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A Truncated Floquet Wave Diffraction Method for
the Full Wave Analysis of Large Phased Arrays—
Part I. Basic Principles and 2-D Cases

Andrea Neto, Stefano Macsenior Member, IEEESiuseppe VecchMember, IEEEand Marco Sabbadini

Abstract—This two-part sequence deals with the formulation
of an efficient method for the full wave analysis of large phased-
array antennas. This is based on the method of moments (MoM)
solution of a fringe integral equation (IE) in which the unknown
function is the difference between the exact solution of the finite
array and that of the associated infinite array. The unknown cur-
rents can be interpreted as produced by the field diffracted at the
array edge, which is excited by the Floquet waves (FW’s) perti-
nent to the infinite configuration. Following this physical interpre-
tation, the unknown in the IE is efficiently represented by a very
small number of basis functions with domain on the entire array
aperture. In order to illustrate the basic concepts, the first part
of this sequence deals with the two-dimensional example of a lin-
early phased slit array. It is shown that the dominant phenomenon
for describing the current perturbation with respect to the infinite
array is accurately represented in most cases by only three dif-
fracted-ray-shaped unknown functions. This also permits a simple
interpretation of the element-by-element current oscillation, which
was recently described by other authors. The second part of this
paper deals with the appropriate generalization of this method to
three-dimensional (3-D) arrays.

Index Terms—Electromagnetic diffraction, Floquet expansions,
phased-array antennas.

. INTRODUCTION

number of unknowns. This method is based on the MoM solu-
tion of an appropriate “fringe” integral equation (IE) in which
the unknown function is the difference between the exact cur-
rent distribution on the truncated array and the current distribu-
tion pertinent to the infinite array. This unknown function can
be interpreted as due to the edge diffracted field excited by the
Floguet waves (FW'’s) relevant to the infinite, periodic continu-
ation of the actual array. Following this physical interpretation,
the unknown of the IE is efficiently represented by a few entire
domain basis functions, which are shaped as FW diffracted rays.
In order to simplify the description of the overall method,
the paper is split in two parts. In this paper, Part I, the basic
concepts are illustrated with reference to a specific two-dimen-
sional (2-D) example of a linearly phased array of slits in an
infinite metallic plane. The physical insight gained by the in-
vestigation of this prototype problem is useful to highlight the
basic mechanisms that dominate the edge perturbation, thus al-
lowing a neat selection criterion for the number of unknowns in
the MoM scheme. This will be fundamental for the successive
three-dimensional (3-D) generalization carried outin Part Il. For
the present 2-D case, only three basis functions in the unknown
description of the fringe IE are sufficient for providing the same
accuracy as that obtained from an element by element full wave

T HE electromagnetic modeling of large finite arrays as wellpglysis.

as the scattering by finite periodic structures is an impor- The example presented here allows for a clear interpretation
tant topic for a large variety of engineering applications and hggthe global element by element current oscillation produced by
been the object of many recent investigations [1]-{10]. A rigsqge perturbations recently described by Hansen and Gammon
orous analysis based on an element-by-element method of by means of a model based on the Gibbs phenomenon. Al-
ments (MoM) becomes computationally difficult when the sizgough interesting, this latter model does not seem applicable in
of the array increases. If the structure is taken as infinite, tB@neral cases since it does not predict the change of the oscilla-
numerical effort is reduced to that of a single periodic cell solyign period close to one edge occurring for scanning array with
tion [1]. This approximation leads to reasonable results in prgygre than a half-wavelength period. By using the present ap-
dicting the input impedance of elements far out from the edgggoach, this effect will be shown to be associated with the inter-
However, for near-edge elements it is significantly inaccuraigyrence between evanescent FW’s and their relevant diffracted
Furthermore, for wide-beam angle scanning the effects of trugeigs: a simple formula is provided to extend that given in [9]
cation can be relevant also for elements very far from the edgfﬁarbitrary spacings.

