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A Path Integral Time-Domain Method for
Electromagnetic Scattering

Robert D. Nevels, Jeffrey A. Miller, and Richard E. Miller

Abstract—A new full wave time-domain formulation for the Klyatskin and Tatarskii [7] first suggested employing the path
electromagnetic field is obtained by means of a path integral. The integral to investigate wave propagation in random media. It
path integral propagator is derived via a state variable approach g, hecame widely used in similar applications such as for ex-
starting with Maxwell's differential equations in tensor form. A le th Kk by Ch 8 | b ti B
numerical method for evaluating the path integral is presented ampie the wor y_ ow [8] on laser beam propaga |on.. y
and numerical dispersion and stability conditions are derived and Means of asymptotic methods for the evaluation of path inte-
numerical error is discussed. An absorbing boundary condition grals, Dashen [9] obtained expressions for arbitrary moments of
is demonstrated for the one-dimensional (1-D) case. It is shown wave intensity in the regime of saturated fluctuations. Zavarotny
that this time domain method is characterized by the uncondi- 1] gerived corrections to the intensity moments and Besieris
tional stability of the path integral equations and by its ability 111h lvzed Nth-ord Itif h f
to propagate an electromagnetic wave at the Nyquist limit, two [_ ] has analyze SOIGEEIntIY requency Cc_) erenc_e e )
numerical points per Wave|ength. As a consequence the Ca|cu|atedt|0ns. Recently, there haS been ConSIderable Interest In What IS
fields are not subject to numerical dispersion. Other advantages known as the two-scale path integral expansion for wave propa-
in comparison to presently popular time-domain techniques are gation in random media, which, as shown by Gozani [12], is not
that it avoids time interval interleaving and it does not require an asymptotic method as was previously thought
the methods of linear algebra such as basis function selection or - . . . .
matrix methods. Several studies have been carried out in which path integral

_ _ _ methods are used to investigate electromagnetic wave propaga-

Index  Terms—Electromagnetic  scattering,  path-integral o1, jn the atmosphere and in optical waveguides. Eve [13] used

methods, transient scattering. . . . .
analytical methods to obtain the path integral propagator in a
stratified dielectric wave guiding system. More recently, Con-

|. INTRODUCTION stantinou and Jones [14] have derived the path integral propa-

RIGINALLY developed as an alternative to thegatorforaIinearlytaperinggradedindexwaveguide.AcIassof

Schrodinger and Heisenberg treatments of quantd?Hmerical path integral propagation methods, often described
- A9 parabolic wave equation methods, has become increasingly

nor differential equation. It is most appropriately described pular primarily due to the Fourier split-step algorithm intro-

a propagator equation, which is an expression that propagat ﬁed by It-|a_rd|trrl]_and 'I;?]pzet_ [1|5](.j_'l'herr]egl ‘i;’e bleﬁn severarzl im-
source function through successive time steps. However, thBFRVEMENIS 1N this method, Including nybrid solutions such as

are only a few exact analytical solutions for the electromagne |é1at can be described as the path-integral/radio-physical optics

field via a path integral formulation [2]. Often even relativel ybrid model for tropospheric propagation recently reported by

simple problem geometries, such as a source over a conducgﬁley [is]'d':or Ilowedr atmospherg 'propggationt,) DO(;kery de
half-space, require a foreknowledge of the result [3]. Th tler [17] developed an improved impedance-boundary algo-

was the case even, for example, in early research centered’
the calculation of the classical wedge diffraction coefﬁcientg

ost of the electromagnetics research described above
s been carried out in the frequency domain, relying upon
elmholtz equation, an elliptic equation, as the starting point.
owever, in order to apply path integral methods, Helmholtz
?quation must be converted to a parabolic or hyperbolic equa-
P A parabolic equation can be obtained by either making
e of what is known as a parabolic approximation, or by
erator-splitting techniques. Both of these methods allow only

which were obtained previously using Keller's geometric
theory of diffraction [4]. Following the work by Keller and
McLaughlin [5] and Bushlaev [6], who was the first to sugge
using the path integral to derive diffraction coefficients fol;
the perfectly conducting wedge, there have been a number'8
variations and improvements on the original wedge diffractio®
solution scheme. However, there are examples in electromd ) . i L
netics where statistical or asymptotic methods have been us Il changes as a function of distance in the refractive index

