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A Path Integral Time-Domain Method for
Electromagnetic Scattering
Robert D. Nevels, Jeffrey A. Miller, and Richard E. Miller

Abstract—A new full wave time-domain formulation for the
electromagnetic field is obtained by means of a path integral. The
path integral propagator is derived via a state variable approach
starting with Maxwell's differential equations in tensor form. A
numerical method for evaluating the path integral is presented
and numerical dispersion and stability conditions are derived and
numerical error is discussed. An absorbing boundary condition
is demonstrated for the one-dimensional (1-D) case. It is shown
that this time domain method is characterized by the uncondi-
tional stability of the path integral equations and by its ability
to propagate an electromagnetic wave at the Nyquist limit, two
numerical points per wavelength. As a consequence the calculated
fields are not subject to numerical dispersion. Other advantages
in comparison to presently popular time-domain techniques are
that it avoids time interval interleaving and it does not require
the methods of linear algebra such as basis function selection or
matrix methods.

Index Terms—Electromagnetic scattering, path-integral
methods, transient scattering.

I. INTRODUCTION

ORIGINALLY developed as an alternative to the
Schrodinger and Heisenberg treatments of quantum

mechanics [1], the Feynman path integral is neither an integral
nor differential equation. It is most appropriately described as
a propagator equation, which is an expression that propagates a
source function through successive time steps. However, there
are only a few exact analytical solutions for the electromagnetic
field via a path integral formulation [2]. Often even relatively
simple problem geometries, such as a source over a conducting
half-space, require a foreknowledge of the result [3]. This
was the case even, for example, in early research centered on
the calculation of the classical wedge diffraction coefficients,
which were obtained previously using Keller's geometrical
theory of diffraction [4]. Following the work by Keller and
McLaughlin [5] and Bushlaev [6], who was the first to suggest
using the path integral to derive diffraction coefficients for
the perfectly conducting wedge, there have been a number of
variations and improvements on the original wedge diffraction
solution scheme. However, there are examples in electromag-
netics where statistical or asymptotic methods have been used
to solve the path integral, yielding an original analytical or a
numerical result.
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Klyatskin and Tatarskii [7] first suggested employing the path
integral to investigate wave propagation in random media. It
soon became widely used in similar applications such as for ex-
ample the work by Chow [8] on laser beam propagation. By
means of asymptotic methods for the evaluation of path inte-
grals, Dashen [9] obtained expressions for arbitrary moments of
wave intensity in the regime of saturated fluctuations. Zavarotny
[10] derived corrections to the intensity moments and Besieris
[11] has analyzed th-order multifrequency coherence func-
tions. Recently, there has been considerable interest in what is
known as the two-scale path integral expansion for wave propa-
gation in random media, which, as shown by Gozani [12], is not
an asymptotic method as was previously thought.

Several studies have been carried out in which path integral
methods are used to investigate electromagnetic wave propaga-
tion in the atmosphere and in optical waveguides. Eve [13] used
analytical methods to obtain the path integral propagator in a
stratified dielectric wave guiding system. More recently, Con-
stantinou and Jones [14] have derived the path integral propa-
gator for a linearly tapering graded index waveguide. A class of
numerical path integral propagation methods, often described
as parabolic wave equation methods, has become increasingly
popular primarily due to the Fourier split-step algorithm intro-
duced by Hardin and Tappet [15]. There have been several im-
provements in this method, including hybrid solutions such as
what can be described as the path-integral/radio-physical optics
hybrid model for tropospheric propagation recently reported by
Hitney [16]. For lower atmosphere propagation, Dockery and
Kuttler [17] developed an improved impedance-boundary algo-
rithm.

