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A Truncated Floquet Wave Diffraction Method for
the Full-Wave Analysis of Large Phased Arrays—

Part II: Generalization to 3-D Cases
Andrea Neto, Stefano Maci, Senior Member, IEEE, Giuseppe Vecchi, Member, IEEE, and Marco Sabbadini

Abstract—This second part of a two-paper sequence deals with
the generalization to three-dimensional (3-D) arrays of the trun-
cated Floquet wave (TFW) diffraction method for the full wave
analysis of large arrays. This generalization potentially includes
arrays consisting of microstrip excited slots, cavity-backed aper-
tures, and patches. The formulation is carried out first by deriving
an appropriate fringe integral equation (IE) and next by defining
entire domain basis functions in terms of global-array functions
shaped as TFW diffracted rays whose analytical expression is de-
rived on the basis of prototype canonical problems. The efficiency
and the accuracy of this method is demonstrated by comparison
with the results of an element-by-element full wave approach for a
rectangular slot array.

Index Terms—Electromagnetic diffraction, Floquet expansions,
phased-array antennas.

I. INTRODUCTION

I N this paper, the truncated Floquet wave (TFW) full wave
analysis proposed in [1] for two-dimensional (2-D) prob-

lems is extended to a quite large class of three-dimensional
(3-D) finite-phased arrays. The assumption for applying this
method is that the array exhibits a geometrical periodicity and
is fed with a linear progressive phase. A simple example of
such a linear-phase excitation is that produced by an incident
plane wave; thus, the present method also includes actual scat-
tering problems like those involving frequency selective sur-
faces (FSS). In the following, we will refer to radiating (antenna)
problems keeping in mind that the analogy between antennas
and plane wave scattering in our methodology is mainly con-
fined to the assumption of the linear phase of the excitation. It
is understood that most of the actual arrays are not perfectly
periodic neither for the excitation nor for the geometry, but in
many practical applications, the deviation with respect to the pe-
riodicity conditions is weak, thus allowing possible extensions
of this method that will be here addressed.

The hypothesis of linear-phase excitation or, more generally,
of periodic excitation, allows a very simple and efficient solu-
tion of the infinite array that is associated with the actual one in
terms of Floquet wave (FW) expansions. These FW’s are con-
sidered as producing diffraction effects and relevant fringe cur-
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rent perturbations at the edge of the array. The key point of the
present procedure is to expand these fringe unknown currents
in terms of diffracted rays and to find the unknown expansion
(diffraction) coefficients by solving via method of moments a
pertinent fringe integral equation (IE).

The type of array elements that can be studied with the present
method include slots, cavity-backed apertures, dipoles in free-
space, and patches. For this latter case, the formulation of the
overall procedure is valid, but the explicit expressions of the
basis functions we propose are applicable in practice only when
the surface wave excitation is not significant; consequently, at
the present state, the direct applicability of the present formula-
tion for patch arrays is restricted to very low substrate dielectric
constants, which are, however, widely employed in space appli-
cations.

This paper is organized as follows. Section II presents the
generalization to three dimensional arrays of the truncated FW
diffraction method introduced in Part I; this is carried out first by
deriving a “fringe” IE and next by defining entire domain basis
functions in terms of the FW diffracted rays. Section III presents
the solution scheme for both the infinite array IE and the fringe
IE. Explicit expressions for the ray-diffracted functions to be
used in the solution scheme are presented in Section IV. Sec-
tion V addresses the extension of this method to weak aperiod-
icity of both the array geometry and its excitation. The selec-
tion of the diffracted rays is discussed in Section VI on the basis
of the results obtained in Part I; the numerical results are suc-
cessfully compared with those from an element-by-element full
wave solution for the case of a rectangular slot array. Finally,
the basic features of the method are summarized in Section VII.