to solve the path integral, yielding an original analytical or Broflle In one dwgctmn. Although Fh's 1S suff|C|en't for wave
numerical result. propagation studies, these approximations effectively prohibit

electromagnetic scattering analysis for all but elementary
objects or boundaries. Nevedd al. [18] were able to avoid
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electromagnetic field scattering formulation based on the patlith the field vectorF defined by

integral and also the first complete path integral expression

for electromagnetic field scattering in the time domain. It has F=[E. E, E. H, H, H.|" (8)
several attractive features. At each successive time step the . .
time-domain propagator yields the six electric and magnetelltr:]d the 6x 6 matrix operator expressed symbolically by
field intensity components throughout the scattering region. _ -2 %Vx

Boundary and radiation conditions are manifest in its expres- 8= {—le "y }
sion and therefore do not have to be imposed during numerical # #

evaluation. A primary advantage is that it is not difficult to The solution to (7), which is a vector hyperbolic equation, can
develop a PITD computer code, as compared to other tira@ placed in path integral form by first finding a propagator [19]
domain methods, because the path integral expression in phae&ix K(r,r’; ¢, #') that satisfies

space can be evaluated by the standard fast Fourier transform.

9)

Below, the full wave path integral time-domain equations are 8_K =SK (10)
derived. A method for numerically evaluating of the PITD equa- ot
tions is presented and its associated numerical dispersion aotject to the initial condition
stability conditions are derived. The numerical error of the pro- lm
posed method is discussed and an absorbing boundary condition i K=1I6r-1"). (11)

in one-dimension is implemented. Results are presented that
demonstrate its effectiveness in terms of accuracy, stability, derel is the identity matrix¢’ andt, respectively, are the initial
merical speed, and field absorption at the numerical boundaayd current timesi(r — r’) is the Dirac delta function and

In the analysis below the time conventioreip(jwt). andr are the initial and current spatial positions with- zx +
yy + zz. By substitution it can be shown that a solution to (10)
Il. ANALYSIS is
In a source-free inhomogeneous region the time-domain K =S'K,. (12)
Maxwell curl equations in terms of the electric and magnetic
field intensitiesk: andH are The coefficienti,, can be found by enforcing (11), which gives
VxE=-J, - uaa—I;I 1) K = SE6(r — 1), (13)
An inverse Fourier transform representation
JE
= —_— 1 oo 3 7
VxH=J.+¢ En (2) (5(1‘ _ I‘/) _ / I —r") e (14)
(27)° J—oo
wherep ande are the permeability and permittivity for an in- . .
homogeneous region. The medium electric conductivityre- of the_delta function in (13) gives the complete propagator ex-
lated to the electric field through the electric conduction curreR{ESSIoN
J. b _ 1 SRR ,
y K= / STk ) gk (15)
(27)* J oo
J.=0E 3)

Herer = t — t’ is the time increment between the initial and
and similarly the medium magnetic resistivity is related to currenttimes. The differentidk = dk,.dk,dk. andk = k, X+
the magnetic field through the magnetic conduction cudent %,y + k.z are in terms of the spatial frequency components
by k., k, andk.. The matrix exponential>™ is then expanded in
the power series

Jm = p*H (4) _
CSTIT+ST+S2T2/2+S3T3/3+"' (16)
Equations (3) and (4) are substituted into (1) and (2), which can
be rearranged to give each term of which is allowed to operate on the Fourier basis
function ¢/%*. This operation creates a new mat&r, k)
JE _ oE L lv <« H (5) in which the differential operators are replaced according to
ot € € 0/0x — jk,, 0/0y — jk,, andd/8z — jk.. The series is
resumed producing a matrix exponent&f**)7
Next any one of a number of methods can be used to re-
oH _ —EV Y p*H ©6) duce the matrix exponentiaf*-¥)7 to a standard & 6 matrix
ot Iz ' A(r, k). These include the eigenvalue, Cayley—Hamilton and

resolvent matrix methods. The details of these methods can be
found in the literature on state variables [20]. Our preference is
9F  _ the eigenvalue method because it can easily be used in conjunc-
5 = SF (7) " tion with common PC math software.