The present method is focused on the prediction of the cur-p summary of the methods presented in literature for large
rent distributions on the array radiating elements (including t'&?rays in comparison with the present approach is in order. The
ones close to the edge of the array) retaining an extremely S”iéﬂhnique proposed in [2] and improved in [3], accounts for
the edge effects by a windowing method. This is based on con-
structing the active Green'’s function to be used in the MoM pro-
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truncation, especially when studying aperture arrays on grount . 6
planes [see, Section IV]. Y

In [4], an interesting hybrid method incorporating an FW ex- k
A, ¢ ! . d exp(-jkoX)
pansion in a MoM scheme is proposed for a 2-D array of strips. aq A
In this approach, the distribution of the radiating currents in ther=—==mF == == == " = == ==
central portion of the array is supposed to be the same as th: 12 3 N-1 N
in the absence of truncations. In the next step, these curreFr]ts1 o v of i _— dolane. The it
e . - 1 eometry or an array Of Slits on an Infinite grouna plane. e Slits are

are used for exciting the electric field on the elemgnts closefgg by magnetic aperture field$™ () = H™ exp(—jka sin #) wherez is
the edge. Although very good results can be obtained for negiricted to the slit regions. The main beam of the array is oriented in direction
broadside scan, this method fails when the effects of the truhwith respect to the normal.
cation do not rapidly vanish away from the edges, as occurs in
wide-beam scanning. _ . is carried out meanwhile gaining further insight on large

In [6], an enlightening and elegant method for predictiogecanning effects.
of scattering from a 2-D finite periodic strip grating is an-
alyzed; the numerical solution for the current on the strips
is obtained with an approximation that is equivalent to the Il. INTEGRAL EQUATIONS FOR ASLIT ARRAY

windowing approach, i.e., assuming that the current on eachrhe geometry of the problem consists of an arrayofhin

strip is independent of the strip location within the arralits (denoted by, = 1, 2, ---, N) etched on an infinite ground
This position-independent current is taken to be that on thene (Fig. 1). The size of the slits and the interelement period
central element of a similar finite, but smaller grating; thigre denoted by andd, respectively; a reference system is intro-
latter is analyzed with an element-by-element MoM with guced, with itsz, v, andz axes oriented along the array, along
reduced computational cost. This approach is a clever wgje normal to the interface, and along the slits, respectively. The

of exploiting a very efficient version of the element by elfirst slot is placed a = d. We assume a simple impressed
ement 2-D MoM devised by the same authors [10] and jgagnetic field of the kind

an alternative implementation of the basic windowing ap-

proach, which differs from [2] and [3] for the choice of the H'(z) = ¢7Iheem (1)
position-independent current, which is obtained from the in-

finite periodic problem in [2] or via active Green’s functionthat gives rise to beam radiation in directiér= sin~* (k. /k)

in [3]. However, the use of (indeed pioneering) asymptotitom broadsidek being the free-space wavenumber. In order to
constructs in [6] might lead to equivocate techniques arfiormulate the problem as an IE, let us denotesbthe portion
objectives, presented in [6] and in the present work. In [63f thex axis occupied by the slits, and define the characteristic
the asymptotic analysis is focused on the scattering probléamctiony , of the array, which is unity or and zero elsewhere
by a strip grating both in frequency and, most remarkably, in
time with a consequent relaxation in the accuracy required
in the determination of the currents on the array elements(A () = Z rect(z — nd); rect(z) = n(z) — n(z —a) (2)
Consequently, the asymptotic expressions were not used there n=1

to construct these c.urrlents, but c_>n|y .to observe the fqr field. which n(z) is the Heaviside unit step function. By applying
The present work is instead primarily concerned with thge equivalence principle, each slit is replaced by a perfectly
efficient, though accurate, evaluation of the currents on thgqcting surface with two unknown magnetic current distri-
array glements, not only for_th_e accurate assessment of H‘LﬁionsiM(a:’)XA(a:’) on its opposite faces that are of equal
truncation effects on the radiation pattern, but especially fgf,yjitude and opposite sign to ensure the continuity of the tan-
the determination of the antenna input parameters (impedaggegial component of the electric field at the interface. The usual

and/or scattering parameters). The important issue of the g€+5 how considered, which expresses the enforcement of the
curate and fast evaluation of the field radiated by the arrgy,

k . 3 ropriate continuity through the apertures of the total (im-

cqrrents in poth near gnd far zone is outs!dg the SCOpesp?gssed plus radiated) magnetic field

this paper; instead, it is dealt with in detail in some com-

panion works [8], [11], [12]. The use of uniform asymptotic

techniques here is employed for finding efficient array-global 2XA($)/A Gl @ )M(2') de’ = xa(z)H (z)  (3)

basis functions for the successive rigorous MoM solution.

