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A Truncated Floguet Wave Diffraction Method for
the Full-Wave Analysis of Large Phased Arrays—
Part Il: Generalization to 3-D Cases

Andrea Neto, Stefano Macsenior Member, IEEEGiuseppe VecchiMember, IEEEand Marco Sabbadini

Abstract—This second part of a two-paper sequence deals with rent perturbations at the edge of the array. The key point of the
the generalization to three-dimensional (3-D) arrays of the trun- present procedure is to expand these fringe unknown currents
cated Floquet wave (TFW) diffraction method for the full wave in terms of diffracted rays and to find the unknown expansion

analysis of large arrays. This generalization potentially includes , . . - . .
arrays consisting of microstrip excited slots, cavity-backed aper- (diffraction) coefficients by solving via method of moments a

tures, and patches. The formulation is carried out first by deriving ~ Pertinent fringe integral equation (IE).

an appropriate fringe integral equation (IE) and next by defining The type of array elements that can be studied with the present
entire domain basis functions in terms of global-array functions  method include slots, cavity-backed apertures, dipoles in free-
shaped as TFW diffracted rays whose analytical expression is de- gaca and patches. For this latter case, the formulation of the

rived on the basis of prototype canonical problems. The efficiency . . L .
and the accuracy of this method is demonstrated by comparison overall procedure is valid, but the explicit expressions of the

with the results of an element-by-element full wave approach for a basis functions we propose are applicable in practice only when

rectangular slot array. the surface wave excitation is not significant; consequently, at
Index Terms—Electromagnetic diffraction, Floquet expansions, the present state, the direct applicability of the present formula-
phased-array antennas. tion for patch arrays is restricted to very low substrate dielectric
constants, which are, however, widely employed in space appli-

cations.

| INTRODUCTION This paper is organized as follows. Section Il presents the

N this paper, the truncated Floquet wave (TFW) full wavgeneralization to three dimensional arrays of the truncated FW

analysis proposed in [1] for two-dimensional (2-D) probdiffraction method introduced in Part |; this is carried out first by
lems is extended to a quite large class of three-dimensiowigriving a “fringe” IE and next by defining entire domain basis
(3-D) finite-phased arrays. The assumption for applying thfanctions in terms of the FW diffracted rays. Section Ill presents
method is that the array exhibits a geometrical periodicity anke solution scheme for both the infinite array IE and the fringe
is fed with a linear progressive phase. A simple example t&. Explicit expressions for the ray-diffracted functions to be
such a linear-phase excitation is that produced by an incidessied in the solution scheme are presented in Section IV. Sec-
plane wave; thus, the present method also includes actual stat V addresses the extension of this method to weak aperiod-
tering problems like those involving frequency selective suieity of both the array geometry and its excitation. The selec-
faces (FSS). In the following, we will refer to radiating (antennajon of the diffracted rays is discussed in Section VI on the basis
problems keeping in mind that the analogy between antenrghe results obtained in Part I; the numerical results are suc-
and plane wave scattering in our methodology is mainly conessfully compared with those from an element-by-element full
fined to the assumption of the linear phase of the excitationvfve solution for the case of a rectangular slot array. Finally,
is understood that most of the actual arrays are not perfectiye basic features of the method are summarized in Section VII.
periodic neither for the excitation nor for the geometry, but in
many practical applications, the deviation with respect to the pe- Il. FORMULATION OF THE INTEGRAL EQUATIONS

riodicity conditions is weak, thus allowing possible extensions ) ) _ _
of this method that will be here addressed. Consider an array composed BY identical basic cells oc-

The hypothesis of linear-phase excitation or, more generalfPying regionss; centered at the node$ of a regular rect-
of periodic excitation, allows a very simple and efficient solu@ngular lattice in the:—y plane of a reference system. Fig. 1
tion of the infinite array that is associated with the actual one [fers to an array of patches just to illustrate the geometry for a
terms of Floquet wave (FW) expansions. These FW's are cdifactical case. Denote hi;, d,, and byk...d., k,.d, the pe-
sidered as producing diffraction effects and relevant fringe cytodicity and the excitation phasings in the directionandy,
respectively. Inside each regiéh, A; denotes the radiating sur-

. . , face on which we will apply the boundary (dipoles, patches) or
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pied by the array elements is denoted Ay= U; A; and it is
contained inX = U;S;. Next, we introduce an infinite array,
that coincides with the actual finite array &hand realizes the
regular periodic continuation of the finite array on the region
external to>, that we denote b¥* (Fig. 1). The two region
andX>* are separated by the contdurThe portion of radiating
surfaces of the infinite array containediri will be denoted by
Af and A" = U; AL

The basic IE is formulated by use of the appropriate form of
the equivalence theorem, which substitute the array by a dis-
tribution of equivalent electric or magnetic unknown sources
4 that radiate in an equivalent, simpler medium for which the
Green’s function is known in a convenient form (free-space,
grounded half-space, or infinite layered dielectric media). The
IE expresses the enforcement of the appropriate boundary con-
ditions on the actual surfacé (vanishing of tangential electric
field on conductors or continuity of magnetic field through aper-
tures) for the total field (impressed plus radiated by equivalent .
currents). Since these conditions have to be enforced on the ra- Ip
diators of the array only, it is convenient to express the fields o
in terms of the characteristic function of the various regions Ee%.io%\-s Sfﬁae”;gt'gsogh‘éogi'ggié?t?i;'lng]? holid rg;f’T'ﬁée‘r’ggitmg;%Teei’ﬁ’é The
interest; for a generic regiahB, this function will be denoted by supports of the subdomain basis functions (i.e., rooftop) employed to discretize
x5, With x (i) = 1 for7 € B and zero outsid®. The general the structure in the MoM analysis of the single c&ll in the infinite array.