Equations (5) and (6) can be cast in the general matrix form
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The eigenvalue method consists of first finding the eigewf the electromagnetic field, found by successive applications
values and the corresponding eigenvectorsSof, k). The of (20), is therefore
eigenvectors comprise the modal maikikand the eigenvalues

A; are incorporated ™ which form the diagonal matrix Flr,t) = lim 1 ﬁ/“ Aok gl
P()\). The matrixA can then be found by taking the matrix ’ T— 02N L) ‘
product oo -
S ></ F,(r,,t,)e ®Ti-tdr; ;. (21)
A=MPO)M (17) —o0

For the special case of a loss free p* — 0) inhomogeneous This equation can be expressed as a sequence of foriward

-z i _1 i i I
medium, the eigenvalue method yields thematrix compo- and inverséF~ ") Fourier transforms, written symbolically as

nents li _ _
Fr,t)=  F YANF{F YAy,
Ay = Ayy = | k2 + (k2 + K2) cos(k,vr) |/ K2 T—0
v ) o F{FTH{AR{F(ro, to)} 111} (22)
A12 = Agl = A45 = A54 = k‘ml{}y[l — COS(I{JOU’F)] /ko

Alg = Agl = A46 = A64 = kmk'z[l — COS(]COUT)] /k‘g

Ay = Ags = Age = Ag = Azp = Ag3 =0 . .

. ) As an example, consider the case of a 1-D plane wave with
Atz = —Aza = —jhansinkovr)/ko components:, andH, propagating in the--direction in a ho-
Are = —Azq = jhynsin(kovr)/k, mogeneous region. Equation (22) at the first time step is

A — 12 2 g2 2
Ago = Az5 = [/Cy + (ka; + k,.) COS(]COUT)] /ko , E.] 1 cos(kzvr)  jnsin(kzvr)
Aoz = Ay = Ase = Ags = kyk.[1 — cos(kovr)|/k; H,| " 2n [ %Sin(kxv'r) cos(kyvT)

Agg = —Azs = —jkynsin(k,vr)/k, F{E.}
Ags = Ags = [k + (K2 + k2) cos(k,vr)] /K2 * | F{H,}

A. Analytical Example

} ek df... (23)

As = Az = jkasin(kovr)/(kon) The four matrix elements in brackets, which can be defined
Auz = —Ag1 = —jkysin(k,v7)/(kon) asA’ |, Al,, A, andA), are, respectivelydss, Ass, Ass, and
Asz = —Aga = jky sin(kovr)/(kon) (18) Ass from (18) above. Because this is a 1-D field, = k..

For the initial plane wave fiel&. = nH, = E,cos(wt, —
wherek? = k2 + k2 + kZ andv = 1/,/pie andn = \/pi/e are  kz), the operations in (23) can be carried out analytically, first
the phase velocity and intrinsic impedance, which are functiopilding the spectral-domain expressidhez. } = nF{H,} =

of position in an inhomogeneous medium. 7| 8(ky+k)eite +-6(k, —k)e 9t |, which are then multiplied
A field vectorF, can now be propagated one time incrememly A’ and inverse transformed giving the final time stepped
7 by evaluating [19] fields E. = nH, = E, cos[w(t, — 7) — kxz]. Notice that this
00 is an exact result for any because (22) contains no approxi-
F(r,t) = / K(r,r';7)F,(r',¢) dr’ (19) mations in a homogeneous region. Notice also that the distance

traveled by the plane wave during one time step can be found
(see Appendix) wherér’ = dz' dy’ d~'. Substituting (15), with from the argument ofos[w(t, — 7) — kz] as follows:

S+ A H .
¢°" replaced byA above, into (19) gives Wty — w7 — kz = wt, — k(z + Tv). (24)

1 R
F(r,t) = W/ A(r,k) The distance traveled is, thereforsd = 7v. For numerical
- calculations, if the time increments chosen to be = Ax/2v,
« [/ Fo(r’,t’)e—jk'r'dr’ % Tdk. (20) thenAd = Az /2. Therefore the numerical distance traveled in
—oo one time step- is Az /2.