The method is then substantially different from those amvhereGZ is the grounded half-space Green’s function of the

proaches that use the windowing of the active Green’s fun@ngential magnetic field at for a magnetic source placed at

tion concept [2], [3], [6]. #'. The factor two on the left-hand side (LHS) of (3) arises from
This Part | is organized as follows. In Section I, the IE’she sum of the two equal field contributions from the upper and

are formulated for the slit-array problem. The truncated FVWwer side of the ground plane. Next, it is convenient to intro-

description presented in Section Il prepares the successilteee an infinite array, that coincides with the actual (finite) array

introduction of the diffracted ray basis functions defined iover its extent and realizes its regular infinite periodic continua-

Section 1V, that are used for the expansion of the unknowtien. In this infinite array we denote by* the regions occupied

in the MoM solution of the IE. In Section V the validationby the slots outside the actual finite array, i.e., fox. 0 and

N
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x > Nd. Enforcing the IE for the infinite array problem whosdions to be used in a MoM scheme. Due to this interpretation

unknown magnetic current is denoted df. (') yields and using a terminology which is typical of the physical theory
o of diffraction [13], (6) will be denoted asfainge IE.

2)(00(37)/ GH (27 2 YMoo(x') dr' = xeolz)H' (z) (4) The first step in the outlined strategy requires the under-

—o0 standing of the features of the field radiated by truncated FW

wherey.. = xa+4+ = X4 + xa- iSthe characteristic function distributions.

of the infinite slot array. It is useful to introduce the difference

M, between the magnetic currehf on the finite array and the IIl. TRUNCATED FW'S

solution M to the infinite array problem Let us consider first the infinite array of magnetic sources
Moo x.a. Owing to the periodicity, its magnetic field . («) can
Mg = (M — Moo)xa- ®) be represented by superposition of FW'’s

Note thatM,; extends only over the actual, finite array. The oo

problem can be reformulated in terms of this differefidg by Ho(2) = Z Hppoo ¢~ 3Fme 9)
inserting (5) into the original (3) and explicitly enforcing (4) that —o0

definesM . In doing this it is useful to observe that in all prob- ) )

lems the total field continuity condition must hold on each si@roPagating along with wavenumbers

so that (4) is unchanged by multiplication ¥y, thus obtaining Y

kxnl:kws"'_Tv m:07 :l:]-v :l:27 Tt (10)
xal(®) / Gl (@5 ') Mu(2') de’ = xa(2) Hexs(2)  (6)
A The FW’s with phase velocity alonggreaterk,.,, < k) orless
where (kzm > k) than the speed of light, are denoted by homogeneous
FW’s (HFW's) or evanescent FW's (EFW'’s), respectively. The
Heyi(z) = / GH (z; 2" Mo (') da’ (7) latter are exponentially attenuated in the direction normal to the
A array.

The field H..(x) radiated by the external sourcés..y 4+

is the field radiated by the sources c ; )
of the array [i.e., the forcing term of (6)] can be obtained by

Meye = Mooy ar (8) the radiation integral of the FW equivalent current distributions
over the two semi-infinite apertures< 0 andz > (N + 1)d.
which are the array sources externalo This may be rigorously and simply formalized by using the

The first step of our procedure is the solution of the infinit®oisson summation formula as it is widely discussed in [5] and
array problem foiM; next, we find the unknowi/,(z") via [7]. When the radiation integral of each semi-infinite FW aper-
the MoM applied to (6), employing a very convenient schemayjre is evaluated asymptotically, it yields a field representation
while this scheme will have a rigorous formulation and the ajn terms of its stationary phase point, which recovers the FW it-
propriate generalization to 3-D problems in Section I, the keself restricted to a certain region of space, plus its relevant con-
to the solution strategy will emerge from the physical interpreributions at the endpoint of the integration domain. These latter
tation of the problem; to this end it is important to understan@ay be interpreted as a diffracted field arising from the edge of
the meaning of (6). the aperture. When observing at a point lying on the array for