L e regionsA;, group a certain number @f;; and represent collectively the
form of theE for the finite array can be compactly expressed %?pport of theparray’Jp(F), which is globalljy visualized by the black cells

=, R inside the boundary',. The support of the arrag'; (i) is visualized by the
XAGli] = xaty (1) black cells external 0.
where _ o . .

x4 characteristic function of the surfact of the finite S Unchanged by multiplication by ; therefore, inserting (2)

array: into (1), and making use of (3), the original problem transforms
Glit] field produced by the equivalent sourén the equiv- into

alent medium; o o

X AG[Ua] = X AText (4)

iy forcing field that represents the array excitation.
For instance, in case of apertures in ground plafésthe mag-
netic current and'; is the driving magnetic field on the shorted
apertures, respectively, and the kernel of the integral operator Vext = gq[XA*UOO]. (5)
Gli] is the (magnetic) dyadic Green’s function for the shorted ) _ )
half-space. Conversely, in a patch/dipole problémand7; are This latter is the generalized fringe IE that represents the same

the electric current and tangential forcing field on the removédtpundary conditions as the original IE (1), but with a different
conductors, respectively, and the kernei] is the (electric) forcing term, which is prodgced b}’ the sourdkg, = XA+ Uoo
dyadic Green’s function for the free-space or the layered dielgxternal toX. Thereforei, is the field on the actual radiators
tric. We remark thatin the case of apertures opening onto wavé&jthe finite array produced by the sourags; in the presence
uides or over printed circuits, the construction of the t&ifi]  Of the real array. The forcing term.; of (4) is the field radi-

may be consistently complex, however, we stress that the re}éed in the equivalent medium by that part of the infinite array
vant issue dealt with here refers to tieternalinteractions at Which has been suppressed to obtain the actual problem from

array level; this latter aspect will remain unaffected by a mo#g€ infinite one and expresses the deformation of the finite-array
complicated problem with interior—exterior coupling propertie§olutionu, as the term that is necessary to compensate the ab-
According to the formulation for the 2-D case developed in [1§€nce of the radiation contribution from the array suppressed

we now write the solution’ as part (ext)- _ _ 3
Although the above interpretation &f,; clarifies the phys-
U = XAloo + Ud, with 10y = 4 — x atieo (2) ical meaning of the fringe IE, it may be interesting to express

the forcing term in (4) as independent of the definition of the
external part of the array. To this end, wedgl; = xxil.. SO
that (5) becomes.y; = —(Tint — Too), Wherets, = Gliino] and
Tt = G [in:]. Note thati,y,; is exactly the same as that obtained
andx.. = xa+4+ = xa + xa- iS the characteristic function from the usual windowing approach; this allows us to attribute
of the infinite array. to the quantity(Zi,; — 7-0) = 1'° the meaning of diffracted
We observe thaxmﬁ[ﬁm] — Xoo¥y = 0 must hold every- field from the truncated FW'’s generatedy,,. The superscript

where in the surface occupied by the infinite array and, thus, D reminds one that this diffracted field is calculated from the

whereii, is the solution of the infinite array problem

XooG[tise] = XooTy 3)
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unperturbed abruptly truncated sources, as in the physical opfimsnulation (4), the difference terni, is dominated by wave
(windowing) approach. Consequently, (4) is rewritten as phenomena, i.e., by dynamic, as opposed to quasi-static, effects.
. 10 As aresult, our formulation has the advantage of allowing for a
xaG[ta] = —xa¥y (6) relaxation of the mesh size both when solvingdigrand when
This IE is perfectly equivalent to (4), since no approximation%alcma“ngv.e"t: we therefore ef”.‘p'oy now a ‘_"ﬁeran coarser
have been made. However, its direct use in the method of mrB?Sh' To this purpose let us divide every regiA;) into P

i i A* e 2 = (Ei
ments (MoM) solution scheme may be sometimes convenies‘nibe?gT;'ggﬁg;%ngﬁégggsC%g?%ij@_ 07 pNT)tZ t(r']:;%ll)
for the reasons that we will discuss in the last section. w ven urme= = b

includes a certain numbéy,, of «;;. On each4,;, we define

basis functions?, (" — #,;), which are zero outside,,;, and

collect vV, subdomain basis functiorﬁ weighted with the co-
In this section, the solution scheme of the IE’s (3) and (4) wilfficient of the infinite array solution; i.e.,

be presented. Since the solution of the infinite array problem

(3) is well known, it is just summarized in order to set suitable L Moo L
notations. (7= i) = X, O [i(F =) Ujoo- 9)
j=1

I1l. SOLUTION SCHEME

A. Solution of the Infinite-Array Integral Equation These basis functions are used in the representation of the
Equation (3) represents the IE for the infinite periodic arrajorcing termw.,(7) as described next.

