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Abstract—This two-part sequence deals with the formulation
of an efficient method for the full wave analysis of large phased-
array antennas. This is based on the method of moments (MoM)
solution of a fringe integral equation (IE) in which the unknown
function is the difference between the exact solution of the finite
array and that of the associated infinite array. The unknown cur-
rents can be interpreted as produced by the field diffracted at the
array edge, which is excited by the Floquet waves (FW’s) perti-
nent to the infinite configuration. Following this physical interpre-
tation, the unknown in the IE is efficiently represented by a very
small number of basis functions with domain on the entire array
aperture. In order to illustrate the basic concepts, the first part
of this sequence deals with the two-dimensional example of a lin-
early phased slit array. It is shown that the dominant phenomenon
for describing the current perturbation with respect to the infinite
array is accurately represented in most cases by only three dif-
fracted-ray-shaped unknown functions. This also permits a simple
interpretation of the element-by-element current oscillation, which
was recently described by other authors. The second part of this
paper deals with the appropriate generalization of this method to
three-dimensional (3-D) arrays.

Index Terms—Electromagnetic diffraction, Floquet expansions,
phased-array antennas.

I. INTRODUCTION

T HE electromagnetic modeling of large finite arrays as well
as the scattering by finite periodic structures is an impor-

tant topic for a large variety of engineering applications and has
been the object of many recent investigations [1]–[10]. A rig-
orous analysis based on an element-by-element method of mo-
ments (MoM) becomes computationally difficult when the size
of the array increases. If the structure is taken as infinite, the
numerical effort is reduced to that of a single periodic cell solu-
tion [1]. This approximation leads to reasonable results in pre-
dicting the input impedance of elements far out from the edges.
However, for near-edge elements it is significantly inaccurate.
Furthermore, for wide-beam angle scanning the effects of trun-
cation can be relevant also for elements very far from the edges.

The present method is focused on the prediction of the cur-
rent distributions on the array radiating elements (including the
ones close to the edge of the array) retaining an extremely small
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number of unknowns. This method is based on the MoM solu-
tion of an appropriate “fringe” integral equation (IE) in which
the unknown function is the difference between the exact cur-
rent distribution on the truncated array and the current distribu-
tion pertinent to the infinite array. This unknown function can
be interpreted as due to the edge diffracted field excited by the
Floquet waves (FW’s) relevant to the infinite, periodic continu-
ation of the actual array. Following this physical interpretation,
the unknown of the IE is efficiently represented by a few entire
domain basis functions, which are shaped as FW diffracted rays.

In order to simplify the description of the overall method,
the paper is split in two parts. In this paper, Part I, the basic
concepts are illustrated with reference to a specific two-dimen-
sional (2-D) example of a linearly phased array of slits in an
infinite metallic plane. The physical insight gained by the in-
vestigation of this prototype problem is useful to highlight the
basic mechanisms that dominate the edge perturbation, thus al-
lowing a neat selection criterion for the number of unknowns in
the MoM scheme. This will be fundamental for the successive
three-dimensional (3-D) generalization carried out in Part II. For
the present 2-D case, only three basis functions in the unknown
description of the fringe IE are sufficient for providing the same
accuracy as that obtained from an element by element full wave
analysis.

The example presented here allows for a clear interpretation
of the global element by element current oscillation produced by
edge perturbations recently described by Hansen and Gammon
[9] by means of a model based on the Gibbs phenomenon. Al-
though interesting, this latter model does not seem applicable in
general cases since it does not predict the change of the oscilla-
tion period close to one edge occurring for scanning array with
more than a half-wavelength period. By using the present ap-
proach, this effect will be shown to be associated with the inter-
ference between evanescent FW’s and their relevant diffracted
fields; a simple formula is provided to extend that given in [9]
to arbitrary spacings.

A summary of the methods presented in literature for large
arrays in comparison with the present approach is in order. The
technique proposed in [2] and improved in [3], accounts for
the edge effects by a windowing method. This is based on con-
structing the active Green’s function to be used in the MoM pro-
cedure by the radiation of an array of elementary dipoles whose
amplitude and phase are dictated exclusively by the excitation.
This approach is convenient since it requires the same number
of unknowns as those for solving the infinite array. However,
it sometimes leads to incongruence in predicting the effects of
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truncation, especially when studying aperture arrays on ground
planes [see, Section IV].