Itis apparentthat (6) represents the same boundary conditions (d, Nd) the stationary phase point never occurs in the ex-
as the original IE (3), but with a different forcing term produceternal integration domain so that the field is represented only in
by the external source¥..; we stress thad/., after solving terms of the diffracted ray fields. Fig. 2(a) and (b) represent the
in a traditional way the IE (4) for the infinite array is a knowrdiffracted rays for the dominant HFWr( = 0) and for the first
term. Therefore}, corresponds to the electric field,; found EFW (m = —1), respectively. This latter is assumed to be prop-
in the slits of the real finite array in the presence of the forcinagating backward with respect to the HFW. The rays depicted
term H.,.. On the other hand, the forcing terf.,; of (6) is by longer arrows denote larger amplitudes of the diffracted field,
the field radiated by that part of the infinite array that has beemd the dark regions denote the transition regions of the dif-
suppressed to obtain the actual problem from the infinite orfeacted rays. As discussed in [8], these latter have a parabolic
This expresses the fact that the deformation of the finite-array elliptic contours for HFW or EFW, respectively. The two ra-
solution M, with respect to the infinite-array solutial/., is  diating apertures are associated with the suppressed part of the
such as to compensate for the absence of the radiation contritwray and, therefore, their endpoints, where the diffracted rays
tion from the suppressed pa¥t.,. of the infinite array. start, are displaced externally one period from the first and the

As it will be described later onf{.x; can be representedlast source of the actual array. A convenient asymptotic repre-
as the radiation on the regicn, = = € (0, (N + 1)d) of sentation of the external forcing field ferc (0, L) is given in
FW's distributed on the complementary apertdré = = € terms of the diffracted contributioh!, (z) andh_, (z*) asso-

(00, 0) J((N + 1)d, o). This field can be asymptotically in- ciated with the leftz = 0) and right{z = (N +1)d) endpoints,
terpreted and represented in terms of diffracted rays originategpectively

at the endpoint op__". As discussed next, the same representa-

tion will be applied ta}M,; to obtain a suitable set of basis func- H™ () ~ hi (z) — ho (x%) (11)
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to extracting three poles close to the saddle point in the Van der
Waerden asymptotic evaluation of the relevant spectral diffrac-
tion integral defined in [8, eq. (10)].

The slope transition function in (17) tends to unity for large
arguments so that fot # £, u,,(x) possesses an asymptotic
behavior like (kz)~3/2. Therefore, the diffracted field from
, \ = . one endpoint contains an asymptotically dominant tefm)
< ext.sour—| <——real sources —> —external sources ~> of order (k‘x)_l/Q plus three terms,,(z)(m = -1, 1, 0)

@ of higher order((kz)~3/2) associated with the FW’s with

; ‘ A propagation constant&.,,. These latter contributions be-
come asymptotically dominant [of ordékz)°] when k..,
approacheg:; that is, when the pertinent FW approaches its
cutoff from the homogeneous to the evanescent regime. The
inclusion of a mathematical description of this transition, which
is provided here by the UTD transition function, is important to
preserve the solution when approaching scan-blindness angles.

() We stress again the fact that the caustic point of the diffracted
i . . ) rays is displaced of one period from the first and the last source.
Fig. 2. Truncated FW’s picture for a finite array of magnetic currents on thﬁ tl . the ob fi int is al .
infinite ground plane. (a) and (b) correspond to the total field for the dominal onsequently, since the observation point Is always m@;ie
HFW (m = 0) and for the first EFW = —1), respectively. Diffracted the value ofz in (11) is always large enough to justify the

rays arising from the truncation compensate for the FW discontinuity occurriggcond-order asymptotic approximation in (12) which is suf-
at the shadow boundaries (SB’s). Longer arrows denote larger amplitude ’

.0 .
the diffracted rays; the dark zones denote the transition regions of the sjﬁ%ently accurate for: > 0.3\ as demonstrated in [8].
diffracted rays. When the observation point is on the array plane, the stronger

diffracted ray is that relevant to HFW and to EFW for the edge at left and righq.V GLOBAL BASIS FUNCTIONS AND MOM SOLUTION OF THE
respectively. This allows the interpretation of the result in Fig. 4. ' FRINGE INTEGRAL EQUATION

«——external sources——| ¢———real sources ——> —ext.sour.—>

wherez* = (N + 1)d — = and For the sake of simplicity, the slit width is considered to be
N N N N N small in terms of a wavelength so that the magnetic current dis-
hee(x) = IFv(@) + 15 uo(x) + [ wa(z) + 1= u—1(2). (12)  tribution on each slit can be described with only one basis func-
tion ¢(x), which is chosen to be uniform, i.e(x) = rect(z).