II. FORMULATION OF THE INTEGRAL EQUATIONS

Consider an array composed by identical basic cells oc-
cupying regions centered at the nodes of a regular rect-
angular lattice in the – plane of a reference system. Fig. 1
refers to an array of patches just to illustrate the geometry for a
practical case. Denote by , , and by , the pe-
riodicity and the excitation phasings in the directionsand ,
respectively. Inside each region, denotes the radiating sur-
face on which we will apply the boundary (dipoles, patches) or
continuity (slots, cavities) conditions. Note that each unit cell
can contain more than one antenna element (two, for example,
in Fig. 1) because the geometrical periodicity is not in general
recovered element by element, e.g., for the presence of feeding
lines, multiple polarized elements, etc. The total region occu-
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pied by the array elements is denoted by and it is
contained in . Next, we introduce an infinite array,
that coincides with the actual finite array onand realizes the
regular periodic continuation of the finite array on the region
external to , that we denote by (Fig. 1). The two regions
and are separated by the contour. The portion of radiating
surfaces of the infinite array contained in will be denoted by

and .
The basic IE is formulated by use of the appropriate form of

the equivalence theorem, which substitute the array by a dis-
tribution of equivalent electric or magnetic unknown sources

that radiate in an equivalent, simpler medium for which the
Green’s function is known in a convenient form (free-space,
grounded half-space, or infinite layered dielectric media). The
IE expresses the enforcement of the appropriate boundary con-
ditions on the actual surface (vanishing of tangential electric
field on conductors or continuity of magnetic field through aper-
tures) for the total field (impressed plus radiated by equivalent
currents). Since these conditions have to be enforced on the ra-
diators of the array only, it is convenient to express the fields
in terms of the characteristic function of the various regions of
interest; for a generic region, this function will be denoted by

, with for and zero outside . The general
form of the for the finite array can be compactly expressed as

(1)

where
characteristic function of the surface of the finite
array;
field produced by the equivalent sourcein the equiv-
alent medium;
forcing field that represents the array excitation.

For instance, in case of apertures in ground planes,is the mag-
netic current and is the driving magnetic field on the shorted
apertures, respectively, and the kernel of the integral operator

is the (magnetic) dyadic Green’s function for the shorted
half-space. Conversely, in a patch/dipole problem,and are
the electric current and tangential forcing field on the removed
conductors, respectively, and the kernel of is the (electric)
dyadic Green’s function for the free-space or the layered dielec-
tric. We remark that in the case of apertures opening onto waveg-
uides or over printed circuits, the construction of the term
may be consistently complex, however, we stress that the rele-
vant issue dealt with here refers to theexternalinteractions at
array level; this latter aspect will remain unaffected by a more
complicated problem with interior–exterior coupling properties.
According to the formulation for the 2-D case developed in [1],
we now write the solution as

with (2)

where is the solution of the infinite array problem

(3)

and is the characteristic function
of the infinite array.

We observe that must hold every-
where in the surface occupied by the infinite array and, thus, (3)

Fig. 1. Example of complex large finite array and relevant geometry. The
regionsS denotes the periodicity cell of the array. The regionsa are the
supports of the subdomain basis functions (i.e., rooftop) employed to discretize
the structure in the MoM analysis of the single cellS in the infinite array.
The regionsA group a certain number ofa and represent collectively the
support of the arrayC (~r ), which is globally visualized by the black cells
inside the boundary� . The support of the arrayC (~r ) is visualized by the
black cells external to� .

is unchanged by multiplication by ; therefore, inserting (2)
into (1), and making use of (3), the original problem transforms
into

(4)

(5)

This latter is the generalized fringe IE that represents the same
boundary conditions as the original IE (1), but with a different
forcing term, which is produced by the sources
external to . Therefore, is the field on the actual radiators
of the finite array produced by the sources in the presence
of the real array. The forcing term of (4) is the field radi-
ated in the equivalent medium by that part of the infinite array
which has been suppressed to obtain the actual problem from
the infinite one and expresses the deformation of the finite-array
solution as the term that is necessary to compensate the ab-
sence of the radiation contribution from the array suppressed
part .

Although the above interpretation of clarifies the phys-
ical meaning of the fringe IE, it may be interesting to express
the forcing term in (4) as independent of the definition of the
external part of the array. To this end, we let so
that (5) becomes , where and

. Note that is exactly the same as that obtained
from the usual windowing approach; this allows us to attribute
to the quantity the meaning of diffracted
field from the truncated FW’s generated by . The superscript
PO reminds one that this diffracted field is calculated from the
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unperturbed abruptly truncated sources, as in the physical optics
(windowing) approach. Consequently, (4) is rewritten as

(6)

This IE is perfectly equivalent to (4), since no approximations
have been made. However, its direct use in the method of mo-
ments (MoM) solution scheme may be sometimes convenient
for the reasons that we will discuss in the last section.

III. SOLUTION SCHEME

In this section, the solution scheme of the IE’s (3) and (4) will
be presented. Since the solution of the infinite array problem
(3) is well known, it is just summarized in order to set suitable
notations.