Most of the electromagnetics research described above
has been carried out in the frequency domain, relying upon
Helmholtz equation, an elliptic equation, as the starting point.
However, in order to apply path integral methods, Helmholtz
equation must be converted to a parabolic or hyperbolic equa-
tion. A parabolic equation can be obtained by either making
use of what is known as a parabolic approximation, or by
operator-splitting techniques. Both of these methods allow only
small changes as a function of distance in the refractive index
profile in one direction. Although this is sufficient for wave
propagation studies, these approximations effectively prohibit
electromagnetic scattering analysis for all but elementary
objects or boundaries. Nevelset al. [18] were able to avoid
restrictions on the index of diffraction by a transformation
technique, but this approach is constrained to scalar scattering
applications and it is computationally time consuming.

The path integral time-domain method (PITD) introduced
here is, to the authors’ knowledge, the first successful full wave
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electromagnetic field scattering formulation based on the path
integral and also the first complete path integral expression
for electromagnetic field scattering in the time domain. It has
several attractive features. At each successive time step the
time-domain propagator yields the six electric and magnetic
field intensity components throughout the scattering region.
Boundary and radiation conditions are manifest in its expres-
sion and therefore do not have to be imposed during numerical
evaluation. A primary advantage is that it is not difficult to
develop a PITD computer code, as compared to other time
domain methods, because the path integral expression in phase
space can be evaluated by the standard fast Fourier transform.

Below, the full wave path integral time-domain equations are
derived. A method for numerically evaluating of the PITD equa-
tions is presented and its associated numerical dispersion and
stability conditions are derived. The numerical error of the pro-
posed method is discussed and an absorbing boundary condition
in one-dimension is implemented. Results are presented that
demonstrate its effectiveness in terms of accuracy, stability, nu-
merical speed, and field absorption at the numerical boundary.
In the analysis below the time convention is .

II. A NALYSIS

In a source-free inhomogeneous region the time-domain
Maxwell curl equations in terms of the electric and magnetic
field intensities and are

(1)

(2)

where and are the permeability and permittivity for an in-
homogeneous region. The medium electric conductivityis re-
lated to the electric field through the electric conduction current

by

(3)

and similarly the medium magnetic resistivity is related to
the magnetic field through the magnetic conduction current
by

(4)

Equations (3) and (4) are substituted into (1) and (2), which can
be rearranged to give

(5)

(6)

Equations (5) and (6) can be cast in the general matrix form

(7)

with the field vector defined by

(8)

and the 6 6 matrix operator expressed symbolically by

(9)

The solution to (7), which is a vector hyperbolic equation, can
be placed in path integral form by first finding a propagator [19]
matrix that satisfies

(10)

subject to the initial condition

(11)

Here is the identity matrix, and , respectively, are the initial
and current times, is the Dirac delta function and
and are the initial and current spatial positions with

. By substitution it can be shown that a solution to (10)
is

(12)

The coefficient can be found by enforcing (11), which gives

(13)

An inverse Fourier transform representation

(14)

of the delta function in (13) gives the complete propagator ex-
pression

(15)

Here is the time increment between the initial and
current times. The differential and

are in terms of the spatial frequency components
and . The matrix exponential is then expanded in

the power series

(16)

each term of which is allowed to operate on the Fourier basis
function . This operation creates a new matrix
in which the differential operators are replaced according to

, and . The series is
resumed producing a matrix exponential .

Next any one of a number of methods can be used to re-
duce the matrix exponential to a standard 6 6 matrix

. These include the eigenvalue, Cayley–Hamilton and
resolvent matrix methods. The details of these methods can be
found in the literature on state variables [20]. Our preference is
the eigenvalue method because it can easily be used in conjunc-
tion with common PC math software.
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The eigenvalue method consists of first finding the eigen-
values and the corresponding eigenvectors of . The
eigenvectors comprise the modal matrixand the eigenvalues

are incorporated in which form the diagonal matrix
. The matrix can then be found by taking the matrix

product

(17)

For the special case of a loss free inhomogeneous
medium, the eigenvalue method yields thematrix compo-
nents

(18)

where and and are
the phase velocity and intrinsic impedance, which are functions
of position in an inhomogeneous medium.

