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Application of the Matrix Pencil Method for
Estimating the SEM (Singularity Expansion Method)
Poles of Source-Free Transient Responses from
Multiple Look Directions

Tapan Kumar Sarkafellow, IEEE Sheeyun ParkMember, IEEEJinhwan Koh, and Sadasiva M. Rao

Abstract—In this paper, the matrix pencil method has been uti- the time-domain waveforms are not angle dependent. In addi-
lized for estimating the natural resonances from different transient  tion, for each look direction there are two possible polarizations.
responses recorded along multiple look directions as a function of One could also use both polarizations to increase the number

time after the incident field has passed the structure. The novelty f f ilable. C i v t timate the SEM
of this article is that a single estimate for all the poles are done uti- of wavetorms available. Lonventonally, 10 estimate the

lizing multiple transient waveforms emanating from the structure ~ Poles from multiple look angle data one takes the average of all
along multiple look directions. The SEM poles are independent of the various look directions waveforms and then obtains a single
the angle at which the transient response is recorded. The only dif- waveform. Then a sum of complex exponentials is used to fit the
ference between the various waveforms are that the residues at thesingle waveform and an estimate of the SEM poles is obtained

various poles are of different magnitudes. Some of the residues may | ith th dval fth id H this i
even be zero for some of the poles indicating that the contribution along wi € averaged values of the resiaues. However, tnis IS

from certain SEM poles may not be significant along that look di- N0t @ good approach if the signal-to-noise ratios of the different
rection. Here all the waveforms are utilized providing a single es- waveforms are different—namely in some of them the transient

timate for the poles without performing an arithmetic mean of the  response dies down quite fast whereas in some of the responses
various waveforms. this may continue to ring for a long time. Hence, taking an av-
Index Terms—Electromagnetic scattering, natural resonances. erage of those two classes of waveshapes actually deteriorates
the signal-to-noise ratio of the data. This is because by taking
an average of the signal along with waveforms where the signal
has died down may lead to an unnecessary contamination of the
T is well known in the electromagnetics literature that aftegignal by noise. In this paper, the matrix pencil approach is ap-
the incident field had crossed the structure of interest, tipdied to obtain a single estimate for the SEM poles utilizing si-
time-domain responses can be modeled by a sum of comptaultaneously all the transient waveforms from multiple look di-
exponentials [1], [2]. In the Laplace domain this is equivalent i@ctions and without averaging them.
modeling the transfer function of the system by the poles alongin Section Il, the matrix pencil method is presented for the
with its residues or in terms of a ratio of two polynomials whossimultaneous estimation of all the SEM poles from multiple
roots provide the poles and zeros of the system. look directions without averaging. In Section Ill, the computa-
Many methods exist in the published literature to carry otibnal procedure utilizing the total least squares singular-value
such a parameterization of the source-free transient respong&Somposition based approach is presented for the estimation
of the system. A partial survey of such techniques is availald¢the SEM poles from multiple look directions. This approach
in [3], [9], and [10]. Out of most of the techniques, the matrixas been found to be most robust in obtaining estimates for the
pencil method had proved to be quite useful [4], [S] becaugwles in the presence of random noise [6]-[8]. Section IV pro-
of its low sensitivity to background noise and its computationgldes some numerical examples utilizing sample simulated data
ease and efficiency. followed by conclusion and a selected set of references where
Now when the transient responses from the object of interegiditional materials are available.
whose SEM poles need to be found out is looked at from dif-
ferent angles both in azimuth and in elevation, the residues of

the poles are angle dependent whereas the SEM poles modelin |. APPLICATION OF THEMATRIX PENCIL METHOD FOR
SIMULTANEOUS ESTIMATION OF THE SEM-POLES UTILIZING

WAVEFORMS FROMMULTIPLE LOOK DIRECTIONS

. INTRODUCTION
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whereT" denotes the transponse of a matrix. The elemgr{ty and a diagonal matriiz,] containing the SEM pole set
represents the values of the transient response aittthigme

sample, so that 2 &
%2
M [Zol s = . (1)
() = Z Ap(?) exp[s;jAT]--- .
i=1 0 AM A Ars
fory=0,1,2,---, N 2 ]
J (2) with
where AT is the sampling time. Each transient response con-
sists of the sam@/ SEM poless;, which are to be solved for A1) A1) Ar(1)
along their amplitudest,(:) for a particular look directiork. (4] = A1(2) A(2) - A(2) o
Please note thatl is also an unknown along with the SEM poles : : :
and their residues. The SEM polgsare look direction indepen- A(M) Ax(M) - AM) ] arvke
dent but not their residuesy (¢). In the sampled domain, (2) can
be rewritten as Now if we consider the matrix pencil
M
=1

then we observe
where
Bo] — A[B1] = [Z1{[Z,] — A]}[A] 14
2 = exp[siAT]. @) [B2] = A[B1] = [Z1[{[Z,] — Al]}A] (14)

