis consists of a two target discrimina-
tion scheme designed to distinguish the 1-m cylinder (Target 1)
from one of the other longer cylinders (Target 2). The 1-m thin
cylinder is assumed to present at an aspect angle of 75, and the
pdf's of the two EDN's ( and ) are computed. This process
is repeated for each of the other thin cylinders longer than 1 m.
Fig.8 illustrates the results of this analysis for an SNR of 10
dB. The pdf corresponds to the EDN matched to the
1-m thin cylinder (the correct target) and the pdf corre-
sponds to the EDN matched to one of the longer cylinders. The
two pdf's are plotted according to the ratio of the lengths of the
two cylinders. As mentioned earlier, the overlapping character-
istic of the pdf's is indicative of the performance of the discrim-
ination scheme. From Fig. 8, one observes that the performance
of the discrimination scheme improves, as expected, with in-
creasing length ratio. It is also interesting to note that once the
length ratio exceeds a certain threshold, around 1.3, a greater
increase does not result in a continued spreading of the EDN
densities. In fact, beyond a length ratio of 1.3, the density func-
tions actually converge and eventually overlap when the length
ratio reaches 2.0.

The convergence of the pdfs and for the
case can be explained by observing the pole loca-
tions of the 1 and 2-m thin wires as shown in Fig. 9. Observe
that the oscillation frequency of the second-order pole of the
2-m wire is approximately the same as the oscillation frequency
of the fundamental pole of the one meter wire. In fact, Fig. 9 re-
veals the relationship where and denote



MOONEY et al.: ANALYSIS OF -PULSE TARGET DISCRIMINATION SCHEME 627

Fig. 11. Analytical and simulated results as a function of SNR for different aspect angles using targets 1, 2, 3, and 4.

the oscillation frequency of theth order pole of the 1 and 2-m
wire, respectively. Hence, when the response from the 1-m wire
is passed through the-pulse filter for the 2-m wire, the zero’s
designed to annihilate the resonances of the 2-m target also par-
tially annihilate the resonances of the 1-m target. This does not
suggest discrimination of these two targets is impossible. In-
deed, for higher SNR levels, discrimination performance im-
proves. However, for a given SNR, discrimination appears more
difficult for integer length ratios than for noninteger length ra-
tios when the smaller target is present.

Another interesting result of the case is produced
when the 2-m wire target is assumed to be present. Unlike the
previous situation, the response of the 2-m wire contains res-
onances where the-pulse filter for the 1-m target does
not have zero’s. In particular, the fundamental resonance, which
typically couples the strongest, passes throughessentially
unabated. As a result, a significant separation of the EDN den-
sities and occurs even though the SNR is 10
dB. This result is shown in Fig. 10.

One can conclude from the above analysis that the functional
dependence of the EDN's on different variables of the electro-
magnetic interaction problem can be separately considered re-
sulting in an improved understanding of how the performance
of the -pulse discrimination scheme can vary with respect to
these parameters. The ability to compute the probability den-
sities of the EDN's effectively extends ones ability to under-

stand and gain physical insights into how complex electromag-
netic interactions ultimately affect different target discrimina-
tion schemes.

Finally, Fig. 11 presents the performance results for all the
targets illustrated in Fig. 3. As in the two and three target cases,
the agreement between the analytical and simulation results is
excellent for all aspect angles. The probability of identification
is at dB and eventually reaches unity at approximately
48 dB. It should be noted here that the performance results pre-
sented in Figs. 5, 6, and 11 are dependent on the target geome-
tries and the implementation of the automated-pulse scheme.
For example, the simulation results given in [15] demonstrate a
better overall performance of the-pulse scheme than do the re-
sults presented here. However, the results obtained in [15] were
obtained using signature data that was sampled more densely
than the signature data used in the results given in Figs. 6 and
11. Nonetheless, the theoretical analysis we have proposed can
be applied equally to other targets and other forms of implemen-
tations.

VII. CONCLUSION

In this paper, the performance of an automated-pulse
scheme for target identification in white Gaussian noise was
evaluated analytically. By evaluating the probability densities
of the energy discrimination numbers, a theoretical method for
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determining the probability of identifying a target from a family
of targets was developed. Results illustrating the probability
of identification as a function of SNR were presented for
different target library sizes and aspect angles. From these
analytical results, it is clear that previous simulation results
on the -pulse method agree very well with our analysis and
are reliable indications of the method's performance. To the
best of our knowledge, the results given herein represent the
first successful theoretical analysis of the performance of an
automated -pulse scheme.

The methodologies adopted here can be extended to the anal-
ysis of other target identification methods. In the future, the au-
thors would like to perform a similar performance analysis of
the -pulse technique using measured late-time scattering data.
Moreover, an approach similar to the one presented here will be
used to evaluate the performance of another target discrimina-
tion scheme, which is based on a generalized likelihood ratio
test [15].
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