n (12) The magnetic current of the infinite array has then the form
I'sinc <1 k ) >
111 — Ra
2 Moo(x) = Moooc(z — nd) e7Ikeend (19)
+ _ oo\l Oco
== 1— C*jd(k:Fka:O) (13) ng—:oo

where M., is a constant which is found by applying a MoM

. 1 AT procedure to (4). We consider now the unknaifp(z) of the

N I'sinc < k“"“) kV2k fringe IE that physically represents thecomponent of the elec-

I = 2d\/k £ Fom (k F k)2 (m=0,1-1) (14) yic field. By assuming this field as associated to a diffracted

wave propagating towared, the amplitude of this:-component
wherel = 2jkaMoco/(¢/275) must necessarily decay éist)~3/2. For this reason, and taking
. inspiration from the representation (14) we expadg ) as
o) = eIV (15) p p (14) padg(x)

and Ma(x) = xa(e) D [Mfum(@) + Myun(e*)]  (20)

6_jkm m=—1

The function

wherez* = (N + 1)d — z, i.e., in terms of the global basis
functionsu,, () in (16) shaped as the second ordehgf, (z).
The six unknowns\/£(m = —1, 0, 1), are found by applying

F.(y) = 2ju(1 — F(y)) (17) a MoM-Galerkin method to the fringe IE (6). Note that the
number of unknowns does not depend on the number of ele-
where ments of the array. Furthermore, it will be seen from numerical
. >~ 3 - examples that in most cases only three unknowns in place of six
Fly) =2j/ye’? / eIt dt; —— <ag(y) < 5 (18) are sufficient to accurately solve the problem.
vy Before proceeding further, consider the familiar windowing

is the slope transition function of the uniform theory of diffracmethod (WM) when applied as in [2] to the example discussed
tion (UTD) [14]. The above expressions may be derived frolmere. Since the present Green'’s function imposes a vanishing
[8, eq. (17)] by means of straightforward algebraic manipuléangential ¢-directed) electric field all over the plane of the
tions. Threeay,,,-terms have been used in (12); this correspondéits, nomagnetic currentorrection is predicted by WM with
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V. ILLUSTRATIVE EXAMPLES
1.04
The procedure described above (denoted hereinafter as trun-

cated FW MoM or TFW-MoM) is compared with an ordinary
formulation of the MoM which uses element by element un-
knowns. The various curves presented in the following show
the amplitude of the normalized magnetic curredtgh o, =

. (M4 + Moo )/ Moo as a function of the slitindex. The slits are
0.88 s e small in terms of a wavelengtfu = 0.1)), so that the global
distribution is significantly described by only one sample per
slit. A curve composed by straight segments is plotted to give
continuity to the discrete values, dashed, and continuous line de-
noting our method and the ordinary MoM method. These curves
oscillate slit by slit around the solution for the infinite array
(which is unity due to the normalization) well depicting the ef-
fect of the interference between the FW fields and the relevant

0.96

0.92

092 MoM TFW(1 edge function)

Normalized magnetic currents

1.04
1.02

:
gﬂ 0.98 L2 diffracted rays.
1
£ posf < om — _
8 09| A. Selection of the Unknowns
5 094 ' : . _—
E T s s 10 An array composed of 100 slits periodically spaded=
z 092 0.5)) is considered in Fig. 3. We will denote by 1 and 2 the edges

0 20 40 60 80 100

it index on the left and right sides, respectively. Fig. 3(a) and (b) are as-

sociated with beam anglés= 0° and® = 30°, respectively.

(b) For the case in Fig. 3(a), the TFW solution has been obtained
fea N ived amolitude of th _ e siting fby using only one diffracted wave per edge in the expansion of
T alied smplte ofthe el cuntsersus e SURCEXIS, L., in (2L)M and My are forced to zero and onlyf
line—element-by-element solution; dashed line—TFW-MoM solution. andM, are retained as unknowns. Thug & 2 linear system
has been solved to obtain the TFW solution, versus a 00
100 linear system pertinent to the element-by-element MoM ap-
proach. Despite this, excellent agreement has been found.