In [4], an interesting hybrid method incorporating an FW ex-
pansion in a MoM scheme is proposed for a 2-D array of strips.
In this approach, the distribution of the radiating currents in the
central portion of the array is supposed to be the same as that
in the absence of truncations. In the next step, these currents
are used for exciting the electric field on the elements close to
the edge. Although very good results can be obtained for near
broadside scan, this method fails when the effects of the trun-
cation do not rapidly vanish away from the edges, as occurs in
wide-beam scanning.

In [6], an enlightening and elegant method for prediction
of scattering from a 2-D finite periodic strip grating is an-
alyzed; the numerical solution for the current on the strips
is obtained with an approximation that is equivalent to the
windowing approach, i.e., assuming that the current on each
strip is independent of the strip location within the array.
This position-independent current is taken to be that on the
central element of a similar finite, but smaller grating; this
latter is analyzed with an element-by-element MoM with a
reduced computational cost. This approach is a clever way
of exploiting a very efficient version of the element by el-
ement 2-D MoM devised by the same authors [10] and is
an alternative implementation of the basic windowing ap-
proach, which differs from [2] and [3] for the choice of the
position-independent current, which is obtained from the in-
finite periodic problem in [2] or via active Green’s function
in [3]. However, the use of (indeed pioneering) asymptotic
constructs in [6] might lead to equivocate techniques and
objectives, presented in [6] and in the present work. In [6],
the asymptotic analysis is focused on the scattering problem
by a strip grating both in frequency and, most remarkably, in
time with a consequent relaxation in the accuracy required
in the determination of the currents on the array elements.
Consequently, the asymptotic expressions were not used there
to construct these currents, but only to observe the far field.
The present work is instead primarily concerned with the
efficient, though accurate, evaluation of the currents on the
array elements, not only for the accurate assessment of the
truncation effects on the radiation pattern, but especially for
the determination of the antenna input parameters (impedance
and/or scattering parameters). The important issue of the ac-
curate and fast evaluation of the field radiated by the array
currents in both near and far zone is outside the scopes of
this paper; instead, it is dealt with in detail in some com-
panion works [8], [11], [12]. The use of uniform asymptotic
techniques here is employed for finding efficient array-global
basis functions for the successive rigorous MoM solution.
The method is then substantially different from those ap-
proaches that use the windowing of the active Green’s func-
tion concept [2], [3], [6].

This Part I is organized as follows. In Section II, the IE’s
are formulated for the slit-array problem. The truncated FW
description presented in Section III prepares the successive
introduction of the diffracted ray basis functions defined in
Section IV, that are used for the expansion of the unknowns
in the MoM solution of the IE. In Section V the validation

Fig. 1. Geometry of an array of slits on an infinite ground plane. The slits are
fed by magnetic aperture fieldsH (x) = H exp(�jkx sin �)wherex is
restricted to the slit regions. The main beam of the array is oriented in direction
� with respect to the normal.

is carried out meanwhile gaining further insight on large
scanning effects.

II. I NTEGRAL EQUATIONS FOR ASLIT ARRAY

The geometry of the problem consists of an array ofthin
slits (denoted by ) etched on an infinite ground
plane (Fig. 1). The size of the slits and the interelement period
are denoted by and , respectively; a reference system is intro-
duced, with its , and axes oriented along the array, along
the normal to the interface, and along the slits, respectively. The
first slot is placed at . We assume a simple impressed
magnetic field of the kind

(1)

that gives rise to beam radiation in direction
from broadside, being the free-space wavenumber. In order to
formulate the problem as an IE, let us denote bythe portion
of the axis occupied by the slits, and define the characteristic
function of the array, which is unity on and zero elsewhere