... ___This matrix pencil becomes linearly dependent wheis one
It has been further assumed that all the waveforms for differegt,, system poles as then the rank{B¥,] — A[T]}asx s is
4] X

Itch]ok anglest = 1|.’ 2, mfj‘f{ hj“;ﬁ bteen iample? unlformtly. aleduced by one as = z;. Equation (14) can be transformed into
€ same sampiing ra and that each wavetorm contains, computationally palatable form by considering the ordinary
the same number of samplé&s+ 1.

) . . eigenvalue problem in either of the following forms:
Next we consider two matricé®; ] and[B-] defined as g P g

41(0) y2(0) - yrc(0) [Ba21[B1]F = Al (15)
y1(1) y2(1) o yk(D)
[Bilnvxx = ) . '
Lin(V —1) 52N —1) - yx(N = 1) | vy [1] = ALB1][B2] (16)
) () where the superscript is the pseudo inverse of the respective
vi(1) () - yx(1) matrices. The pseudo-inverse is defined in terms of the singular
n(2) (2 - yx(2) value decompositions of the respective matrix. Let
[Ba]nxx = . . : . (6)
; : ; o? )
L) 5oV oy (V) ] 03
Now, it can be shown that the two matrice3;| and[Bz] can  [Bilyxx = [Ui]lnxn AL
be decomposed as follows: o2
[Bilnxr = [Zilnxa s [Al <k (7) % - I vxk
= [U]EIA)Y )
where[lU/;] and[V1] are two orthogonal matrixes, i.e.,
[Bolvxx = [Z1]nxm [ Zolmxm [Alvx i 8) & v 9
where (L]~ =[] (18)
vimt =W 19
o Ml =l (19)
1 2o A where the superscripf denotes the conjugate transpose of a
Zilnsxpm =| *L 2 M (9) matrix. Here[X] is a rectangular matrix whose diagonal ele-
: ments are related to the singular valued Bf]. In summary,
GN-1  N-1 o N-1 we have the following relationship:
“1 “2 “M NxM
[Bilvxx [{Ve}rx1

[{1amxm = is a diagonal matrix= identify matrix ~ (10) = o {U: v x1 forc=1,2,---, K (20)
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and In addition[/] and[Z,] are two diagonal matrices, which have
been defined by (10) and (11), respectively. Now if we consider
Uilnxy = [{ul}le {un Nl {U’N}:|N><N e the matrix pencil
(21) [Ds] — \[D1] (35)
Vilkxx = o o R
Wilkxx [{Ul}l‘“' {o2}roxat oo {W‘}I‘“L{xls’ 2 and their equivalent ordinary eigenvalue form of the type
. [Da][Du]T = Al1] (36)
Now the pseudo-inverse @B, ] can be computed from
or
[BiF = [Vi][Z] UL (23)
[1] = AID][D*]* (37)
where
-1 - then when\ becomes an eigenvalue of either (36) or (37), and
-2 O its value is equivalent to a system pole.
L 1 Once all the poleg;, i = 1, ---, M have been computed
2 the residues at the poles can be computed from the following
=]t = 2 . (24) equation:
1 y1(0)  12(0) - yx(0)
2
% (1) (1) o yx(D)
L & d NxK . . . (38)
Itis interesting to observe from (7), (8), (15), and (16) is that the yi(N)  ya(N) yre (V) (DK

matrix pencil has a solution provided

1 1 .. 1
K>M (25) S
=|* 2 - 2y

i.e., the multiple look directions must be greater than or equal : :
to the number of poles of the system to be estimated. This can 7'N 7}\f LN
be a serious limitation in many cases as described in [11] as oo TM T (NHL) XM
the number of SEM poles can be quite large for many practical A1) A(1) - A(D)
systems and it may not be possible to provide as many sensors A1(2)  Ax2) - Ar(2)
for each look directions. Hence, this method is extended to the ) : : :
case where one may havé < M. If K < M, we assume that ) ) i
Vi M) As(M) o AM) ]y