For the case of Fig. 3(b}¢ = 30°) a third curve is pre-
sented (dotted line), that corresponds to the TFW solution in
which one more basis function is used for the edge at right, i.e.,

1.05
] s M w
. 4073, N ae0h
@.95 MoMel. by el <> | -a>0<‘—}

11100 MMTFY - - 2 100
X |

<
2
§ 1.05 !
g ) | e N M, is represented by three unknownd;, M, , M_, in (20).
§ 0.95 | P This means we have selected one diffracted ray for the left edge
2 ;)9 E _4% ww N (due to the HFW withn = 0) and two diffracted rays for the
“g’o oés L g, EFW right edge [one due to HFV#én = 0) and one due to first EFW
g ;)8 e P (m = —1)]. This provides an excellent improvement of the
' 20 40 60 80 100 TFW solution with respect to the already acceptable result ob-
slit index tained from including only one diffracted ray per edge (dashed

line); indeed increasing the beam-scanning, the EFW gradually

Fig. 4. Normalized amplitude of the magnetic current distributiondfior= ~ @pproaches its cutoff condition, thus rendering increasingly im-
0.7x ande = 0.1 against the slit index; the main beam isfat= 18°. This g)ortant the inclusion of its diffracted ray in thd; expansion.

amplitude oscillates around the solution of the infinite array according to (
and (10) for the left and right side, respectively. The most important diffraction o L
contribution is that from the HFW for the end-point left and from the first EFWB. Change of Periodicity in the Current Oscillation
for the end-point right. InFig. 4, we consider an array of 100 elements witk 0.7,

a = 0.1\, and® = 18°. For the present case, only one HFW
respect to the case of an infinite array. Consequently, the inaicurs, and its radiation integral produces the main beam in di-
impedance of each aperture calculated by WM differs from thegction#. To obtain an accurate prediction of the TFW-MoM
for the infinite array only because of the perturbation ofitieeg-  solution again three unknowns4, M, , M, in (20)] have
netic fieldson the slits without accounting for the perturbatioteen used. The curves oscillate slit by slit with a different period
of the magnetic currentThis yields significant inaccuracy notclose to the different endpoints. The diffracted rays associated
only for this specific problem, but for all the arrays formed bwith the HFW and the dominant EFW pertinent to this geom-
apertures on ground plane. The problem is, however, less cetry are those illustrated in Fig. 2 (reported in the inset for con-
ical for the case of layered structures [3], where the pertinergnience). Following the TFW representation one can interpret
Green'’s function enables WM to predict a first-order correctiathe oscillations of the magnetic current amplitude as established
with respect to the infinite distribution for both the electric curby the interference between each FW aperture field and its cor-
rents and the electric fields. responding diffracted ray, that propagates with the speed of light
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along the same direction. In particular, the magnetic currents to- 0
ward the left edge are dictated by the interference between the & 22— %Qﬁigi —
dominant HFW and its diffracted field arising from the endpoint E 27 1: ;
left; the period of this oscillation is then & 18 » : /\
< 1
S 167 - ,f\ j
Py = 27 . A (21) g 14} 30 f\/\{\mr‘/\[/\i I ;
—_— —_— A . 15 20 25 30 35
|Iﬂ/ — Iﬂ/m5| (1 — Sln 9) % 12t degrees
. . . 2o B e A :
This is the same expression provided by Hansen and Gammor 4§
in the last equation of [9] on the basis of the Gibbsian model. 5 *8] s MoMel byel
Note that this latter is based onsgectral truncatiordescrip- £ 0600 20 30 40 50 60 70 80 90 100

tion of the oscillation while the present method invokespa- slit index
tial truncationand relevant diffraction. The precise relationship
between the two methods is at present under investigation. Fig.5. Normalized amplitude of the magnetic current versus the slit index for
. . i e A . array of 100 slits close to scan-blindness conditibe=(0.7A, a = 0.1,
At the right side the oscillation is d|ct_ated by the mterferenc?: 24°). In the inset: radiation patterns.
between the EFWrf = —1) and its diffracted ray from the
right-side endpoint, where the latter is stronger (see the inset of

Fig. 4); the period of this oscillation is then : e [;\
2T )\ ’ Full Wave —— w0 .
P ) W @ Fe==T s
o —1—sin 6+ — B )} ‘m{ alit LA
< sin ¢+ d) g 1B i ﬂ(\ﬂﬂ{k @ahu\
B 12 b / i, (\ (\' . iSO -60 -40 -20 deogreég 40 60 / 0
For the present case, whete- 0.7\ andf = 18°, them = —1 =115 ZS\/\N\(\M (W\(\ s
EFW is close to its cutoff, where it turns from evanescent to ho- & A b /:'_
mogeneous, so that its phase velocity approaches the speed ¢ § a) o
5 ’/1. b