E_quat|on (20) reveals_ tha_t propagat_lon of the field in time B Numerical Method
an inhomogeneous region is accomplished by a spatial Fourier _ _
transformation of the initial field distribution followed by mul-  The most straightforward way to evaluate (22) numerically
tiplication by the operatoA and subsequent spatial frequencis to replace the Fourler transfprms with discrete Fourier trans-
domain inverse Fourier transformation. Because it is the opef@rms (DFT's). One time step in 1-D becomes
tion that actually moves the wav4, is referred to as the evolu- N_1
fcion operator or the transition matrix [1]. Equ_ation (_20) i.s all that F(mAk,) = Z F(n Ax)e—ﬂﬂmn//\f (25a)
is needed to propagate the field through a single-time increment

n=0
7. The resulting time stepped fielithen becomes the new ini-
tial field F', ready to be propagated another time increment. The N_1
complete expression for a field that has evolved thrai¥gsuc- F(nAz) = Z A(nda, mAk,)F(mAk )6j27rrnn/]\r

cessive time iterations startingsat= ¢, and ending at timeis o
known as the path integral. The path integral for time evolution (25b)
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whereF(nAz) is the spatial domain field computed at the spdrom (18) is (29), shown at the bottom of the page. In (29>
tial positionnAx andF(mAk,) is the spectral domain field at \/(rAk,)? + (sAk,)? andu = kour.

the radian frequency The ratiosk, / Ak, andl}y /Ak, are integers because DFT's
only operate at discrete frequencies, which are specified in (26).
mAk, =m2r/(NAz). (26) Therefore in (28) the two summations, together with the two

, . . i terms in the brackets are zero except when
Scattering objects in the numerical space are accounted for in

the transition matrixA by specifyingy = /u(z)e(z). By re- r=—ky/Aky, s=—k,/Ak, (30)
quiring that the time step remain a fixed constant, the matrix ) _ ) _

A need only be computed during the initial time step, stored f#f Which point they are respectively equal to the integérand
memory, and recalled at each successive time step when (28)Equation (28) then reduces to

is calculated. Although the DFT algorithm above is simple, an (A — T )F = 0 (31)
order of N? calculations is required to move the field one time
step. A much more efficient numerical algorithm can be develhere the matrixA. with the replacements given in (30) be-
oped by replacing the DFT with an FFT. Doing so reduces ti@mesA’. Equation (31) is an eigenvalue equation whose de-

number of calculations from the order 8 to N log N. terminant, when set to zero, gives
C. Numerical Dispersion 2 e (9N g2
p 2+ 2 = (;) —k (32)

At the nth time step the two-dimensional (2-D) TM mode R R R
fields in the numerical grid are assumed to be the followingith £}, = 27k, andk; = 2rk,. The numerical wave numbers

monochromatic plane waves can be expressed in terms ¢f the angle at which the wave
o 3 propagates with respect to theaxis, and the numerical space
E™(i,1) = B, e r(keinzthylay)—wnT] propagation constat by &/, = &’ cos ¢, k|, = k' sin ¢. These
HMi,1) = H,, o—il2m(heiAz+h,lAY)—wnT] two relations when substituted into (32) give
H;L(L’ l) — Hyoe—j[Qw(l;IiAa;-i—fcylAy)—wn‘r} (27) ];/ - L. (33)

wherew is the wave radian frequency aﬁg’ ];y are the numer- The conclusion we reach from this exercise is that the path in-
ical spectral wave numbers. The plane wave expressions in (¥gral time-domain method does not suffer from numerical dis-
are substituted into (22), with the Fourier transforms replac@@rsion regardless of the direction in which waves travel in the
by 2-D forward and inverse DFT's. After one time, step the r&umerical lattice.

sult is

D. Stability
Fe i Prkepiztonk, qAy—w(nt1)7] Fourier transformation is a unitary operation, and therefore
] M- N—lA i2mrp/M j2msg)N is unconditionally stable. Since theiproc{uct of unitary operators

~ MN Z Z ¢ ¢ is also unitary, the operator he(BAF~"), which consist of
r=0 =0 forward and inverse Fourier transforms and multiplication by

) J\é—:l 1\2—:1 Fo—i2mi(rhe [ ko) = j2ml (s, [ Aly) e the transition matrix, is unitary if it can also be shown that the

matrix A is unitary. A quick calculatioA A~ = T shows

Zzolefol , . that this is indeed the case. However, under certain conditions

1 1 — 927 (r+k. /Aks) h . . .
_ Z Z ' _ we have observed what appears to be instability. In the following
MN & £ | ] — g=i2n(rth /Aka) /M paragraph, we offer an explanation and method for overcoming