(2)

in which is the Heaviside unit step function. By applying
the equivalence principle, each slit is replaced by a perfectly
conducting surface with two unknown magnetic current distri-
butions on its opposite faces that are of equal
amplitude and opposite sign to ensure the continuity of the tan-
gential component of the electric field at the interface. The usual
IE is now considered, which expresses the enforcement of the
appropriate continuity through the apertures of the total (im-
pressed plus radiated) magnetic field

(3)

where is the grounded half-space Green’s function of the
tangential magnetic field at for a magnetic source placed at

. The factor two on the left-hand side (LHS) of (3) arises from
the sum of the two equal field contributions from the upper and
lower side of the ground plane. Next, it is convenient to intro-
duce an infinite array, that coincides with the actual (finite) array
over its extent and realizes its regular infinite periodic continua-
tion. In this infinite array we denote by the regions occupied
by the slots outside the actual finite array, i.e., for and
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. Enforcing the IE for the infinite array problem whose
unknown magnetic current is denoted by yields

(4)

where is the characteristic function
of the infinite slot array. It is useful to introduce the difference

between the magnetic current on the finite array and the
solution to the infinite array problem

(5)

Note that extends only over the actual, finite array. The
problem can be reformulated in terms of this differenceby
inserting (5) into the original (3) and explicitly enforcing (4) that
defines . In doing this it is useful to observe that in all prob-
lems the total field continuity condition must hold on each slot
so that (4) is unchanged by multiplication by , thus obtaining

(6)

where

(7)

is the field radiated by the sources

(8)

which are the array sources external to.
The first step of our procedure is the solution of the infinite

array problem for ; next, we find the unknown via
the MoM applied to (6), employing a very convenient scheme;
while this scheme will have a rigorous formulation and the ap-
propriate generalization to 3-D problems in Section II, the key
to the solution strategy will emerge from the physical interpre-
tation of the problem; to this end it is important to understand
the meaning of (6).

It is apparent that (6) represents the same boundary conditions
as the original IE (3), but with a different forcing term produced
by the external sources ; we stress that , after solving
in a traditional way the IE (4) for the infinite array is a known
term. Therefore, corresponds to the electric field found
in the slits of the real finite array in the presence of the forcing
term . On the other hand, the forcing term of (6) is
the field radiated by that part of the infinite array that has been
suppressed to obtain the actual problem from the infinite one.
This expresses the fact that the deformation of the finite-array
solution with respect to the infinite-array solution is
such as to compensate for the absence of the radiation contribu-
tion from the suppressed part of the infinite array.

As it will be described later on, can be represented
as the radiation on the region of
FW’s distributed on the complementary aperture

. This field can be asymptotically in-
terpreted and represented in terms of diffracted rays originated
at the endpoint of . As discussed next, the same representa-
tion will be applied to to obtain a suitable set of basis func-

tions to be used in a MoM scheme. Due to this interpretation
and using a terminology which is typical of the physical theory
of diffraction [13], (6) will be denoted as afringe IE.

The first step in the outlined strategy requires the under-
standing of the features of the field radiated by truncated FW
distributions.

III. T RUNCATED FW’S

Let us consider first the infinite array of magnetic sources
. Owing to the periodicity, its magnetic field can

be represented by superposition of FW’s

(9)

propagating along with wavenumbers

(10)

The FW’s with phase velocity alonggreater or less
than the speed of light, are denoted by homogeneous

FW’s (HFW’s) or evanescent FW’s (EFW’s), respectively. The
latter are exponentially attenuated in the direction normal to the
array.

The field radiated by the external sources
of the array [i.e., the forcing term of (6)] can be obtained by
the radiation integral of the FW equivalent current distributions
over the two semi-infinite apertures and .
This may be rigorously and simply formalized by using the
Poisson summation formula as it is widely discussed in [5] and
[7]. When the radiation integral of each semi-infinite FW aper-
ture is evaluated asymptotically, it yields a field representation
in terms of its stationary phase point, which recovers the FW it-
self restricted to a certain region of space, plus its relevant con-
tributions at the endpoint of the integration domain. These latter
may be interpreted as a diffracted field arising from the edge of
the aperture. When observing at a point lying on the array for