A. Solution of the Infinite-Array Integral Equation

Equation (3) represents the IE for the infinite periodic array.
As is well known, the hypothesis of periodicity of geometry
and excitation allows the reduction of the problem to that of a
single periodic basic cell. This cell is placed inside an infinite
waveguide with cross section orthogonal to the array plane,
and with phase-shift conditions on the walls to reproduce the
phasing of the image sources. The formulation may be carried
out by using an ordinary MoM scheme, with basis functions

; defined on small, overlapped sub-
domains , which collectively cover the domain
(e.g., roof-top, see Fig. 1). The final solution can be expressed
by

(7)

where and

(8)

is the solution for the single cell , placed for convenience at
. The above formulas are also valid when using entire

domain basis functions defined over as more convenient for
slots or open ended cavities.

B. Solution of the Fringe Integral Equation

In principle, the size of the subcells in the solution of
the infinite array is a function of the operating wavelength; in
practice, however, for radiators of resonant size (like patches
or apertures), the mesh has to be much finer than necessary for
correctly representing a smooth wavefunction, and instead the
mesh subcell size is dictated by the field discontinuities at edges,
corners, feed points, etc. As a result, the subcell size is essen-
tially the same as that necessary for solving a static problem for
that geometry and, thus, almost independent of the frequency. It
is important to note that these quasi-static, near-field effects are
essentially the same for the actual array and for the basic cell of
the infinite periodic array. As a result, the behavior at various
discontinuities and edges is already accounted for by the solu-
tion of the infinite array ; instead, as clear from the fringe

formulation (4), the difference term is dominated by wave
phenomena, i.e., by dynamic, as opposed to quasi-static, effects.
As a result, our formulation has the advantage of allowing for a
relaxation of the mesh size both when solving forand when
calculating : we therefore employ now a different, coarser
mesh. To this purpose let us divide every region into
subdomain regions centered at (Fig. 1)
where for convenience assume for . Note that
includes a certain number of . On each , we define
basis functions , which are zero outside , and
collect subdomain basis functions weighted with the co-
efficient of the infinite array solution; i.e.,

(9)

These basis functions are used in the representation of the
forcing term as described next.

1) Diffracted Ray Representation of the Forcing Term:It is
convenient to start from the representation of because it
gives a guideline for that of . To this end, let us define an
infinite phased array of sources

(10)

which has the same periodicity and excitation as the original
array, but unlike the latter, is composed of a collection of
relatively small domain elements whose-summation exactly
reconstructs the infinite array. The field radiated by ,
namely , can be represented in terms of
the FW expansion

(11)

where is an arbitrary observation point on the array plane
, denotes the double index and

(12)

where

(13)

are the propagation constants in the array plane direction of the
th FW with explicit dependence on the beam-scanning phase

shift imposed by the beam forming network.
Also, define the phased arrays and as the por-

tions of having support in and , respectively, i.e.,

(14)

Denote by and the rectangular boundary contours of
and , respectively; they pass through the phase centers

of the boundary elements of and , respectively
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(Fig. 1). Since the -summation of constructs the external
array , the forcing term in (4) is represented as

(15)

where

(16)

is the field contribution radiated on by the array . As
discussed in Part I of this paper, the physical mechanism that
leads to the representation of , can be described in terms
of diffracted rays that each FW in (11) excites at, i.e.,

(17)

where are the normalizedth diffracted ray-fields ex-
cited at by the th FW of . These rays are depicted
in Fig. 2, and their explicit expression will be given in Sec-
tion IV.

2) Representation of the Unknown Current:Extending the
criterion introduced in [1], a diffracted ray expansion is also
adopted for the unknown , which is assumed to have a
diffractive nature like that of . To this end a convenient
choice for the MoM representation of are the entire do-
main basis functions

(18)

obtained by modulating the array function

with the diffracted-ray functions , whose explicit expres-
sions are given in the next section [Section IV (27), (32)]. The
unknown function will be then represented by

(19)

and the unknown coefficient will be obtained by appli-
cation of the MoM procedure to the fringe IE. Note that the
expression of respects the edge conditions on the indi-
vidual element, because of the simple amplitude modulation
we have assumed. In (18), the shape of the fringe unknown
currents remains the same as that for the infinite array, except
for the diffracted-like modulation . This assumption has
been found adequate for resonant element, and it is under inves-
tigation for nonresonant element like open-ended waveguide
antenna elements. On the other hand, if one views the infinite
array current distribution as zeroth-order approximation, then
the diffracted currents associated to different element-distri-
bution shape would represent only a second-order correction.
Preliminary results on nonresonant element have shown that
this second-order correction may be nonnegligible in describing
cross-polar component in wide-beam scanning.