1 _ o—i2m(s+h, /AK,) this difficulty. _ N
In the theory of state variables, it is well known [20] that the
eigenvalues o8(r, k) in the operatorS®-%)7 which becomes
x AFei2me/M oi2msa/N giwnt  (2@)  the transition matrixA are the poles of the transfer function.
It can be shown that, for the electromagnetic field in a loss-
whereF = [E., H;, Hyo]T and the transition matrix, which is less region, these poles lie in symmetric pairs on the complex
composed 0fdss, Asy, Aas, Aus, Ay, Ays, Ass, A4, andAs;  axis. For this reason the analytic operatocan be described as

X

1 — e—i2n(stky /Aky)/N

_insAk. . inr Ak .
cos == sin dmraks ginu
O —jsAky, - (rAk, )2+(5Aky)2 cosu (rAk;)(sAk,)(1—cos u)
A = T SII U %2 %2
Jrdks - (rAk, )(sAk,)(1—cos u) (sAky)z—I—(rAk_.,,)z cosu
L sinu &} 7=

(29)
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being marginally stable. However, through numerical roundoff In the PITD method the distribution function in the forward
error, the poles of the transfer function (i.e., the operatpcan Fourier transform is the time-domain electromagnetic field and
“drift” into the right half plane causing instability. This situa-in the inverse transform it is the product of the spatial frequency
tion can be remedied by adding a small I¢s$ everywhere in spectrum of the field and the transition mate, which ac-
the numerical scattering region. The eigenvalueS(ef k) will  counts for all physical objects in the scattering space. The scat-
then contain a small negative real part. The poles of the transffiering space is, in general, not periodic and because the dielec-
function are thereby moved a short distance into the left half tsfc constant changes discontinuously between air and any ma-
the complex plane, thus preventing numerical instability in thterial bodies in the numerical region, it is usually not bandwidth
computed fields. limited.

An example can be easily constructed for a 1-D case in whichQur initial attempts to reduce errors by implementing stan-
a plane wave propagates in a lossy inhomogeneous regiondayd numerical filters, such as a Parzen, Hanning, or Welch
repeating the operations that lead to (21) with the stipulatievindow, did not give satisfactory results. The cumulative effect
(¢ # 0,p* = 0). The elements in the bracketed matrix in (23)s that of raising any filter to a power equal to the number of time

become steps. However, the absorbing boundary condition described in
the next section, acts both as a satisfactory numerical filter and
W AgeMT — ApeteT wave-absorbing method.
- —25p It should be noted that the discussion above concerns numer-
) k, [eM™ — eheT ical error in an inhomogeneous region. However, with numer-
12 = 50 [/—3} ical techniques itis customary to first consider the inherent error
b T _ gher caused by making numerical approximations to derivatives or
Ay == [7} integrals in the mathematical expression of the method in a ho-
2n < p \ mogeneous region. For example the most common finite dif-
Apy = AreMT — Age2” (34) ference approximation of a first-order derivative is said to have
—25 an accuracy on the order 6AAz)?. With the PITD method it
is significant that the usual time-domain excitation functions,
where a single-frequency sinusoid or any bandwidth limited function
. such as a truncated Gaussian pulse can virtually propagate in-
Ay =axjp (35)  definitely in the numerical space without error. This is pos-
sible because these excitations meet the conditions that prevent
leakage and aliasing errors. However, a key factor is that the
FFT propagates the highest frequency component at the Nyquist
(k)2 — (1)2 hov| > 2 limit, as will be demonstrated below. Error will, therefore, be ac-
_9 - * 2¢/ e cumulated only in the last digits, due to the usual multiplication
Oé—%, /3— o2 dd ydﬁ: g ’ p
i (2_5) C(kg0)?, Jkat| < 2 and division round off errors.
(36)

The matrix elements in (34) can be shown to reduce to thosefinAbsorbing Boundary Conditions