As is well known, the hypothesis of periodicity of geometry 1) Diffracted Ray Representation of the Forcing Terthis

and excitation allows the reduction of the problem to that of @nvenient to start from the representatiomgf (7') because it

single periodic basic cell. This cell is placed inside an infinitgives a guideline for that af¢(). To this end, let us define an

waveguide with cross sectidfy orthogonal to the array plane,infinite phased array of sources

and with phase-shift conditions on the walls to reproduce the

phasing of the image sources. The formulation may be carried bl (7) = i a7 — 7, ‘)e—jlzs-ﬁ- (10)
out by using an ordinary MoM scheme, with basis functions e =T P
fi(F =), =1,---, J defined on small, overlapped sub-

domainsa;;, which collectively cover the domain; = Ujaj; which has the same periodicity and excitation as the original
(e.g., roof-top, see Fig. 1). The final solution can be expresseday, but unlike the latter, is composed of a collection of

by relatively small domain elements whogesummation exactly
reconstructs the infinite array. The field radiated Gy, ("),
Ly N 7y Namelytoo (i) = G(Cpeo (7)), can be represented in terms of
oo(7) ; Hooo (7= Ti)e D the Fw expansion
wherek, = k& + k,§ and Tpool ™) = D Vipooe 95T (11)
J m=—oo
Tooo(7) = X4, Z Fi(M)VVjoo (8) where# is an arbitrary observation point on the array plane
i=1 (z, y), m denotes the double indéx:,., m,) and
is the solution for the single celd,, placed for convenience at e

- : ) . km =kom, T+ kym, U+ kamym, 2
7; = 0. The above formulas are also valid when using entire e e ymy Y T Femym,

domain basis functions defined ovér as more convenient for My, my =0, £1, £2, .- (12)
slots or open ended cavities. where
. . ; 2Ty 2rm,
B. Solution of the Fringe Integral Equation Fam, = ks + T S Ty
In principle, the size of the subcells;; in the solution of d dy

the infinite array is a function of the operating wavelength; in Komoym, = \/kQ — k2, - kgm (13)
practice, however, for radiators of resonant size (like patches : ’

or apertures), the mesh has to be much finer than necessaryai@rthe propagation constants in the array plane direction of the
correctly representing a smooth wavefunction, and instead thgh FW with explicit dependence on the beam-scanning phase
mesh subcell size is dictated by the field discontinuities at edgshift (k..s, k,s) imposed by the beam forming network.

corners, feed points, etc. As a result, the subcell size is essenAlso, define the phased arra@(?) andC‘;(F) as the por-

tially the same as that necessary for solving a static problem {gjns Of@pm(;) having support ind and A*, respectively, i.e.,
that geometry and, thus, almost independent of the frequency. It

is important to note that these quasi-static, near-field effects are C},(F) = XAC},OO(F), 5;(7?) = xar époo(F). (14)
essentially the same for the actual array and for the basic cell of

the infinite periodic array. As a result, the behavior at variogenote byl’, andT'; the rectangular boundary contours of
discontinuities and edges is already accounted for by the soft) and C',, respectively; they pass through the phase centers
tion of the infinite arrayii.. (7 ); instead, as clear from the fringeof the boundary elements aﬁp(F) and C*;(F), respectively
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(Fig. 1). Since the»-summation of@; constructs the external - 1_,* - = =
arrayiext = xa-ioo, the forcing termin (4) isrepresentedas~ ~ N __ 2 - =
. . r . . l_{m J_ ......................... i dX
Vext (7) = Z Ueact,p(T) (15) h T -
p=1 iffaction® " .
point | i d
where = e
Geat,o(7) = G (Op(7)) (16) - oo
is the field contribution radiated oA by the arrayC’; (7). As
discussed in Part | of this paper, the physical mechanism that = = =
leads to the representation@f,; ,, can be described in termsF_ > Diffracted ributions in adi R wedb
. f . - 1g. 2. Iffracted ray contriputions in a given pot ernaltol ,, excited by
of diffracted rays that each FW in (11) excnesf”?;t €., aT';-truncated FW. The FW propagates with wavenurriber Tﬁe diffracted

rays arise from the verteces and from poiptsn the edges df ;.

Veat, p(F) ~ Y D Tmgp(7); TEA (17)
©.om C. Construction of the Linear System

whered,,,,(7") are the normalizegth diffracted ray-fields ex-  The conventional MoM solution is now obtained projecting

cited atl";, by themth FW of Choo(7). These rays are depicted(4) onto appropriate weight function,,,, (7), which yields
in Fig. 2, and their explicit expression will be given in Secthe linear system

tion IV.
2) Representation of the Unknown Currerxtending the UG =F;  i=mg j=m'q (20)
criterion introduced in [1], a diffracted ray expansion is also j

adopted for the unknowi,(7), which is assumed to have a

diffractive nature like that of.,. (7). To this end a convenient where
cho_me for the M(_)M representation @f;(+) are the entire do- Gy = <Vf/7‘,(7?)7 é[EJ(F)}> 7
main basis functions A
= = Fi:<Wi?7_‘ex> 21
Bng(7) = BO(7)amq (7) (18) ("), Pext) (21)
obtained by modulating the array function and the inner produgt, -) 4 is the usual reaction-type integral
on A.
. ro_ The number of ray-type basis functien,,(#) sufficient to
BY(7) = Z Cp(7) = xa Z Uooo (T — 75) ensure an accurate solution is quite small and essentially inde-
p=1 i pendent of the global size of the array; thus, resulting in a linear

ith the diffracted funct =) wh licit system whose dimension is extremely small as compared to that
w e diffracted-ray functions..., ('), whose explicitexpres- of a conventional element-by-element solution. In most prac-