Fig. 2. Diffracted ray contributions in a given point~r internal to� , excited by
a� -truncated FW. The FW propagates with wavenumber~k . The diffracted
rays arise from the verteces and from pointsq on the edges of� .

C. Construction of the Linear System

The conventional MoM solution is now obtained projecting
(4) onto appropriate weight functions , which yields
the linear system

(20)

where

(21)

and the inner product is the usual reaction-type integral
on .

The number of ray-type basis function sufficient to
ensure an accurate solution is quite small and essentially inde-
pendent of the global size of the array; thus, resulting in a linear
system whose dimension is extremely small as compared to that
of a conventional element-by-element solution. In most prac-
tical cases the only diffracted ray functions to be included are
those associated with the propagating FW’s plus one evanescent
FW, this latter different for each edge. This was verified in the
2-D case of [1] and will be discussed later on with the aid of
practical 3-D examples.

IV. TFW DIFFRACTED RAYS

A key point of this method is the suitable description of the
TFW diffracted rays, namely of the ray-functions and

. To this end, we note that selecting basis functions
with relatively small domains allows the approximation of the
array in (10) with an array of elementary electric or magnetic
dipoles located at the phase center of

(22)

where is the moment of the employed current on the subcell

(23)
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This allows the approximation of the term with the active
Green’s function of a rectangular array of elementary dipoles.
Next, by invoking the locality of the high-frequency phenomena
as formalized in the geometrical theory of diffraction (GTD),
the asymptotic diffracted rays of can be calculated by the
Green’s functions of canonical arrays that locally fit the actual
geometry of , like a semi-infinite array of dipoles [2], [3]
(for edge-diffracted rays), or a corner of dipoles [4] (for vertex
rays). The formulation presented herein after can be derived
from [2]–[4] by algebraic manipulations which lead to expres-
sions in ray-fixed reference systems.

A. Edge Diffracted Rays

Consider first one finite side of the rectangular contour

whose length is delimited by the two vertex points and
(Fig. 2). We denote by the unit vector along ,

which is parallel to the side to which the th diffraction point
belongs; hence, and on the four sides of this rectan-
gular contour is identified by , , , . For a given
observation point , the th ray diffracted at the side and as-
sociated with the th FW of in (10) and (11), propagates
along a ray direction according to the generalized Fermat
principle for TFW diffracted rays [3]

(24a)

Equation (24a) establishes uniquely the diffraction point posi-
tion vector in analytical form as

(24b)

where is the observation point from vertex 1.
Note that for the present case of rectangular contour, no numer-
ical minimization of a distance function is needed for the ray
tracing. From [2] and [3], one has

(25)

where is the vector transverse to the diffracted
ray direction and is the component of the
FW propagating vector on the array plane. Furthermore

(26)

and

(27)

where

(28)

and

(29)

In (27)–(29), is the normal to the array and is the UTD
slope transition function defined in [1, eq. (18)]. The expression
of the coefficients and in (25) are

(30)

(31)

where is the characteristic free-space impedance or admittance
depending on whether represents an electric field (radiated
by an electric dipole array) or a magnetic field (radiated by a
magnetic dipole array), respectively. In (30), (, ) denote
( , ) for and ( , ) for . Equation (27)
also defines the diffracted ray functions in (18) as

(32)

It is important to remark on the following points.

1) Since the observation point is always on and the
diffraction points occur on , is always large
enough to justify the accuracy of the second-order
asymptotic expansion in (25).

2) The asymptotic construction in (25) contains a dominant
ray-field contribution transverse to the ray

direction and a second-order field contribution of
order , which possesses components along
both and . This latter contains a transition func-
tion which is unity except when tends
to vanish, which occurs when theth FW is close to its
cutoff. In this case, the transition function provides a mod-
ification of the ray-spreading factor so that its associated
contribution becomes dominant.

3) The leading asymptotic contribution in (25)
is produced by the summation of all those FW’s having
the same -vector projection along, namely to all those
FW’s whose diffraction occurs at the same edge point.