(23) in the limits — 0. In a time-domain computational space an absorbing

boundary condition (ABC) is required in order to annihilate

E. Accuracy outward propagating electromagnetic waves at the numerical

In an inhomogeneous space, (22) gives an exact solution fmundaries. Also an ABC is needed for the PITD method
the time evolution of the field. However, because the Fouri®ecause Fourier transforms, which govern the manner in which
transform usually cannot be evaluated analytically in practicatopagating and scattered fields are manipulated in the numer-
scattering situations, it is replaced by a DFT. The difference beal space, are subject to what is known as the “wrap-around”
tween the discrete and continuous transforms is attributedeffect. For example, fields that propagate to the right in the
the discrete transform requirements for sampling and trungasmerical region disappear on the right side of the numerical
tion. The validity of this approximation is strictly a function ofboundary while simultaneously reappearing on the left side.
the wavefunction being analyzed [21]. For these two transforris this section, it will be demonstrated that an ABC can be
to be equivalent the distribution function must be periodic, implemented in the PITD numerical code.
must be bandwidth limited, and each dimension of the numer-For the PITD method in one dimension, an ABC, which is a
ical space must span one or multiple periods of the distributiset of absorbing layers, has been found to be very effective. With
function. Also the Nyquist limit, a requirement that the santhis method a nonphysical absorbing zone, made up of several
pling interval must be at least two times the highest frequentayers with progressively higher conductivity, lies on the sides
component of the distribution function, must be met. If all odf the computational domain. This zone is perfectly absorbing if
these conditions are not met the two primary sources of ertaro conditions are met at all frequencies. First, the reflection co-
are termed leakage and aliasing. Applying a numerical filter &dficient must be zero at the interface between the computational
the spatial or frequency-domain distribution function can reducegion and absorbing zone and second the wave impedance in
both of these types of errors. the absorbing zone must be a constant: Hnd p* denote the
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Fig. 2. The time history of th& . component of the total electric field due to
a plane wave Gaussian pulse incident on a rectangular dielectric cylinder with
e, = 1.75 andy,. = 1.0.
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Fig. 3. Reflection coefficient as a function of dielectric constant for the 1-D
case of a plane wave incident on a dielectric half space.

with

3e,cln R

3 (39)

Om =

Hereé is the width of the absorbing zone, which in the results
below has nine layers arfd is chosen to be 10°.

Fig. 1. The total electric field. component of a TM polarized plane wave
Gaussian pulse in air incident on a 2-D dielectric cylinder with= 1.75 and
e = 1.0.

Ill. RESULTS

Fig. 1 shows a plane wave Gaussian pulse incident on a di-
electric cylinder in 2-D. The incident field is transverse mag-
respective electric conductivity and magnetic resistivity in theetic (TM) to thez-direction (i.e., it containdz., H,., andH,
absorbing zone, the essential matching condition is given bycomponents) and propagates in théirection. The transition

matrix for this case is given in (29). Fig. 1(a) is a plot of the
o p* total electric field in a 256< 256 square grid witlAz = 0.25
- = (B7) mandat = Az /cas itinitially contacts the rectangular dielec-
tric cylinder which occupies a 49 95 grid areal0 m < z < 50

As an example, by repeating the operations that lead to (2m)20 m < y < 43.75 m. Fig. 1(b) shows the field 30 time steps
and enforcing (37) and the stipulation tat# 0, p* # 0), the later.

1-D absorbing zone equations are found to be those in (23) withFig. 2 shows the time history of th&. component of the

a factore=?7/¢> multiplying the otherwise unchanged bracktotal electric field collected at = 31.5 m, y = 29.0 m in front

eted matrix term in (23). The number of absorbing layers adi a rectangular dielectric cylinder withy. = 1.75 located at

the choice of a loss functiom governs absorption. A common34m < z < 40 m, 34m < y < 40 m in a numerical space

choice for conductivity is one that is a parabolic function 0$3.75-m square computed with the PITD and FDTD methods.

depth [22]. For the numerical results given belewat theith  The incident field is a TM plane wave traveling in thedirec-

layer is tion and containing a Gaussian profiep(—(n — 43)%/3?%)
wheren is the time step and = 7 for the path integral; = 14

Om (A2 (Ar)? 38 for FDTD. The numerical space grid sizedsr = Ay = 0.25

52 (i8z)" + 12 (38)  m and the time step At = Az/candAt = Az /2c¢ for PITD

g; =
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Fig. 5. lllustration that the Nyquist limitis reached by PITD by comparison of

Fig. 4. lllustration of numerical dispersion by comparison of Gaussian puls@g exact (smooth curve) and a PITD single frequency pulse that has propagated
that have propagated approximately 500 lattice points in homogeneous FDthrpugh approximately 500 lattice points with two points per wavelength.
and PITD numerical lattices.