SIons are given '”}h‘i”e’_“ section [Section IV (27), (32)]. Tl}?cal cases the only diffracted ray functions to be included are
unknown functioniz, () will be then represented by

those associated with the propagating FW’s plus one evanescent
I 3 o FW, this latter different for each edge. This was verified in the
a(7) = Z Em: Unma Brma (7') (19) 2-D case of [1] and will be discussed later on with the aid of
¢ practical 3-D examples.
and the unknown coefficient,,,,, will be obtained by appli-
cation of the MoM procedure to the fringe IE. Note that the IV. TFW DIFFRACTED RAYS

expression ofi,(7') respects the edge conditions on the indi- A key point of this method is the suitable description of the

vidual element, because of the simple amplitude modulaticml: : : o
. W diffracted rays, namely of the ray-functiofis, () and
we have assumed. In (18), the shape of the fringe unknown (7). To this er):d we no%/e that sel)écting basigpf(ur?cti@ns

. e e . a
currents remains the same as that for the infinite array, exc%}f1 relatively small domains allows the approximation of the

for the diffracted-like modulation,,,,(#). This assumption has o , . ;
m - . arr *in (10) with an array of elementary electric or magneti
been found adequate for resonant element, and itis undermva ayC, in (10) with an array of elementary electric or magnetic

tigation for nonresonant element like open-ended WaveguiﬁéoIes located at the phase centerigf
antenna elements. On the other hand, if one views the infinite
array current distribution as zeroth-order approximation, then
the diffracted currents associated to different element-distri-
bution shape would represent only a second-order correctigfherer, is the moment of the employed current on the subcell
Preliminary results on nonresonant element have shown that

this second-order correction may be nonnegligible in describing fp _ // -

Apo

Cr(7) = xa Z L8(7 — 7y )e ke (22)

o ) 7 — Tpo) dz dy. 23
cross-polar component in wide-beam scanning. (7" = Tpo) dz dy (23)
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This allows the approximation of the tem,, ,, with the active and

Green’s function of a rectangular array of elementary dipoles. ) o T

Next, by invoking the locality of the high-frequency phenomena b = [k SIS+ K - (£ % Z)} sin . (29)
as formalized in the geometrical theory of diffraction (GTD)rn (27)~(29), is the normal to the array and, is the UTD

the asymptotic diffracted rays «f; can be calculated by the o . ) . .
Green'’s functions of canonical arrays that locally fit the actuz‘?\IODe transition function defined in [1, eq. (18)]. The expression

A @ aIn ;
geometry ofC*, like a semi-infinite array of dipoles [2], [3] of the coefficients/s,” andVy, ™ in (25) are
(for edge-diffracted rays), or a corner of dipoles [4] (for vertex M _ —Ck\2m5/(4nd 4 sin B,)

rays). The formulation.presepted herein gﬂer can be derived "m 1 — exp[—jdp(k sin B + K- (lf x 2)] (30)
from [2]-[4] by algebraic manipulations which lead to expres-
sions in ray-fixed reference systems. i

Van — —Ck/2my (31)
A. Edge Diffracted Rays " drd, d\ k? — |Em x 2|2

Consider first one finite side of the rectangular contbyr
whose lengthL is delimited by the two vertex poim@ﬁl) and
7 (Fig. 2). We denote by the unit vector alond" — 7,
which is parallel to the sidé to which thegth diffraction point
belongs; hence, = #(¢) and on the four sides of this rectan
gular contouré(q) is identified by—z, —4, #, . For a given
observation poinf, the gth ray diffracted at the sidé and as-

where( is the characteristic free-space impedance or admittance
depending on whethet,, ., represents an electric field (radiated
by an electric dipole array) or a magnetic field (radiated by a
magnetic dipole array), respectively. In (30J,4( dz) denote
(de, dy) for £ = +i and ¢, d..) for / = +§. Equation (27)
also defines the diffracted ray functioas,,(+') in (18) as

sociated with thenth FW of époo in (10) and (11), propagates r
along a ray directiort,,,, according to the generalized Fermat g (F) =Y D) (7). (32)
principle for TFW diffracted rays [3] p=l1
It is important to remark on the following points.
Ky G =%, =k cos B (24a) 1) Sjnce Fhe ob;ervation poirt is aIway; onA and the
diffraction points occur onl, .., is always large
Equation (24a) establishes uniquely the diffraction point posi- ~ enough to justify the accuracy of the second-order
tion vector/,,,, in analytical form as asymptotic expansion in (25).
2) The asymptotic construction in (25) contains a dominant
Loy =£j§1) + ~¥; (krmqp)~*/? ray-field contribution transverse to the ray

direction #,,,, and a second-order field contribution of
order (kr,,,,)~%/2, which possesses components along
IO OF . . both i, andf . This latter contains a transition func-
wherei,™’ = 7 — £;7 is the observation point from vertex 1. tion Fs(8,rmqp) Which is unity except whew,,, tends
Note that for the present case of rectangular contour, no numer- g vanish, which occurs when theth FW is close to its

ical minimization of a distance function is needed for the ray  cutoff. In this case, the transition function provides a mod-

y =7 f— |7 — 7D # cot B, (24D)

tracing. From [2] and [3], one has ification of the ray-spreading factor so that its associated
. _ M (D) (i i > contribution becomes dominant.
Ompa(7) = Vi g (M)tmatma Iy 3) The leading asymptotic contributiafl,’ a$y, (7) in (25)
(7 LYoo 7 i duced by the summation of all those FW’s havin
V(II) ’(II) S I - k/ k/ . I 25 IS pl’O y ; . 1| g
Vo gy () | L g2 e p (25) the samé:-vector projection along, namely to all those