A field vector can now be propagated one time increment
by evaluating [19]

(19)

(see Appendix) where . Substituting (15), with
replaced by above, into (19) gives

(20)

Equation (20) reveals that propagation of the field in time in
an inhomogeneous region is accomplished by a spatial Fourier
transformation of the initial field distribution followed by mul-
tiplication by the operator and subsequent spatial frequency
domain inverse Fourier transformation. Because it is the opera-
tion that actually moves the wave, is referred to as the evolu-
tion operator or the transition matrix [1]. Equation (20) is all that
is needed to propagate the field through a single-time increment

. The resulting time stepped fieldthen becomes the new ini-
tial field ready to be propagated another time increment. The
complete expression for a field that has evolved throughsuc-
cessive time iterations starting at and ending at time is
known as the path integral. The path integral for time evolution

of the electromagnetic field, found by successive applications
of (20), is therefore

(21)

This equation can be expressed as a sequence of forwardF
and inverseF Fourier transforms, written symbolically as

F F F

F F F (22)

A. Analytical Example

As an example, consider the case of a 1-D plane wave with
components and propagating in the -direction in a ho-
mogeneous region. Equation (22) at the first time step is

F
F

(23)

The four matrix elements in brackets, which can be defined
as and are, respectively, and

from (18) above. Because this is a 1-D field, .
For the initial plane wave field

, the operations in (23) can be carried out analytically, first
yielding the spectral-domain expressionsF F

, which are then multiplied
by and inverse transformed giving the final time stepped
fields . Notice that this
is an exact result for any because (22) contains no approxi-
mations in a homogeneous region. Notice also that the distance
traveled by the plane wave during one time step can be found
from the argument of as follows:

(24)

The distance traveled is, therefore, . For numerical
calculations, if the time incrementis chosen to be ,
then . Therefore the numerical distance traveled in
one time step is .

B. Numerical Method

The most straightforward way to evaluate (22) numerically
is to replace the Fourier transforms with discrete Fourier trans-
forms (DFT's). One time step in 1-D becomes

(25a)

(25b)
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where is the spatial domain field computed at the spa-
tial position and is the spectral domain field at
the radian frequency

(26)

Scattering objects in the numerical space are accounted for in
the transition matrix by specifying . By re-
quiring that the time step remain a fixed constant, the matrix

need only be computed during the initial time step, stored in
memory, and recalled at each successive time step when (25b)
is calculated. Although the DFT algorithm above is simple, an
order of calculations is required to move the field one time
step. A much more efficient numerical algorithm can be devel-
oped by replacing the DFT with an FFT. Doing so reduces the
number of calculations from the order of to .

C. Numerical Dispersion

At the nth time step the two-dimensional (2-D) TM mode
fields in the numerical grid are assumed to be the following
monochromatic plane waves

(27)

where is the wave radian frequency and are the numer-
ical spectral wave numbers. The plane wave expressions in (27)
are substituted into (22), with the Fourier transforms replaced
by 2-D forward and inverse DFT's. After one time, step the re-
sult is

(28)

where and the transition matrix, which is
composed of and

from (18) is (29), shown at the bottom of the page. In (29)
and .

The ratios and are integers because DFT's
only operate at discrete frequencies, which are specified in (26).
Therefore in (28) the two summations, together with the two
terms in the brackets are zero except when

(30)

at which point they are respectively equal to the integersand
. Equation (28) then reduces to

(31)

where the matrix with the replacements given in (30) be-
comes . Equation (31) is an eigenvalue equation whose de-
terminant, when set to zero, gives

(32)

with and . The numerical wave numbers
can be expressed in terms of, the angle at which the wave
propagates with respect to the-axis, and the numerical space
propagation constant by . These
two relations when substituted into (32) give

(33)

The conclusion we reach from this exercise is that the path in-
tegral time-domain method does not suffer from numerical dis-
persion regardless of the direction in which waves travel in the
numerical lattice.