4) The diffracted ray basis functions that modulate
the array function in (18) are calculated by summa-
tion of the -contribution of the second order ray func-
tions generated by , this latter being the same
as that rigorously found for the excitation term .
Retaining only the second-order contribution in the mod-
ulating function is what we suggested and motivated in
[1] with reference to the 2-D case. The validity of this
choice in this 3-D case will be confirmed by the results
presented next.

5) The number of diffracted rays required for an ac-
curate estimate of is not necessarily equal to
the number of ray-functions required for the de-
scription of the -type unknown. This latter number may
be significantly lower, as will be discussed in Section V.



606 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 3, MARCH 2000

6) The Heaviside unit step functions in (26) and (27)
force the ray contribution to vanish when the diffraction
point slides out from one vertex, thus creating a jump dis-
continuity in the field definition. This jump can be com-
pensated by adding vertex diffracted rays as suggested
next.

B. Vertex Diffracted Rays

The edge diffracted ray function may be refined by adding
two vertex diffracted rays that provide a uniform continuity of
the total field when the diffraction point disappears from the
truncated edge . To this end, the modified expres-
sions

(33)

can be used in place of (25), where

(34)

in which

(35)

(36)

In (35) and (36), is the observation point from the vertex 1
with its relevant unit vector and

(37)

(38)

Furthermore, is the UTD transition function defined in [1, eq.
(18)] whose argument

(39)

is the difference between the phases of the vertex and that of the
edge diffracted rays. The expression of the contribution
from the vertex at is obtained by the formal substitution 1

2 and . The basis functions for the representation
of the unknown will be obtained by using in (32) the modified
expressions

(40)

Note that the use of the above expression in the MoM solution of
the fringe IE does not augment the number of unknowns. For a
detailed explanation of the uniform compensation mechanisms
provided by the vertex diffraction ray fields, one may refer to
[5], which is relevant to the plane scattering at a perfectly con-
ducting plane angular sector. Note that the vertex contributions

and are of higher asymptotic order with respect to
and , respectively, except when ( ),

where they become of the same asymptotic order as the edge
contributions and provide continuity to the total field.

C. Layered Structures

Before proceeding further, we note that the representation in
(17) with the definition (25) or (33) is incomplete when dealing
with layered structures (patch arrays). Indeed, when a FW im-
pinges on , the diffracted field also excites guided waves in-
side the dielectric, [i.e., surface waves (SW’s) and leaky waves
(LW’s)] [6]–[8]. While these latter may be neglected onas
they are exponentially attenuated away from, the inclusion
of SW’s-shaped basis functions into the ray-field expansion (25)
and (33) is important, especially for high thickness/permittivity.
The SW-shaped basis functions have a unit spreading factor and
propagate along a direction which is dictated by, again in
accordance with a generalized Fermat principle (see [8, fig. 4,
eq.(33)]), which can be solved in analytical form provided that
the phase velocity of SW’s (i.e., the SW poles of the pertinent
spectral Green’s function) is known. Furthermore, the presence
of these waves imposes additional edge-diffracted rays which
are significant close to the transition of SW’s at cut-off, and
additional vertex-diffracted rays to compensate for the shadow
boundary line of the SW’s on . Since the complete discus-
sion and the pertinent formulation on this subject would be too
long, this particular issue will be treated elsewhere. However,
the present formulation can be applied in the present form for
patch arrays on very low substrate dielectric constants, which
are of practical use for space applications.

V. NONUNIFORMITY OF EXCITATION AND PERIODICITY

The physical interpretation attributed to the IE (4) has an ap-
parent practical consistency only for the case when the array
is periodic and periodically excited, because only for this case
it is strictly possible to define and its FW field expansion.
For actual phased-array antennas, the global phase tapering of
the array excitation is typically periodic, but the global ampli-
tude does not necessarily need to be so. Furthermore, for trav-
eling-wave arrays the basic cell is sometimes gradually modi-
fied to compensate for the leakage of the feeding wave. For these
cases the present procedure may be applied taking into account
the following considerations.