. o _ FW’s whose diffraction occurs at the same edge pQint
wheret,,,; = Z X 7mq is the vector transverse to the diffracted  4) The diffracted ray basis functions,,(7) that modulate

ray direction andk;,, = —2 x (2 x k;,,) is the component of the the array functionB, in (18) are calculated by summa-
FW propagating vector on the array plane. Furthermore tion of the p-contribution of the second order ray func-
oL R~ tionSaﬁ,%,)q (7) generated by, this latter being the same
ag)m(;) = [n(7) = n(y = L)]e= % Erra o172 (26) as that rigorously found for the excitation teifn,,,, (7).
Tmap) Retaining only the second-order contribution in the mod-
and ulating function is what we suggested and motivated in
o [1] with reference to the 2-D case. The validity of this
ol (7) =[n(y) — n(y — L)]e™Hmtres choice in this 3-D case will be confirmed by the results
o= kTmap presented next.
TR Fs(OmTmap) (27) 5) The number of diffracted rays,,,, required for an ac-
mimap curate estimate of.; ,(7) is not necessarily equal to
where the number of ray-functionsg,g,)q (7) required for the de-

scription of thep-type unknown. This latter number may
(28) be significantly lower, as will be discussed in Section V.

. _ 7
Tmap = | — Lmap



606 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

6) The Heaviside unit step functiomg~) in (26) and (27) Note that the use of the above expression in the MoM solution of
force the ray contribution to vanish when the diffractiothe fringe IE does not augment the number of unknowns. For a
point slides out from one vertex, thus creating a jump distetailed explanation of the uniform compensation mechanisms
continuity in the field definition. This jump can be com-provided by the vertex diffraction ray fields, one may refer to
pensated by adding vertex diffracted rays as sugges{&l which is relevant to the plane scattering at a perfectly con-

next. ducting plane angular sector. Note that the vertex contributions
) 17,(,312 and uﬁi}, are of higher asymptotic order with respect to
B. Vertex Diffracted Rays Trpq ANy, rESPECtively, except whanis), = 0 (y = 0),

The edge diffracted ray function may be refined by addinghere they become of the same asymptotic order as the edge
two vertex diffracted rays that provide a uniform continuity o€ontributions and provide continuity to the total field.
the total field when the diffraction point disappears from the
truncated edgéy = 0, L). To this end, the modified expres-C. Layered Structures

sions Before proceeding further, we note that the representation in
- N o oy =)y L = (2) (17) with the definition (25) or (33) is incomplete when dealing
Brapa () = Bunpa(7) + By (7) + T00(7) (33) with layered structures (patch arrays). Indeed, when a FW im-
pinges orl’;, the diffracted field also excites guided waves in-
side the dielectric, [i.e., surface waves (SW’s) and leaky waves
7B () =V PV (EWED - T, (LW's)] [6]-{8]. While these latter may be neglected ahas
m oy (7 Lmow w they are exponentially attenuated away frbgj the inclusion
+ VA aln b () <—7p = 72 Mo - Ip) (34)  of SW's-shaped basis functions into the ray-field expansion (25)
and (33) is important, especially for high thickness/permittivity.
in which The SW-shaped basis functions have a unit spreading factor and
— kD) in [3(1)]__ (T u(l) ) propagate alor\g a directio_n which is dictqtequy, again in_
LD (7) = €T ik p maprmap accordance with a generalized Fermat principle (see [8, fig. 4,
me /W;}) N (COS 3. — cos /31(71)) eq.(33)]), which can be solved in analytical form provided that
the phase velocity of SW’s (i.e., the SW poles of the pertinent
(35) spectral Green'’s function) is known. Furthermore, the presence
of these waves imposes additional edge-diffracted rays which
D) are significant close to the transition of SW’s at cut-off, and
a(ILl)(F) _ e/ o TV (Bonoman) additional vertex-diffracted rays to compensate for the shadow
e (6 7‘(1))2 P mar boundary line of the SW’s o&. Since the complete discus-
mp sion and the pertinent formulation on this subject would be too
& sin /31/()1)]_— (7,5)1)“%21])) long, this particular issue will be treated elsewhere. However,
. . (36) the present formulation can be applied in the present form for
V2mjk (Cos B — cOS 31(71)) patch arrays on very low substrate dielectric constants, which
are of practical use for space applications.
In (35) and (36)F,§1) is the observation point from the vertex 1
with f](}) its relevant unit vector and V. NONUNIFORMITY OF EXCITATION AND PERIODICITY

can be used in place of (25), where

37) The physical interpretation attributed to the IE (4) has an ap-
parent practical consistency only for the case when the array
is periodic and periodically excited, because only for this case
it is strictly possible to definel,, and its FW field expansion.
For actual phased-array antennas, the global phase tapering of
the array excitation is typically periodic, but the global ampli-
OO Co (7,(1) _ ) - tude does not necessarily need to be so. Furthermore, for trav-
p mqp p mqp m . . . . .
eling-wave arrays the basic cell is sometimes gradually modi-
=2kr(V) sin’ (% (/3},1) - /Jm)) (39) fied to compensate for the leakage of the feeding wave. For these
cases the present procedure may be applied taking into account
is the difference between the phases of the vertex and that of the following considerations.
edge diffracted rays. The expression of the contribuﬂ&fﬁ(? )
from the vertex aﬁ]@ is obtained by the formal substitution 1A. Smooth Tapering of the Array Excitation