6
10 X10

and FDTD, respectively. The difference between the results ob-
tained by these two methods can be attributed to dispersion in 1.0 1
the high-frequency FDTD components. 0.8 -
Fig. 3 shows a comparison of the exact and PITD computed
reflection coefficients for a 1-D plane wave incident from air
on a dielectric half-space. Exact and path integral time-domain 0.4 1
method results are plotted as a function of the half-space di- 02 - \J
electric constant. This indicates that the PITD method remains 0.0
stable and accurate even when the field is reflecting from and '
propagating through a region with a high refractive index.
Fig. 4 pictures a comparison of path integral and FDTD
method Gaussian pulses that have propagated approximately (@)

0.6 -

Reflection Error

0 50 100
Time Step

500 lattice points in their respective numerical lattices. In each 6 X 107

caseA = 0.125 and At = Az/2c. Initially, each Gaussian =

pulse is formed according tecp{ —[((i/2) — 43)//5]*}, where 25

1 is the spatial grid point index. The parameters chosen to “,;' 4

be ten so that with the FDTD method, dispersion is minimized 2 3.

and the highest frequency propagates at the FDTD limit, four Ug’

points per wavelength. Nonetheless, it is clear from the figure 2 21

that numerical dispersion degrades FDTD calculated fields that E 1

have propagated a significant distance. In this case, the highest 0 ‘
frequency component has propagated only 50 wavelengths. As 0 50 100
predicted above, the PITD fields are unaffected by numerical Time Step

dispersion. )

Fig. 5 shows a PITD computed single frequency signal that o
has been "ramped up” over two cycles and propagated a . 5, BeereEt A8 o o e i e () el e
tance of approximatelg50\ compared with a plot of the exact
excitation. The PITD result is obtained with two cells per wave-
lengthAz = 0.5 m, 8 = 10, andAt = Az/2c. From the figure from the absorbing boundary. The field that has passed through
it is seen that thé2-cell/\) signal has not dispersed after propthe absorbing boundary is also close to the machine noise level.
agating through 500 lattice points. This result is evidence that
the PITD method is not subject to numerical dispersion even at
the Nyquist limit.

In Fig. 6 local error for the 1-D case in which the pulse propa- We have presented a promising new method for calculating
gates into an absorbing boundary is shown. The local reflectitire complete full wave time-domain scattered electromagnetic
error pictured in Fig. 6(a) is the difference between the mafield, formulated as a path integral. We have also presented a
nitudes ofE, found with and without the absorbing boundarymethod by which it can be easily and efficiently evaluated. This
taken at a point close to the boundary upon which the pulsenismerical procedure, described as the PITD method, contains a
incident. The transmission error shown in Fig. 6(b) is the magimple sequence of operations requiring only a forward and an
nitude of £, that has been transmitted through the boundary aimberse Fourier transform with an intervening coefficient matrix
absorbing region by the wrap-around effect. Since all calculanultiplication. Because fast Fourier transforms carry the pri-
tions are made in single precision with an initial Gaussian pulsgary computational burden, its CPU time is competitive with
amplitude of 1 V/m, itappears that little if any field has reflectedther methods.

IV. CONCLUSION
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It is shown both analytically and numerically that the PITD [5] J. B. Keller and D. W. McLaughlin, “The Feyman integralhe Amer.
method yields a field that is not subject to numerical disper- _ Math. Monthly vol. 82, no. 5, pp. 451-456, 1975.

[6] V.S. Bushlaev, “Continuum integrals and the asymptotic behavior of the

sion even at the Nyquist ||m!t: It has also been shown .that the™ solutions of parabolic equations s~ 0. Applications to diffraction,”
PITD method is at least conditionally stable and unconditionally ~ in Topics in Mathematical Physic#1. Sh. Birman, Ed. New York:
stable when a small amount of loss is added to the scattering re-  Consultants Bureau, 1968, vol. 2.