A. Smooth Tapering of the Array Excitation

When a smooth tapering of the excitation occurs over
the entire domain of the array, the present procedure may
be applied as well by invoking the local nature of the high-fre-
quency (HF) phenomena. In particular, a local infinite array can
be defined for each cell as the periodic continuation of the in-
vestigated basic cell with its local amplitude excitation. This is
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equivalent to adiabatically modifying the infinite array solution
as

(41)

which strictly resembles the familiar asymptotic definition of
the PO currents in terms of the local incident field. As a result, in
solving the fringe IE, the basic array of sources in (10)
is replaced by , thus producing a -amplitude
modulation of each relevant FW. Note that the above operation
requires the analytical continuation of the function in the
external region . This must be done by taking care to preserve
the continuity of and its first derivative at . Indeed, the
solution scheme actually only requires the ray-representation
of , which is dictated by the local behavior at

of the amplitude-modulated FW’s. The first- and second-
order asymptotic contributions of the modulated FW diffraction
at will be affected by the value of and its derivative
at , respectively. This process basically corrects the second-
order contribution (and then the ray representation of) with
a slope-diffraction term whose practical expression agrees with
the slope-UTD. This issue may be particularly important for low
sidelobe arrays that require a pronounced edge tapering.

B. Weak Spatial Aperiodicity of the Array

The concept of the adiabatic modification can be also applied
when the array exhibits a weak aperiodicity, i.e., a gradual spa-
tial modification of a geometrical parameter of the basic cell.
This parameter, that we denote by (being the posi-
tion of the single cell), leads to a local infinite array solution

, which is, for eachth cell, the periodic continua-
tion of the same cell with its local parameter. The knowl-
edge of requires a parametric solution of the basic
cell, which is a numerically complex matter since it requires a
MoM matrix inversion for each value of the parameter; however,
the construction of the MoM matrix elements may be straight-
forwardly dependent on the actual parameter, leading to a de-
crease in the matrix filling time.

Regarding the solution of the fringe IE, the basic array of
sources in (34) possesses weakly aperiodic contour el-
ements . By invoking the locality of the
diffraction principle at high frequency, each contribution of the
diffracted ray representation of and, consequently, of

, has a structure which depends on the local periodicity of the
exciting FW’s in the neighborhood of the diffraction points [9].

VI. SELECTION OF THE DIFFRACTED RAYS AND

ILLUSTRATIVE EXAMPLES

In spite of the fact the infinite-array solution may be
sometimes represented in terms of a large number of FW’s, we
emphasize that as far as the unknown current is concerned the
number of FW’s producing significant diffracted rays for each
edgeis limited to the propagating FW’s (often only one) plus
only one evanescent FW per edge,while an accurate represen-
tation of the forcing field may require one or two diffracted
rays more per edge.

To illustrate this aspect, let us consider an array of
slots fed by uniform amplitude and phase excitation

[ in (31)]. In our notation, and represent
for this case magnetic field and magnetic current, respectively.
Suppose only one homogeneous FW occurs. This FW [which
is denoted by ] propagates with vector
wavenumber , thus producing for each observation
point four diffracted rays orthogonal to each edge of(see
Fig. 3) and four diffracted rays coming from the vertices.
Accordingly, four modulating edge-diffracted ray functions

are used for representing the unknown magnetic
current via (18), i.e.,

(42)

(43)

(44)

(45)

where the origin of the reference system is placed at the center
of the array and and .
The index in parentheses denotes the exciting FW wavenumber
and the indexes 1, 2, 3, and 4 denote the four edges ofstarting
from that parallel to with positive and proceeding clockwise
(see Fig. 4).

Significant edge-diffraction contribution due to evanescent
FW’s are also included to represent the fringe unknowns. The
evanescent FW index is different for each of the four edges of

. The correspondence between the four edges and the domi-
nant evanescent FW mode index [see (30) and
(31)], is as follows:

(46)

This association is deduced on the basis of the physical inter-
pretation of the 2-D case of [1, fig. 4 and relevant comments].
The expression of the correspondent FW wavenumbers are

(47)

that are each orthogonal to its pertinent edge. Consequently,
each evanescent FW produces one diffracted field which prop-
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Fig. 3. Diffracted ray basis functions associated to the evanescent TFW’s for
a slot array with beam in a broadside direction. Each diffracted ray propagates
in a direction orthogonal to its pertinent edge.

agates orthogonal to its edge, and additional modulating func-
tions are used in the expansion of the unknown

(48)

(49)

(50)

(51)

Since the diffracted rays are always orthogonal to the edge, no
shadow boundary occurs on the array; the presence of vertex
diffracted-ray functions is then less important than in the beam
scanning case. Nevertheless, we note that the same vertex dif-
fracted rays must be accounted for in the representation of the
forcing term of the fringe IE. Eventually, for this case, the so-
lution of the fringe IE requires the inversion of a 88 linear
system.