— 2 and¢ — —£. The basis functions for the representation \ynen a smooth taperiritj(i") of the excitation occurs over
of the unknown will be obtained by using in (32) the modifieghe entire domairt: of the array, the present procedure may
expressions be applied as well by invoking the local nature of the high-fre-
r guency (HF) phenomena. In particular, a local infinite array can
Amg(7) = Z (a%)q (7) + %(7%7 1)(;) + a% 2) (;)) . (40) be d_efined for _each ce_II as the periodig continuqtiqn of thg ip-
vestigated basic cell with its local amplitude excitation. This is

cos 3;1) :@5” i
£ =z %D (38)

FurthermoreF is the UTD transition function defined in [1, eq.
(18)] whose argument

r=1
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equivalent to adiabatically modifying the infinite array solutioik,., = k,, = 0 in (31)]. In our notationg.,, andi, represent
as for this case magnetic field and magnetic current, respectively.
o e Suppose only one homogeneous FW occurs. This FW [which
lioo(7) = T(7)loo () (41) is denoted byn = (mg, my) = (0, 0)] propagates with vector
Yvavenumbeiz(oj 0) = k2, thus producing for each observation
oint four diffracted rays orthogonal to each edgdgf(see
ig. 3) and four diffracted rays coming from the vertices.
Accordingly, four modulating edge-diffracted ray functions
a.,(7) are used for representing the unknown magnetic
of? : .
current via (18), i.e.,

which strictly resembles the familiar asymptotic definition o
the PO currents in terms of the local incident field. As a result,
solving the fringe IE, the basic array of sour«iégo(F) in (10)

is replaced b)T(F)époo(F), thus producing &'(+)-amplitude
modulation of each relevant FW. Note that the above operati
requires the analytical continuation of the functiB”) in the
external regiort*. This must be done by taking care to preserve o—Ik(Ly—y)

the continuity ofZ'(7) and its first derivative af%. Indeed, the ago,0),1(z; ¥) = L, — 9P F[(k(Ly —y)]  (42)
solution scheme actually only requires the ray-representation v= ¥

of §[T(F)5;(F)], which is dictated by the local behavior at

I, of the amplitude-modulated FW’s. The first- and second- o ik(Lo—2)

order asymptotic contributions of the modulated FW diffraction  a(o, 0y, 2(x, ¥) = [(k(L—?’/2 Fsl[(k(Ly —x)] (43)
atI'; will be affected by the value df’(7") and its derivative == )]

at[';, respectively. This process basically corrects the second-

order contribution (and then the ray representatio@ Qfwith =ik (L, +y)
a slope-diffraction term whose practical expression agrees with a, o) 3(x, ) = ﬁ Fsl(k(Ly +y)]  (44)
the slope-UTD. This issue may be particularly important for low [(&(Ly + )]
sidelobe arrays that require a pronounced edge tapering.
. o — k(L +)
B. Weak Spatial Aperiodicity of the Array _ e
a(O, 0),4($? y) - [(/ﬂ(Lx + x)]g/g JT‘S [(k(LT + .’L')] (45)

The concept of the adiabatic modification can be also applied

when the array exhibits a weak aperiodicity, i.e., a gradual SRgnere the origin of the reference system is placed at the center
tial modification of a geometrical parameter of the basic cely the array andL, = (N, +2)d, and2L, = (N, + 2)d,.

This parameter, that we denote BYi%) (being7; the posi- The index in parentheses denotes the exciting FW wavenumber
tion of the single cell), leads to a local infinite array solutioRyng the indexes 1, 2, 3, and 4 denote the four edge sarting
tioo (7, d(7%)), which is, for eaclith cell, the periodic continua- from that parallel ta: with positivey and proceeding clockwise

—

tion of the same cell with its local(7;) parameter. The knowl- (see Fig. 4).

edge ofii. (7, d(7;)) requires a parametric solution of the basic gjgnjficant edge-diffraction contribution due to evanescent
cell, which_ is_ a numerically complex matter since it requires g,s are also included to represent the fringe unknowns. The
MoM matrix inversion for each value of the parameter; howevesyanescent FW index is different for each of the four edges of
the construction of the MoM matrix elements may be straighg+ The correspondence between the four edges and the domi-

forwardly dependent on the actual parameter, leading to a ¢gnt evanescent FW mode index= (m,, m,) [see (30) and
crease in the matrix filling time. (31)], is as follows:

Regarding the solution of the fringe IE, the basic array of
source@;(?) in (34) possesses weakly aperiodic contour el- 1 _, (0, =1), 2 — (=1, 0), 3 — (0, 1), 4 — (1, 0). (46)
ementsg, (7 — 7y ) (7 € T'}). By invoking the locality of the
diffraction principle at high frequency, each contribution of th&his association is deduced on the basis of the physical inter-
diffracted ray representation 6{C;, ()] and, consequently, of pretation of the 2-D case of [1, fig. 4 and relevant comments].
¢, has a structure which depends on the local periodicity of tiée expression of the correspondent FW wavenumbers are
exciting FW’s in the neighborhood of the diffraction points [9].