To deal with the more general situation we consider the t .
matrices[D;] and [D2]. They are defined by (27) and (28)V,Y)q equivalently
shown at the bottom of the next page. Next, it can be shown Y]=1[2]-[A] 40
that the two matricefD, ] and[D-] can be factored into

(39)

The various residues can now be computed from the least
[D1l(r41)x k- (N=1) squares solution of (31) from

= [Plieryyxa[]vx M[R]Mx(L.M)[Q](KM)x[K.(N(LZ)19) Al = (7] Y] = {[Z]H[Z]}fl 27 V], 41)

and
I1l. COMPUTATION OF THESEM ROLES UTILIZING THE TOTAL

LEAST SQUARES
[D2](L41)x[K-(N—L)] S

In order to deal with noisy data, the formulation of the Section
Il is made more robust to noise. We now consider the composite
matrix [D] as shown in (42), shown on page 616. Please note

where as shown in (31)~(33), shown at the top of page 616, dhgt[D:] is obtained fron{D] by eliminating the last row and
[D>] is obtained fronjD] by eliminating the first row. We now

= [Pli+vyx sl Zolnrsar [B]ar s (- a0 [Qlxc -y x (K -(N—L))
(30)

1 2z 2 . 2R perform a singular value decompositior{ ¥ according to (17)
R R as follows:

(Qilnxv—r) =
(D] L4+2)x[K-(N—L)]

1 o2ym 2y : Z?;_L_l Mx(N—L) = [Ul+2yx 42Xl (n2)x (K- (N L]

(34) VIR (v (N— 1)) (43)
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To combat the effects of noise and to determine the oider

we perform a singular value filtering ¢E] by retaining itsM

dominant singular values. The details are available in [4]-[8]
and are omitted in this paper. Also, it can be seen that the ordi-

nary eigenvalue problem of

[D2] — A[D1] (44)

can be transformed into the following:

[Ual(L41)x(z42) Bl a2y (v— [V e (81 x (16 (V)]
= ANUil(n4yxo+2) [Zlz42) (K- (N=L)]

VI v— 1)) x -V — L] (45)

or
[Ua] — A[UA] (46)

where[Us] and[U;] of (45) are obtained frorf/] by eliminating
the first and last row, respectively.

615

[Ua][U]" = A[UA][U2] " (47)
[Ua][U1]7 = A [0n ]
[ [U2] = A[UL ) [U]. (48)

Once the poles are obtained the residues at the poles due to dif-
ferent signals measured at various look directions are obtained
from the solution of (40) through the use of (41).

IV. NUMERICAL RESULTS

As an example consider a square plate of dimensions<L m
1 m (lying in thez—y plane) irradiated by an electromagnetic
pulse which is of @m (light-meters) in duration and is oriented
along theF, direction with magnitude-377 VV/m. We are ob-
serving the current at the center of the plate. The waveforms are
sampled evenAT = 0.118 75 /m and the incident pulse dies
down after 12m. The waveshape for thedirected current is
observed after 130 time samples so as to ensure that the inci-
dent field has passed the metal plate. The next 50 samples are
taken to estimate the SEM poles for the plate by observing the
transient field arriving from different angles of incidence. It has

Then the poles are obtained from the solution of either oneigéen observed that only five poles are required as the singular

the following four ordinary eigenvalue problem:

[U2]7 [Us] — A[U] 7 (U]

values drop off beyond I® in evaluating[D] of (42). In the
first table we present the SEM poles along with their residues
for seven separate incident anglessoénd¢.