the stationary phase point never occurs in the ex-
ternal integration domain so that the field is represented only in
terms of the diffracted ray fields. Fig. 2(a) and (b) represent the
diffracted rays for the dominant HFW ( ) and for the first
EFW ( ), respectively. This latter is assumed to be prop-
agating backward with respect to the HFW. The rays depicted
by longer arrows denote larger amplitudes of the diffracted field,
and the dark regions denote the transition regions of the dif-
fracted rays. As discussed in [8], these latter have a parabolic
or elliptic contours for HFW or EFW, respectively. The two ra-
diating apertures are associated with the suppressed part of the
array and, therefore, their endpoints, where the diffracted rays
start, are displaced externally one period from the first and the
last source of the actual array. A convenient asymptotic repre-
sentation of the external forcing field for is given in
terms of the diffracted contribution and asso-
ciated with the left and right endpoints,
respectively

(11)
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(a)

(b)

Fig. 2. Truncated FW’s picture for a finite array of magnetic currents on the
infinite ground plane. (a) and (b) correspond to the total field for the dominant
HFW (m = 0) and for the first EFW (m = �1), respectively. Diffracted
rays arising from the truncation compensate for the FW discontinuity occurring
at the shadow boundaries (SB’s). Longer arrows denote larger amplitudes of
the diffracted rays; the dark zones denote the transition regions of the same
diffracted rays. When the observation point is on the array plane, the stronger
diffracted ray is that relevant to HFW and to EFW for the edge at left and right,
respectively. This allows the interpretation of the result in Fig. 4.

where and

(12)

In (12)

(13)

(14)

where

(15)

and

(16)

The function

(17)

where

(18)

is the slope transition function of the uniform theory of diffrac-
tion (UTD) [14]. The above expressions may be derived from
[8, eq. (17)] by means of straightforward algebraic manipula-
tions. Three -terms have been used in (12); this corresponds

to extracting three poles close to the saddle point in the Van der
Waerden asymptotic evaluation of the relevant spectral diffrac-
tion integral defined in [8, eq. (10)].

The slope transition function in (17) tends to unity for large
arguments so that for possesses an asymptotic
behavior like . Therefore, the diffracted field from
one endpoint contains an asymptotically dominant term
of order plus three terms
of higher order associated with the FW’s with
propagation constants . These latter contributions be-
come asymptotically dominant [of order ] when
approaches ; that is, when the pertinent FW approaches its
cutoff from the homogeneous to the evanescent regime. The
inclusion of a mathematical description of this transition, which
is provided here by the UTD transition function, is important to
preserve the solution when approaching scan-blindness angles.

We stress again the fact that the caustic point of the diffracted
rays is displaced of one period from the first and the last source.
Consequently, since the observation point is always inside,
the value of in (11) is always large enough to justify the
second-order asymptotic approximation in (12), which is suf-
ficiently accurate for as demonstrated in [8].

IV. GLOBAL BASIS FUNCTIONS AND MoM SOLUTION OF THE

FRINGE INTEGRAL EQUATION

For the sake of simplicity, the slit width is considered to be
small in terms of a wavelength so that the magnetic current dis-
tribution on each slit can be described with only one basis func-
tion , which is chosen to be uniform, i.e., .
The magnetic current of the infinite array has then the form

(19)

where is a constant which is found by applying a MoM
procedure to (4). We consider now the unknown of the
fringe IE that physically represents the-component of the elec-
tric field. By assuming this field as associated to a diffracted
wave propagating toward, the amplitude of this -component
must necessarily decay as . For this reason, and taking
inspiration from the representation (14) we expand as

(20)

where , i.e., in terms of the global basis
functions in (16) shaped as the second order of .
The six unknowns , are found by applying
a MoM-Galerkin method to the fringe IE (6). Note that the
number of unknowns does not depend on the number of ele-
ments of the array. Furthermore, it will be seen from numerical
examples that in most cases only three unknowns in place of six
are sufficient to accurately solve the problem.