- 2% 5 27 2
VI. SELECTION OF THE DIFFRACTED RAYS AND k(O, -n="Y d_y + 24 [k = d_y

ILLUSTRATIVE EXAMPLES

2

In spite of the fact the infinite-array solutiai, () may be /3(7170) =7 z_ﬂ + 34 k2 — <2_7r>
sometimes represented in terms of a large number of FW’s, we z z
emphasize that as far as the unknown current is concerned the . o0 27\ 2
number of FW’s producing significant diffracted rays for each ko,1) =9 R + 24/ k2 — <—>
edgeis limited to the propagating FW’s (often only one) plus Y Y
only one evanescent FW per edgéile an accurate represen- o 2, 27\ 2
tation of the forcing field?“** may require one or two diffracted ko) =2 d, T2\ R~ <@) (47)

rays more per edge.
To illustrate this aspect, let us consider an array diiat are each orthogonal to its pertinent edge. Consequently,
N, x N, slots fed by uniform amplitude and phase excitatiosach evanescent FW produces one diffracted field which prop-
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Fig. 3. Diffracted ray basis functions associated to the evanescent TFW's for
a slot array with beam in a broadside direction. Each diffracted ray propagates
in a direction orthogonal to its pertinent edge.

Normalized amplitude

4 6 8 10 12 14 16 18
Slot index

@

agates orthogonal to its edge, and additional modulating func- 1.05
tionsa,,, (") are used in the expansion of the unknown 10a
eIk (Ly—u) § 1.03
a/(O,—l),l(xv y) = o 3/2 g 102
k—— (Ly ) T
d, = 1.01
2 :
T, [(k - d-”) (L, - y)} (48) Z 1
Y 0.99

e—jk(LI —x)

a(—l,o),2($7 ?J) =

(%
G

)=o) v

) (Lo — x)} (49)

27

dy

o iH(Ly+y)

a(o,l),z(% y) =

(%
a(e-2

d

)@+ .

v

Y

o—ik(La+2)

Y| 0

a(l,o),4($7 U) =

(-
a(e-2

da

) (L. + x)} ¥

) (L —l—a:)} . (51)

0.98
2 4 6 8 10 12 14 16 18

Slot index
(b)

Fig. 4. Normalized amplitude of the magnetic currents versus the slit index
for an array of 20x 20 slots;d,, = 0.7A, d, = 0.5A; kyo = 0, k.o = 0.
Dashed line, element-by-element solution; solid line, TFW-MoM solution. (a)
Tenth row. (b) Tenth column.

3 must be corrected according to the more general (27). This
also creates shadow boundaries on the array aperture thus re-
quiring additional vertex ray compensating terms (note, how-
ever, that the number of unknowns is still eight). On the other
hand, the diffracted-ray functions at edges 2 and 4 are essen-
tially unaffected by this scan, the only substitution needed being
k—2n/dy) — k—kys— (27 /d,) in(49) andk — (27 /d,) —

k+ kys — (2n/d;) in (51).

In the following results, the resonant-slot array is fed by a
forcing magnetic field as in [1]. These preliminary results were
recently presented in a conference paper [10]. The detailed ex-
planation of the numerical implementation of the reaction inte-

Since the diffracted rays are always orthogonal to the edge, gr@l involved in the MoM-Galerkin formulation with ray-based
shadow boundary occurs on the array; the presence of ver@sis functions is outside the scope of this paper and will be the
diffracted-ray functions is then less important than in the beasnbject of a future publication. To validate the results, a refer-
scanning case. Nevertheless, we note that the same vertexe&lifse solution has been constructed by means of a conventional
fracted rays must be accounted for in the representation of g#lement-by-element MoM (dashed line) assuming a single reso-
forcing term of the fringe IE. Eventually, for this case, the sgiant-type basis function on each slot. For the sake of simplicity,

lution of the fringe IE requires the inversion of 88 linear

system.

our method (continuous line) is applied by choosing the domain

A, of each slot coincident with the subdomail,(P = 1),

The selection of unknowns relevant to this particular examp#d using the functiof, equal to the basis function of the ele-
represents a general criterion for broadside beam arrays witknt-by-element MoM.
linearly polarized elements and does not depend on the elemerih Figs. 4 and 5, the array is composed by>2Q0 y-oriented
type. For instance, for beamscanning on the plane orthogosklts with length0.5 and width0.005X. The interelement pe-
to edges 2 and 4k, # 0), the edges 1 and 3 are illuminatediods ared, = 0.5A andd, = 0.7}, for the case of Fig. 4 the
by skewed FW and the basis functions relevant to edges 1 andtitation is uniform in amplitude and pha@e.; = k,s = 0)
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Fig. 5. Normalized amplitude of the magnetic currents versus the slit index sitoggoconpooooooitns
for an array of 20x 20 slots;d, = 0.7\, d, = 0.3A; k.o = k sin(24°), 005000000000000¢0 10501
k,o = 0. Dashed line, element-by element solution; solid line, TFW-solution. prooloooconoooonoont
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and for that of Fig. 5, the excitation is such to give a beam tilt
of 18° in the E-plane .. = k sin(24°), k,, = 0]. Presented (b)
are the normalized magnetic current amplitude versus the sigf 6. Relative error per thousands between the element-by-element MoM
index, along the central row [Figs. 4 and 5(a)] and the centlsmﬁution and the TFW solution for an array of 2020 slotsid,, = 0.7X,d,, =
column [Figs. 4 and 5(b)] of the array. Excellent agreementﬂs’?r’gll;ﬁ; o ko = gbffyelzl‘;tsl'gf’f,'% be fé,lg?’rgggeigvg; gfrgtcste‘j
observed. We emphasize again that our method implies the SQﬁﬂ‘Tout label have a relative error less tharx510—2. (a) Four diffracted-ray
tion of an 8x 8 linear system versus a 460400 linear system basis functions [only those in (42)—(45)]. (b) Eight diffracted-ray basis functions
relevant to the element-by-element MoM approach. [including those in (48)—(51)]. The inclusion of the vertex contribution in the
. _definition of the diffracted-ray basis functions implies an error less then 5