The selection of unknowns relevant to this particular example
represents a general criterion for broadside beam arrays with
linearly polarized elements and does not depend on the element
type. For instance, for beamscanning on the plane orthogonal
to edges 2 and 4 ( ), the edges 1 and 3 are illuminated
by skewed FW and the basis functions relevant to edges 1 and

(a)

(b)

Fig. 4. Normalized amplitude of the magnetic currents versus the slit index
for an array of 20� 20 slots;d = 0:7�, d = 0:5�; k = 0, k = 0.
Dashed line, element-by-element solution; solid line, TFW-MoM solution. (a)
Tenth row. (b) Tenth column.

3 must be corrected according to the more general (27). This
also creates shadow boundaries on the array aperture thus re-
quiring additional vertex ray compensating terms (note, how-
ever, that the number of unknowns is still eight). On the other
hand, the diffracted-ray functions at edges 2 and 4 are essen-
tially unaffected by this scan, the only substitution needed being

in (49) and
in (51).

In the following results, the resonant-slot array is fed by a
forcing magnetic field as in [1]. These preliminary results were
recently presented in a conference paper [10]. The detailed ex-
planation of the numerical implementation of the reaction inte-
gral involved in the MoM-Galerkin formulation with ray-based
basis functions is outside the scope of this paper and will be the
subject of a future publication. To validate the results, a refer-
ence solution has been constructed by means of a conventional
element-by-element MoM (dashed line) assuming a single reso-
nant-type basis function on each slot. For the sake of simplicity,
our method (continuous line) is applied by choosing the domain

of each slot coincident with the subdomain ,
and using the function equal to the basis function of the ele-
ment-by-element MoM.

In Figs. 4 and 5, the array is composed by 2020 -oriented
slots with length and width . The interelement pe-
riods are and ; for the case of Fig. 4 the
excitation is uniform in amplitude and phase
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(a)

(b)

Fig. 5. Normalized amplitude of the magnetic currents versus the slit index
for an array of 20� 20 slots;d = 0:7�, d = 0:5�; k = k sin(24 ),
k = 0. Dashed line, element-by element solution; solid line, TFW-solution.
(a) Tenth row. (b) Tenth column.

and for that of Fig. 5, the excitation is such to give a beam tilt
of in the E-plane [ , ]. Presented
are the normalized magnetic current amplitude versus the slot
index, along the central row [Figs. 4 and 5(a)] and the central
column [Figs. 4 and 5(b)] of the array. Excellent agreement is
observed. We emphasize again that our method implies the solu-
tion of an 8 8 linear system versus a 400400 linear system
relevant to the element-by-element MoM approach.

In Fig. 6, the accuracy and the convergence of the solution
are highlighted by observing the errors that are defined as dif-
ferences between the solution provided by present approach and
the reference solution (element-by-element MoM solution). In
particular, relative errors per thousands are presented for an
array of 20 20 slots; , ; ,

. The slots labeled by 5, 15, and 20 are affected by a
relative error of 5 10 , 15 10 , 20 10 , respectively.
Slots without label have a relative error less than 510 . The
two pictures differ in the number of rays retained as global basis
functions: 1) four diffracted-ray basis functions [only those in
(42)–(45)] and 2) eight diffracted-ray basis functions [including
those in (48)–(51)]. It is worth noting that the inclusion of the
diffracted ray associated with the EFW, which is closer to cutoff,
significantly improves the accuracy, while the further introduc-
tion of unknowns does not significantly affect the solution. The
inclusion of the vertex contribution in the definition of the dif-
fracted ray basis functions implies an error less than 510
everywhere.

(a)

(b)

Fig. 6. Relative error per thousands between the element-by-element MoM
solution and the TFW solution for an array of 20� 20 slots;d = 0:7�, d =
0:5�; k = 0, k = 0. The slots labeled by 5, 15, and 20 are affected
by a relative error of 5� 10 , 15� 10 , 20� 10 , respectively. Slots
without label have a relative error less than 5� 10 . (a) Four diffracted-ray
basis functions [only those in (42)–(45)]. (b) Eight diffracted-ray basis functions
[including those in (48)–(51)]. The inclusion of the vertex contribution in the
definition of the diffracted-ray basis functions implies an error less then 5�

10 everywhere.