Before proceeding further, consider the familiar windowing
method (WM) when applied as in [2] to the example discussed
here. Since the present Green’s function imposes a vanishing
tangential ( -directed) electric field all over the plane of the
slits, nomagnetic currentcorrection is predicted by WM with
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(a)

(b)

Fig. 3. Normalized amplitude of the magnetic currents versus the slit index for
an array of 100 slits;d = 0:5�, a = 0:1�. (a)� = 90 . (b) � = 30 . Solid
line—element-by-element solution; dashed line—TFW-MoM solution.

Fig. 4. Normalized amplitude of the magnetic current distribution ford =

0:7� anda = 0:1� against the slit index; the main beam is at� = 18 . This
amplitude oscillates around the solution of the infinite array according to (9)
and (10) for the left and right side, respectively. The most important diffraction
contribution is that from the HFW for the end-point left and from the first EFW
for the end-point right.

respect to the case of an infinite array. Consequently, the input
impedance of each aperture calculated by WM differs from that
for the infinite array only because of the perturbation of themag-
netic fieldson the slits without accounting for the perturbation
of themagnetic current. This yields significant inaccuracy not
only for this specific problem, but for all the arrays formed by
apertures on ground plane. The problem is, however, less crit-
ical for the case of layered structures [3], where the pertinent
Green’s function enables WM to predict a first-order correction
with respect to the infinite distribution for both the electric cur-
rents and the electric fields.

V. ILLUSTRATIVE EXAMPLES

The procedure described above (denoted hereinafter as trun-
cated FW MoM or TFW-MoM) is compared with an ordinary
formulation of the MoM which uses element by element un-
knowns. The various curves presented in the following show
the amplitude of the normalized magnetic currents

as a function of the slit index. The slits are
small in terms of a wavelength , so that the global
distribution is significantly described by only one sample per
slit. A curve composed by straight segments is plotted to give
continuity to the discrete values, dashed, and continuous line de-
noting our method and the ordinary MoM method. These curves
oscillate slit by slit around the solution for the infinite array
(which is unity due to the normalization) well depicting the ef-
fect of the interference between the FW fields and the relevant
diffracted rays.

A. Selection of the Unknowns

An array composed of 100 slits periodically spaced
is considered in Fig. 3. We will denote by 1 and 2 the edges

on the left and right sides, respectively. Fig. 3(a) and (b) are as-
sociated with beam angles and , respectively.
For the case in Fig. 3(a), the TFW solution has been obtained
by using only one diffracted wave per edge in the expansion of

, i.e., in (21) and are forced to zero and only
and are retained as unknowns. Thus, a linear system
has been solved to obtain the TFW solution, versus a 100
100 linear system pertinent to the element-by-element MoM ap-
proach. Despite this, excellent agreement has been found.

For the case of Fig. 3(b) a third curve is pre-
sented (dotted line), that corresponds to the TFW solution in
which one more basis function is used for the edge at right, i.e.,

is represented by three unknowns: , , in (20).
This means we have selected one diffracted ray for the left edge
(due to the HFW with ) and two diffracted rays for the
right edge [one due to HFW and one due to first EFW

]. This provides an excellent improvement of the
TFW solution with respect to the already acceptable result ob-
tained from including only one diffracted ray per edge (dashed
line); indeed increasing the beam-scanning, the EFW gradually
approaches its cutoff condition, thus rendering increasingly im-
portant the inclusion of its diffracted ray in the expansion.

B. Change of Periodicity in the Current Oscillation

In Fig. 4, we consider an array of 100 elements with ,
, and . For the present case, only one HFW

occurs, and its radiation integral produces the main beam in di-
rection . To obtain an accurate prediction of the TFW-MoM
solution again three unknowns [ in (20)] have
been used. The curves oscillate slit by slit with a different period
close to the different endpoints. The diffracted rays associated
with the HFW and the dominant EFW pertinent to this geom-
etry are those illustrated in Fig. 2 (reported in the inset for con-
venience). Following the TFW representation one can interpret
the oscillations of the magnetic current amplitude as established
by the interference between each FW aperture field and its cor-
responding diffracted ray, that propagates with the speed of light
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along the same direction. In particular, the magnetic currents to-
ward the left edge are dictated by the interference between the
dominant HFW and its diffracted field arising from the endpoint
left; the period of this oscillation is then

(21)

This is the same expression provided by Hansen and Gammon
in the last equation of [9] on the basis of the Gibbsian model.
Note that this latter is based on aspectral truncationdescrip-
tion of the oscillation while the present method invokes aspa-
tial truncationand relevant diffraction. The precise relationship
between the two methods is at present under investigation.