In Fig. 6, the accuracy and the convergence of the soluti@g-s everywhere.
are highlighted by observing the errors that are defined as dif-
ferences between the solution provided by present approach and
the reference solution (element-by-element MoM solution). In
particular, relative errors per thousands are presented for a\ method has been presented for an efficient full wave solu-
array of 20x 20 slots;d, = 0.7\, d, = 0.5X; ko = 0, tion of large phased arrays. Starting from the solution for the in-
kyo = 0. The slots labeled by 5, 15, and 20 are affected byfiite array, a suitable fringe IE has been formulated in which the
relative error of 5x 1073, 15x 1073, 20 x 103, respectively. unknown is the difference between the exact (electric or mag-
Slots without label have a relative error less than 502, The netic) current and that associated with the infinite array. The
two pictures differ in the number of rays retained as global bag@cing term of this equation is the (electric or magnetic) field
functions: 1) four diffracted-ray basis functions [only those inadiated by that part of the ideal infinite array which is com-
(42)—(45)] and 2) eight diffracted-ray basis functions [includinglementary to the actual one. After calculating the solution of
those in (48)—(51)]. It is worth noting that the inclusion of thé¢he infinite array by a conventional scheme, the unknown fringe
diffracted ray associated with the EFW, which is closer to cutoffurrent is found in three steps. First, moderately small-domain
significantly improves the accuracy, while the further introdugrouping of subdomain functions occupying the same position
tion of unknowns does not significantly affect the solution. Theithin each basic cell are collected together, and recognized to
inclusion of the vertex contribution in the definition of the difform periodic small-element arrays external to the actual do-
fracted ray basis functions implies an error less thanB0~2  main. Next, the unknown current is represented in terms of col-
everywhere. lective basis functions that modulate the array-element currents

VIl. SUMMARY AND DISCUSSION
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by special functions with domain on the overall arrays. These
modulating functions are shaped like FW-excited diffracted rays
at the edges of each external small element array. Finally, a con-
ventional MoM scheme is applied to these entire domain basis
functions for solving the IE.

Some considerations of the properties of this approach are
summarized herein.

1)

2)

3)

4)

5)

6)

In defining the entire domain basis functions, a different
set of diffracted rays should be defined for every FW
of each small element array. Comparisons with an ele-
ment-by-element MoM solution have shown that only the
diffracted rays corresponding to the homogeneous FW
and to one evanescent FW are required for an accurate
prediction of the fringe field employed in the ensuing full
wave solution. Therefore, the number of entire domain
basis functions involved in this full wave analysis of the
finite array is remarkably small when compared with an
element-by-element approach and almost independent of
the global dimension of the array.

To represent the forcing term of the IE an asymptotic ray
expansion is suggested here, which makes direct use of

small in terms of wavelengths, and one could object that
the definition of the diffracted rays to construct the array
basis function is not precise. However, an obvious way
out is to represent the entire-domain modes via smaller
subdomain functions, and then proceed as above. The
number of basis functions needed to represent the cur-
rent radiation is the number of phase centers and, because
of the smoothing property of propagation, this number
is much smaller than that required in the analysis of the
basic cell, i.e., to determine the detailed shape of the cur-
rent. This observation also applies to the array-global en-
tire domain basis functions of diffractive nature employed
here. This has been shown in the prototypical calculations
for the 3-D, resonant slot array discussed above, where
only one phase center was enough, i.e., no need was found
to break the slot entire domain function into smaller sup-
ports to evaluate diffraction. An analysis of a more com-
plex case of array involving rectangular apertures along
with quantitative guidelines for the efficient calculation
of the MoM matrix elements will be the subject of future
publications.

the active Green’s function of the canonical, semi-infinit€inally, we remark that the method presented here can also be
array and corner array of dipoles weighted by the momedirectly applied to the problem of scattering from periodic finite
of the basic small-domain element. However, the procsurfaces such as those occurring in engineering applications in-
dure may be applied as well if one calculates the forcinglving frequency selective surfaces, polarizers, or grating re-

term by the direct spatial summation of the field contriflectors.

butions from the external elements or, alternatively, from
the internal ones, using (6).
In the case tested, it is found that our solution works well
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pansions arise from edge points that are shifted one pe-
riod from the edge sources, according to the fact that the
forcing term of the IE is associated with the field radiated

by the suppressed part of the infinite array. This ensurell]
a quasi-asymptotic structure of the FW diffracted fields
even for the edge elements.

In defining the diffraction points on rectangular edges [
under FW excitations, no numerical minimization of
distance functions are needed since the position of the
diffraction points are defined in analytical form. (3]
This method, like all akin methods that employ the infi-
nite-array solution (e.g., [11]) as a starting point to avoid [4]
the element-by-element approach, is naturally suited for
the analysis of arrays on a periodic lattice with periodic 5
excitation. However, our method can also be applied to
the aperiodic case of a smoothly tapered excitation or
weakly aperiodic spacing by adiabatically conforming in-
finite array solutions on the local geometry and tapering
and defining the diffracted rays on which to expand the
forcing term and the fringe unknown current on the basis [,
of the local edge behavior of the amplitude-modulated
FW's.

Inthe analysis of the basic cell, the current s often conve- g,
niently represented by a few entire domain functions, usu-
ally called “modes,” either of conventional or nonconven-
tional kind [12]-[14] and which provide a strong saving
in computational time. The support of these modes is not

(6]

9]
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