D. Stability

Fourier transformation is a unitary operation, and therefore
is unconditionally stable. Since the product of unitary operators
is also unitary, the operator hereF F , which consist of
forward and inverse Fourier transforms and multiplication by
the transition matrix, is unitary if it can also be shown that the
matrix is unitary. A quick calculation shows
that this is indeed the case. However, under certain conditions
we have observed what appears to be instability. In the following
paragraph, we offer an explanation and method for overcoming
this difficulty.

In the theory of state variables, it is well known [20] that the
eigenvalues of in the operator , which becomes
the transition matrix are the poles of the transfer function.
It can be shown that, for the electromagnetic field in a loss-
less region, these poles lie in symmetric pairs on the complex
axis. For this reason the analytic operatorcan be described as

(29)
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being marginally stable. However, through numerical roundoff
error, the poles of the transfer function (i.e., the operator) can
“drift” into the right half plane causing instability. This situa-
tion can be remedied by adding a small loss everywhere in
the numerical scattering region. The eigenvalues of will
then contain a small negative real part. The poles of the transfer
function are thereby moved a short distance into the left half of
the complex plane, thus preventing numerical instability in the
computed fields.

An example can be easily constructed for a 1-D case in which
a plane wave propagates in a lossy inhomogeneous region, by
repeating the operations that lead to (21) with the stipulation

. The elements in the bracketed matrix in (23)
become

(34)

where

(35)

(36)
The matrix elements in (34) can be shown to reduce to those in
(23) in the limit .

E. Accuracy

In an inhomogeneous space, (22) gives an exact solution for
the time evolution of the field. However, because the Fourier
transform usually cannot be evaluated analytically in practical
scattering situations, it is replaced by a DFT. The difference be-
tween the discrete and continuous transforms is attributed to
the discrete transform requirements for sampling and trunca-
tion. The validity of this approximation is strictly a function of
the wavefunction being analyzed [21]. For these two transforms
to be equivalent the distribution function must be periodic, it
must be bandwidth limited, and each dimension of the numer-
ical space must span one or multiple periods of the distribution
function. Also the Nyquist limit, a requirement that the sam-
pling interval must be at least two times the highest frequency
component of the distribution function, must be met. If all of
these conditions are not met the two primary sources of error
are termed leakage and aliasing. Applying a numerical filter to
the spatial or frequency-domain distribution function can reduce
both of these types of errors.

In the PITD method the distribution function in the forward
Fourier transform is the time-domain electromagnetic field and
in the inverse transform it is the product of the spatial frequency
spectrum of the field and the transition matrix, which ac-
counts for all physical objects in the scattering space. The scat-
tering space is, in general, not periodic and because the dielec-
tric constant changes discontinuously between air and any ma-
terial bodies in the numerical region, it is usually not bandwidth
limited.

Our initial attempts to reduce errors by implementing stan-
dard numerical filters, such as a Parzen, Hanning, or Welch
window, did not give satisfactory results. The cumulative effect
is that of raising any filter to a power equal to the number of time
steps. However, the absorbing boundary condition described in
the next section, acts both as a satisfactory numerical filter and
wave-absorbing method.

It should be noted that the discussion above concerns numer-
ical error in an inhomogeneous region. However, with numer-
ical techniques it is customary to first consider the inherent error
caused by making numerical approximations to derivatives or
integrals in the mathematical expression of the method in a ho-
mogeneous region. For example the most common finite dif-
ference approximation of a first-order derivative is said to have
an accuracy on the order of . With the PITD method it
is significant that the usual time-domain excitation functions,
a single-frequency sinusoid or any bandwidth limited function
such as a truncated Gaussian pulse can virtually propagate in-
definitely in the numerical space without error. This is pos-
sible because these excitations meet the conditions that prevent
leakage and aliasing errors. However, a key factor is that the
FFT propagates the highest frequency component at the Nyquist
limit, as will be demonstrated below. Error will, therefore, be ac-
cumulated only in the last digits, due to the usual multiplication
and division round off errors.