y1(0) y1(1) yi(N =L —1) 1(0) y2(1) y2(N = L —1)
y1(1) y1(2) u(N—=1L)  y(1) y2(2) y2(N — L)
[Dil(e41yxk-(N—L) = : : : :
nl) w@+1) o wN -1 (@) wd+D) (N 1)
yx(0)  yx(1) yr(N —L-1)
y(1)  yx(2) yr(N — L)
: : : (27)
uk(L) wyx(L+1) yx(N =1 1 yxpe(v—n)]
y1(1) y1(2) (N -1L) y2(1) y2(2)
y1(2) y1(3) n(N=L+1) (2 y2(3)
[Da](r41)yxr-(N=1) = : : : :
nE+1) nL+2) n®)  wd4) w2
y2(N — L) yK (1) vk (2) yx (N — L)
yo(N —L+1) yr (2) yr(3) yx(N —L+1)
. . . 28)
y2(IV) y(L+1) yx(L+2) yr(N) (L)X [K-(N—L)]
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ZL 22 T ZM
—_ 2'2 2'2 e 2'2
(Plir+yxm = | 71 2 M (31)
O O (L+1)xM
(RlMx(x—)
A (1) O i A1) O 1ot Ag(D) O
= A1(2) : Ay(s) : : Ak (2) (32)
19) A(M) 0 Ay(M) ; O Ax (M) | yrums
[Qilpx(N=L)
[Qilax(v-1)
Q- Myx[K-(N=1)] = (33)
[@Qu] ] (ke ayx (v — 1)
EAY yi(l) o m(N—L-1)  1(0) y2(l) o (N —-L-1)
y1(1) w2 - wn(V-1L) y2(1) v2(2) - (N -L)
= . E : :
y(l)  w(l+1) -+ p(N-1) yo(L)  p(L+1) - ygp(N-1)
Lon (L+1) (L +2) - y1 (V) yoL+1) yp(L+2) --- y2(N)
Y (0) yr (1) o yr(N—L—1)7
yr (1) yi(2) o yr(N—=L)
(42)
yr (L) yg(L+1) --- yr(N —1)
yr(L+1) yr(L+2) - y(N) D (pyoyxr(v—1)]
Case |I-8 = 0 and ¢ = 90°: Case lll—8 = 30° and ¢ = 50°:
S1,0 =—12£751.73 A172 =0.45/:|:130c> 81,2 =—1.06 £51.75 A172 :0.37/42320
s3.4=—0494j0.721  As 4 =0.37/£18.5° s34 =—-0281 47118 Az, =0.29/F143°

In this case the incident electric fielll, of amplitude—377 Case IV—4 = 50° and ¢ = 75°:
V/m is impinging on the plate frold = 0° and¢ = 90°.
There are two sets of complex conjugate poles and one growing ~ 51,2 = —0.941 & ;1.82 A2 =0.44/¥30°

exponential, which is of small amplitude. However, the growing s34 =—0.283 £ j1.17 As 4 =0.36/F138°

exponential is nonphysical it is the error due to curve fitting of 55 =0.07 As =0.325.
the data.
Case Il = 10° and ¢ = 80°: Case V-¢ = 20° and¢ = 70°:
51,2 =—1.35+41.71 Ay 2 =0.27/F38.2° 51,0 =—1.57+51.49 Ay 2 =0.9/F55.3°
s34 =—0.276 £+ 51.241 As 4 =0.19/F150° s34 =—0.278 & 51.22 As 4 =0.35/F158°

s5 =0.204 A; =0.113. s; =0.14 As; =0.454.
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Fig. 1. Clustering of the poles.
Case VI-¢ = 10° and¢ = 170°: However, the estimates for the residues are different for different
look angles.
$1,2 =—0.963 £ j4.11 Ay 2 =0.145/F55° Case I-4 = 0° and¢ = 90°:
83 4 =—0.282451.18 As 4 =0212/F112° .
s5 =0.023 As =0.208. A2 =0.35/F37.6°
Az 4 =0.273/F139°
Case VI8 = 30° and¢ = 140°: As =0.218.
51,2 =—0.999 % j2.42 Ay 2 =0.116/F31° Case - = 10° and¢ = 80°:
53,4 =—0.2824 51.19 Az 4 =0.139/F126°
55 =0.316 A = 0.068. Ar,2 =0.29/%30.1
Az 4 =0.252/F131°
As can be seen from the various results, only one set of poles A; =0.211.

around—0.28 + j1.2 is stable and the others move around. The
various poles are marked in Fig. 1 through the various numeri-Case 11— = 30° and ¢ = 50°:
cals representing the seven cases described above by roman nu-
merals. Aq 9 =0.125/545.2°
Next, we utilize all th_e seven data_sets to obtain a S|_ngle esti- As, 4 =0.152/F91.1°
mate for the poles. Again as before five poles are obtained. This A — 0413
single estimate of the poles is markes by in Fig. 1 v
. Case IV-6 = 50° and¢ = 70°:
51,2 =—1.13431.95
$3,4 =-0.28 :|:J117 ALQ 20126/:F55O
s =0.039. As 4 =0.143 /F86°
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