At the right side the oscillation is dictated by the interference
between the EFW ( ) and its diffracted ray from the
right-side endpoint, where the latter is stronger (see the inset of
Fig. 4); the period of this oscillation is then

(22)

For the present case, where and , the
EFW is close to its cutoff, where it turns from evanescent to ho-
mogeneous, so that its phase velocity approaches the speed of
light, i.e., the same as that of its diffracted ray. For this reason,
the period of the oscillations at the right side is quite large. Note
that for (which corresponds to the cases of Fig. 3) one
obtains , i.e., the same oscillations on both sidesfor all
values of , which correspond to the case presented by Hansen
and Gammon in [9]. Equation (22) is then the appropriate gen-
eralization to general spacing of the last equation in [9].

C. Special Cases

Fig. 5 shows results for a beam angle , which is close
to the scan-blindness angle , which corresponds to the
cut-off angle of the FW with . TFW-MoM solution
maintains a good accuracy with three unknowns. As expected,
for this case a relevant overshoot of the magnetic currents close
to the right edge is found, which also produces an evident pattern
distortion (see the inset of the same figure) with respect to the
case of simple windowing of uniform amplitude currents , as
expected.

The example shown in Fig. 6 demonstrates the good accuracy
of the TFW-MoM method even for arrays of moderate sizes (10
elements, ). Two different beam angles have been se-
lected ( , and ) and two diffraction terms per
edge have been used in the TFW solution. Nonnegligible distor-
tion of the radiation pattern has been found also for the first side
lobe (see the inset) with respect to the solution obtained with an
abrupt windowing of the infinite array. The radiation pattern cal-
culated from MoM element-by-element and from TFW-MoM
superimpose, so that only one curve is reported (solid line).

VI. CONCLUDING REMARKS

A formulation has been proposed for the full wave solution
of large phased arrays, which provides a drastic reduction of un-

Fig. 5. Normalized amplitude of the magnetic current versus the slit index for
an array of 100 slits close to scan-blindness condition (d = 0:7�, a = 0:1�,
� = 24 ). In the inset: radiation patterns.

Fig. 6. Normalized amplitude of the magnetic current versus the slit index for
an array of 10 slits (d = 0:7�, a = 0:1�); two diffracted-ray functions have
been used for each edge. (a)� = 10 . (b) � = 18 . In the inset: radiation
patterns.

knowns with respect to the ordinary MoM element-by-element
approach. There are two key points of the method: the definition
of a convenient fringe IE and the efficient representation of the
unknown current in its kernel. The fringe IE is constructed as the
difference between the IE pertinent to the actual finite array and
to its infinite periodic continuation. This IE expresses the same
field continuity as the original one, but applied to a field that is
the difference between the currents of the finite and of the infi-
nite array. The reason for dealing with such a quantity is that this
field has an intrinsic diffractive nature, thus allowing a simple
and efficient representation in terms of diffracted rays associ-
ated with truncated FW’s. For a slit array on an infinite ground
plane, the application of this representation leads to a very small
number of terms—no more than three—independently of the
array size. Indeed, the phenomenon is substantially described by
the diffracted fields relevant to the propagating FW and to the
evanescent FW closest to cutoff. The wave interference between
the FW and its diffracted field provides an element-by-element
current oscillation whose period can be predicted by a simple
and intuitive expression also when the phenomenon is domi-
nated at one edge by the EFW diffraction.
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Despite the high-frequency nature of the field representation,
the method has been demonstrated to be very accurate for edge
elements and for moderate array sizes. The inclusion of the UTD
transition function in the basis function expression allow for
description of the currents also for scan-blindness angle. The
guidelines and the physical insight gained in this 2-D analysis
will be used for the generalization to actual 3-D-array problems;
this generalization is carried out in Part II of this paper.
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