F. Absorbing Boundary Conditions

In a time-domain computational space an absorbing
boundary condition (ABC) is required in order to annihilate
outward propagating electromagnetic waves at the numerical
boundaries. Also an ABC is needed for the PITD method
because Fourier transforms, which govern the manner in which
propagating and scattered fields are manipulated in the numer-
ical space, are subject to what is known as the “wrap-around”
effect. For example, fields that propagate to the right in the
numerical region disappear on the right side of the numerical
boundary while simultaneously reappearing on the left side.
In this section, it will be demonstrated that an ABC can be
implemented in the PITD numerical code.

For the PITD method in one dimension, an ABC, which is a
set of absorbing layers, has been found to be very effective. With
this method a nonphysical absorbing zone, made up of several
layers with progressively higher conductivity, lies on the sides
of the computational domain. This zone is perfectly absorbing if
two conditions are met at all frequencies. First, the reflection co-
efficient must be zero at the interface between the computational
region and absorbing zone and second the wave impedance in
the absorbing zone must be a constant. Ifand denote the
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Fig. 1. The total electric fieldE component of a TM polarized plane wave
Gaussian pulse in air incident on a 2-D dielectric cylinder with" = 1:75 and
� = 1:0.

respective electric conductivity and magnetic resistivity in the
absorbing zone, the essential matching condition is given by

(37)

As an example, by repeating the operations that lead to (21)
and enforcing (37) and the stipulation that , the
1-D absorbing zone equations are found to be those in (23) with
a factor multiplying the otherwise unchanged brack-
eted matrix term in (23). The number of absorbing layers and
the choice of a loss function governs absorption. A common
choice for conductivity is one that is a parabolic function of
depth [22]. For the numerical results given below,at the th
layer is

(38)

Fig. 2. The time history of theE component of the total electric field due to
a plane wave Gaussian pulse incident on a rectangular dielectric cylinder with
" = 1:75 and� = 1:0.

Fig. 3. Reflection coefficient as a function of dielectric constant for the 1-D
case of a plane wave incident on a dielectric half space.

with

(39)

Here is the width of the absorbing zone, which in the results
below has nine layers and is chosen to be 10 .

III. RESULTS

Fig. 1 shows a plane wave Gaussian pulse incident on a di-
electric cylinder in 2-D. The incident field is transverse mag-
netic (TM) to the -direction (i.e., it contains , , and
components) and propagates in the-direction. The transition
matrix for this case is given in (29). Fig. 1(a) is a plot of the
total electric field in a 256 256 square grid with 0.25
m and as it initially contacts the rectangular dielec-
tric cylinder which occupies a 40 95 grid area m
m, m m. Fig. 1(b) shows the field 30 time steps
later.

Fig. 2 shows the time history of the component of the
total electric field collected at m, m in front
of a rectangular dielectric cylinder with located at

m m, m m in a numerical space
63.75-m square computed with the PITD and FDTD methods.
The incident field is a TM plane wave traveling in the-direc-
tion and containing a Gaussian profile
where is the time step and for the path integral,
for FDTD. The numerical space grid size is
m and the time step is and for PITD
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Fig. 4. Illustration of numerical dispersion by comparison of Gaussian pulses
that have propagated approximately 500 lattice points in homogeneous FDTD
and PITD numerical lattices.

and FDTD, respectively. The difference between the results ob-
tained by these two methods can be attributed to dispersion in
the high-frequency FDTD components.

Fig. 3 shows a comparison of the exact and PITD computed
reflection coefficients for a 1-D plane wave incident from air
on a dielectric half-space. Exact and path integral time-domain
method results are plotted as a function of the half-space di-
electric constant. This indicates that the PITD method remains
stable and accurate even when the field is reflecting from and
propagating through a region with a high refractive index.