[7] V. 1. Klyatskin and V. I. Tatarskii, “The parabolic equation approxima-

gion. An advantage of the PITD method is that its Stab”ity does tion for propagation of waves in a random medium with random inho-

not depend upon the relationship betweeand Az. Remark-

mogeneities,'Sov. Phys. JETRol. 31, no. 2, pp. 335-339, 1970.

ably, the path Integral time-domain method has been shown tdS] P. L. Chow, “A function phase-integl’al method and appllcatlons to the

laser beam propagation in random medih,Stat. Phys.vol. 12, no. 2,

have no error when the excitation is bandlimited as itis witha 5 93109, 1975,
Gaussian pulse or a single frequency signal in a homogeneoum] R. Dashen, “Path integrals for waves in random medlaiath. Phys.

space.

vol. 20, no. 5, pp. 894-920, 1979.
V. U. Zavorotny, “Strong fluctuations of electromagnetic waves in a

. . 10]
In 1'D_an absorb'ng.boundary Cond_'t'on has been found t(g random medium with finite longitudinal correlation of the inhomo-
be effective at preventing both reflection and the FFT “wrap  geneities,”"Sov. Phys. JETRol. 48, no. 1, pp. 27-31, 1978.
around” effect at the numerical boundaries. Because this comll] |- M. Besieris, “Wave-kinetic method, phase-space path integrals, and

stochastic wave propagation]” Opt. Soc. Amer. Avol. 2, no. 12, pp.

dition forces the fields to zero at the numerical boundary itis 50925099 Dec. 1985,
also an effective numerical filter, which helps lessen aliasing anfi2] J. Gozani, “Two-scale expansion of wave propagation in a random
leakage errors. The absorbing layer ABC can be implemented_medium,”Comp. Phys. Compol. 65, no. 1-3, pp. 117-120, 1991.

[13] M. Eve, “The use of path integrals in guided wave theoBrdc. Roy.

in 2-D and 3-D jus§ as desgribgd for the 1-D case in the text™™" soc. Londonpt. A, vol. 347, pp. 405-417, 1976.
The Berenger condition, which is more effective than absorbingt4] C. C. Constantinou and R. C. Jones, “Path-integral analysis of tapered,
layers, can in theory be implemented in the 2-D and 3-D PITD, ~ 9raded-index waveguides). Opt. Soc. Amer. Avol. 8, no. 8, pp.

although we have not yet done so.

We conclude that the path integral time-domain metho

1240-1244, Aug. 1991.
(115] R. H. Hardin and F. D. Tappet, “Applications of the split-step Fourier
method to the numerical solution of nonlinear and variable coefficient

arises as a possible alternative to other time-domain methods, ave equations,SIAM Rey.vol. 15, p. 423, 1973.

H. V. Hitney, “A practical tropospheric scatter model using the parabolic

: . [18]
Of course, much more rese'arch will be. needeq to determing equation,"IEEE Trans. Antennas Propagatol. 41, pp. 905-909, July
were the pros and cons of this method will place it in the menu  1993.

of currently available techniques.

APPENDIX

The propagatoK is not a Green's function since it satisfies [19]

the homogeneougquation(9K /9t) — SK=LK = 0 (10),

[17] G.D.Dockery and J.R. Kuttler, “An improved impedance-boundary al-
gorithm for Fourier split-step solutions of the parabolic wave equation,”
IEEE Trans. Antennas Propagatol. 44, pp. 1592-1599, Dec. 1996.

[18] R.D.Nevels, C.Huang, and Z. Wu, “The Fourier transform path integral

method—A numerical technique for scalar scattering in inhomogeneous

regions,”Proc. Inst. Elect. Engpt. H, pp. 488—-492, Nov. 1993.

G. Barton,Elements of Green's Functions and Propagatio®xford,

U.K.: Oxford Sci. Clarendon, 1989.

subject to the initial condition in (11). The differential equation [20] P. M. DeRusso, R. J. Roy, C. M. Close, and A. A. DesrochBtate

LF = 0 (7) is satisfied because operating on (19) vlithives
LF = L/ K(r,r';7)F, (¢, ¢) dr’
= / {LK(r,r"; 7)YF,(r/,#)dr' =0. (A1)

The initial condition is satisfied because in the limittas: ¢,
(19) becomes

F(r,t) = / K(r,#;v', ¢ )F,(r',¢) dr’

= /°<> 8(r — " YF,(r',¢)dr' = F,(r,t'). (A.2)

ade o)
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