VII. SUMMARY AND DISCUSSION

A method has been presented for an efficient full wave solu-
tion of large phased arrays. Starting from the solution for the in-
finite array, a suitable fringe IE has been formulated in which the
unknown is the difference between the exact (electric or mag-
netic) current and that associated with the infinite array. The
forcing term of this equation is the (electric or magnetic) field
radiated by that part of the ideal infinite array which is com-
plementary to the actual one. After calculating the solution of
the infinite array by a conventional scheme, the unknown fringe
current is found in three steps. First, moderately small-domain
grouping of subdomain functions occupying the same position
within each basic cell are collected together, and recognized to
form periodic small-element arrays external to the actual do-
main. Next, the unknown current is represented in terms of col-
lective basis functions that modulate the array-element currents
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by special functions with domain on the overall arrays. These
modulating functions are shaped like FW-excited diffracted rays
at the edges of each external small element array. Finally, a con-
ventional MoM scheme is applied to these entire domain basis
functions for solving the IE.

Some considerations of the properties of this approach are
summarized herein.

1) In defining the entire domain basis functions, a different
set of diffracted rays should be defined for every FW
of each small element array. Comparisons with an ele-
ment-by-element MoM solution have shown that only the
diffracted rays corresponding to the homogeneous FW
and to one evanescent FW are required for an accurate
prediction of the fringe field employed in the ensuing full
wave solution. Therefore, the number of entire domain
basis functions involved in this full wave analysis of the
finite array is remarkably small when compared with an
element-by-element approach and almost independent of
the global dimension of the array.

2) To represent the forcing term of the IE an asymptotic ray
expansion is suggested here, which makes direct use of
the active Green’s function of the canonical, semi-infinite
array and corner array of dipoles weighted by the moment
of the basic small-domain element. However, the proce-
dure may be applied as well if one calculates the forcing
term by the direct spatial summation of the field contri-
butions from the external elements or, alternatively, from
the internal ones, using (6).

3) In the case tested, it is found that our solution works well
also at the edge element of the array. This property is
motivated by the fact that the rays of the asymptotic ex-
pansions arise from edge points that are shifted one pe-
riod from the edge sources, according to the fact that the
forcing term of the IE is associated with the field radiated
by the suppressed part of the infinite array. This ensure
a quasi-asymptotic structure of the FW diffracted fields
even for the edge elements.

4) In defining the diffraction points on rectangular edges
under FW excitations, no numerical minimization of
distance functions are needed since the position of the
diffraction points are defined in analytical form.

5) This method, like all akin methods that employ the infi-
nite-array solution (e.g., [11]) as a starting point to avoid
the element-by-element approach, is naturally suited for
the analysis of arrays on a periodic lattice with periodic
excitation. However, our method can also be applied to
the aperiodic case of a smoothly tapered excitation or
weakly aperiodic spacing by adiabatically conforming in-
finite array solutions on the local geometry and tapering
and defining the diffracted rays on which to expand the
forcing term and the fringe unknown current on the basis
of the local edge behavior of the amplitude-modulated
FW’s.

6) In the analysis of the basic cell, the current is often conve-
niently represented by a few entire domain functions, usu-
ally called “modes,” either of conventional or nonconven-
tional kind [12]–[14] and which provide a strong saving
in computational time. The support of these modes is not

small in terms of wavelengths, and one could object that
the definition of the diffracted rays to construct the array
basis function is not precise. However, an obvious way
out is to represent the entire-domain modes via smaller
subdomain functions, and then proceed as above. The
number of basis functions needed to represent the cur-
rent radiation is the number of phase centers and, because
of the smoothing property of propagation, this number
is much smaller than that required in the analysis of the
basic cell, i.e., to determine the detailed shape of the cur-
rent. This observation also applies to the array-global en-
tire domain basis functions of diffractive nature employed
here. This has been shown in the prototypical calculations
for the 3-D, resonant slot array discussed above, where
only one phase center was enough, i.e., no need was found
to break the slot entire domain function into smaller sup-
ports to evaluate diffraction. An analysis of a more com-
plex case of array involving rectangular apertures along
with quantitative guidelines for the efficient calculation
of the MoM matrix elements will be the subject of future
publications.

Finally, we remark that the method presented here can also be
directly applied to the problem of scattering from periodic finite
surfaces such as those occurring in engineering applications in-
volving frequency selective surfaces, polarizers, or grating re-
flectors.
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