Fig. 4 pictures a comparison of path integral and FDTD
method Gaussian pulses that have propagated approximately
500 lattice points in their respective numerical lattices. In each
case and . Initially, each Gaussian
pulse is formed according to , where

is the spatial grid point index. The parameteris chosen to
be ten so that with the FDTD method, dispersion is minimized
and the highest frequency propagates at the FDTD limit, four
points per wavelength. Nonetheless, it is clear from the figure
that numerical dispersion degrades FDTD calculated fields that
have propagated a significant distance. In this case, the highest
frequency component has propagated only 50 wavelengths. As
predicted above, the PITD fields are unaffected by numerical
dispersion.

Fig. 5 shows a PITD computed single frequency signal that
has been “ramped up” over two cycles and propagated a dis-
tance of approximately compared with a plot of the exact
excitation. The PITD result is obtained with two cells per wave-
length m, , and . From the figure
it is seen that the - signal has not dispersed after prop-
agating through 500 lattice points. This result is evidence that
the PITD method is not subject to numerical dispersion even at
the Nyquist limit.

In Fig. 6 local error for the 1-D case in which the pulse propa-
gates into an absorbing boundary is shown. The local reflection
error pictured in Fig. 6(a) is the difference between the mag-
nitudes of found with and without the absorbing boundary,
taken at a point close to the boundary upon which the pulse is
incident. The transmission error shown in Fig. 6(b) is the mag-
nitude of that has been transmitted through the boundary and
absorbing region by the wrap-around effect. Since all calcula-
tions are made in single precision with an initial Gaussian pulse
amplitude of 1 V/m, it appears that little if any field has reflected

Fig. 5. Illustration that the Nyquist limit is reached by PITD by comparison of
an exact (smooth curve) and a PITD single frequency pulse that has propagated
through approximately 500 lattice points with two points per wavelength.

(a)

(b)

Fig. 6. Berenger ABC error for the electric field (a) reflected and (b)
transmitted through the numerical boundary due to the “wrap around” effect.

from the absorbing boundary. The field that has passed through
the absorbing boundary is also close to the machine noise level.

IV. CONCLUSION

We have presented a promising new method for calculating
the complete full wave time-domain scattered electromagnetic
field, formulated as a path integral. We have also presented a
method by which it can be easily and efficiently evaluated. This
numerical procedure, described as the PITD method, contains a
simple sequence of operations requiring only a forward and an
inverse Fourier transform with an intervening coefficient matrix
multiplication. Because fast Fourier transforms carry the pri-
mary computational burden, its CPU time is competitive with
other methods.
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It is shown both analytically and numerically that the PITD
method yields a field that is not subject to numerical disper-
sion even at the Nyquist limit. It has also been shown that the
PITD method is at least conditionally stable and unconditionally
stable when a small amount of loss is added to the scattering re-
gion. An advantage of the PITD method is that its stability does
not depend upon the relationship betweenand . Remark-
ably, the path integral time-domain method has been shown to
have no error when the excitation is bandlimited as it is with a
Gaussian pulse or a single frequency signal in a homogeneous
space.

In 1-D an absorbing boundary condition has been found to
be effective at preventing both reflection and the FFT “wrap
around” effect at the numerical boundaries. Because this con-
dition forces the fields to zero at the numerical boundary it is
also an effective numerical filter, which helps lessen aliasing and
leakage errors. The absorbing layer ABC can be implemented
in 2-D and 3-D just as described for the 1-D case in the text.
The Berenger condition, which is more effective than absorbing
layers, can in theory be implemented in the 2-D and 3-D PITD,
although we have not yet done so.

We conclude that the path integral time-domain method
arises as a possible alternative to other time-domain methods.
Of course, much more research will be needed to determine
were the pros and cons of this method will place it in the menu
of currently available techniques.

APPENDIX

The propagator is not a Green's function since it satisfies
the homogeneousequation (10),
subject to the initial condition in (11). The differential equation

(7) is satisfied because operating on (19) withgives

(A.1)

The initial condition is satisfied because in the limit as ,
(19) becomes

(A.2)
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