light, i.e., the same as that of its diffracted ray. For this reason, &
the period of the oscillations at the right side is quite large. Note 2

f1
I5

that ford = 0.5 (which corresponds to the cases of Fig. 3) one 3 /
obtainsp; = ps, i.e., the same oscillations on both sidesall 5 gof My —— N
values o, which correspond to the case presented by Hansen € ggsl .~ 7" "~

and Gammon in [9]. Equation (22) is then the appropriate gen- 1 2.3 4 5 6 7 8 9 10

eralization to general spacing of the last equation in [9]. slit index

. Fig. 6. Normalized amplitude of the magnetic current versus the slit index for
C. Special Cases an array of 10 slitsd = 0.7), a = 0.1)); two diffracted-ray functions have

. L been used for each edge. 10°. (b) ¢ = 18°. In the inset: radiation
Fig. 5 shows results for a beam angle- 24°, which is close patterns. ge. @)= ®)

to the scan-blindness angle= 26°, which corresponds to the

cut-off angle of the FW withn = —1. TFW-MoM solution ggowns with respect to the ordinary MoM element-by-element
maintains a good accuracy with three unknowns. As expected, . T
ntal 9 uracy wi ! W XP roach. There are two key points of the method: the definition

for this case a relevant overshoot of the magnetic currents cl . i - .
g a convenient fringe IE and the efficient representation of the

to the right edge is found, which also produces an evident patté) o . .
distortion (see the inset of the same figure) with respect to t é}(nown ckLJJrrtent In ':rs] k?énel. Ihef{'Pg;IE 'StCOT?tr_LtJCted as thz
case of simple windowing of uniform amplitude currents , a firerence between the 1= pertinent to the actual inite array an

expected. to its infinite periodic continuation. This IE expresses the same

The example shown in Fig. 6 demonstrates the good accur |8Id continuity as the original one, but applied to a field that is

f he TEWHo melhod even foraaysof moderate sizes (1 Aerence etueen he cunentof e fntean of e o
elementsd = 0.7X). Two different beam angles have been s old hasyén intrinsic diffractive gat . thus 2”0 'ny 2 simole
lected ¢ = 10°, and® = 18°) and two diffraction terms per ' Intnnsic d v ure, thu wing a simp

edge have been used in the TFW solution. Nonnegligible dist&r—‘d efficient representation in terms of diffractgd rays associ-
tion of the radiation pattern has been found also for the first sifl eg W;thh trun(iiatet(ij EWf;."Fc;r arS“t erl]rtrat?/ ?ﬂ ar:jmtfm'ti grrourr;ld I
lobe (see the inset) with respect to the solution obtained with Bt €. the application ot this representation leads o a very Sma

abrupt windowing of the infinite array. The radiation pattern Capumbe_r of terms—no more than th_ree—mdep_endently pf the
culated from MoM element-by-element and from TFW-Mo rray size. Indeed, the phenomenon is substantially described by

superimpose, so that only one curve is reported (solid line) the diffracted fields relevant to the propagating FW and to the
' " evanescent FW closest to cutoff. The wave interference between

the FW and its diffracted field provides an element-by-element
current oscillation whose period can be predicted by a simple

A formulation has been proposed for the full wave solutioand intuitive expression also when the phenomenon is domi-
of large phased arrays, which provides a drastic reduction of urated at one edge by the EFW diffraction.

VI. CONCLUDING REMARKS
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Despite the high-frequency nature of the field representatioxndrea Netowas born in Naples, Italy, in 1968. He received the Laurea degree
the method has been demonstrated to be very accurate for dgea laudg in electronic engineering from the University of Florence, Italy, in
elem?nts and fqr mpderate arr.ay S|Ze$' The |nclus_|on ofthe U i995, he spent one year of research as Young Graduate Trainee at the Euro-
transition function in the basis function expression allow fqrean Space Agency (ESTEC-ESA), Noordwijk, The Netherlands. Since 1996,

description of the currents also for scan-blindness angle. Tipﬁefhas been involved with a Ph.D. research program at the University of Siena,
Italy, concerning methods for the analysis of large arrays. He is currently with

gl_JideIines and the phySiCE_‘I in_Sight gained in this 2-D analysfg Antenna Section of ESTEC-ESA. His research is focused on high frequency
will be used for the generalization to actual 3-D-array problemand numerical methods in electromagnetics.

this generalization is carried out in Part Il of this paper.
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