
510 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 4, APRIL 2000

Analysis of Transient Electromagnetic Scattering
Phenomena Using a Two-Level Plane Wave

Time-Domain Algorithm
Balasubramaniam Shanker, Member, IEEE, A. Arif Ergin, Student Member, IEEE,
Kemal Aygün, Student Member, IEEE, and Eric Michielssen, Senior Member, IEEE

Abstract—A fast algorithm is presented for solving electric,
magnetic, and combined field time-domain integral equations
pertinent to the analysis of surface scattering phenomena. The
proposed two-level plane wave time-domain (PWTD) algorithm
permits a numerically rigorous reconstruction of transient near
fields from their far-field expansion and augments classical
marching-on in-time (MOT) based solvers. The computational
cost of analyzing surface scattering phenomena using PWTD-en-
hanced MOT schemes scales as ( 3 2 log ) as opposed
to ( 2) for classical MOT methods, where and are
the numbers of temporal and spatial basis functions discretizing
the scatterer current. Numerical results that demonstrate the
efficacy of the proposed solver in analyzing transient scattering
from electrically large structures and that confirm the above
complexity estimate are presented.

Index Terms—Electromagnetic scattering, fast algorithms, inte-
gral equation methods, transient analysis.

I. INTRODUCTION

NUMERICAL methods for analyzing electromagnetic
transients find widespread engineering applications

ranging from the analysis of broadband scattering to the design
of modern antennas to the study of nonlinear phenomena
and more. These simulators typically are based either on
differential equations (DE’s) [1], [2] or integral equations
(IE’s) [3]–[5]. Historically, DE methods have been favored
over their integral equation (IE) counterparts (the vast majority
of which are marching-on-in-time (MOT) methods [3]) as the
latter often were found to be unstable [6] and highly expensive
in application [7]. IE-based techniques, however, offer un-
mistakable advantages over DE-based methods when applied
to the analysis of homogeneous/surface scatterers. First, IE
solvers only require a discretization of the scatterer surface
rather than a volume enclosing the latter, which results in a
sharp decrease in the number of unknowns when compared to
DE methods. Second, IE techniques automatically impose the
radiation condition, hence, there is no need for (approximate
local) absorbing boundary conditions that are required in the
truncation of finite grids used by DE methods.
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Over the past several years, a considerable research effort
has been expended on eliminating the aforementioned draw-
backs of MOT solvers. Many a study has deepened our under-
standing of the origins of MOT instabilities and proposed new
methods for confronting them (see [6], [8]–[12] and references
therein). A series of recent papers by Walker's group demon-
strates that MOT schemes for solving magnetic field integral
equations “can be stabilized for all practical purposes” by re-
lying on implicit time stepping methods [12], [13]. Impressive
as progress on eliminating MOT instabilities is, the unfavorable
scaling properties of MOT methods impedes their widespread
use. Indeed, the cost of analyzing scattering using a classical
MOT scheme for time steps from an object whose surface
current is discretized in terms of spatial unknowns scales
as . As a result, MOT solvers quickly swamp avail-
able computational resources when applied to large-scale scat-
tering problems and reducing the computational complexity of
time-domain IE schemes is imperative if these methods are to
become truly competitive with DE schemes. Recently, Walker
proposed a very interesting scheme for amortizing the costs of
MOT schemes based on discounting noninteracting portions of a
scatterer [14]. While this scheme has been successfully applied
to the analysis of scattering from several interesting structures,
it is heuristic in nature and a numerically rigorous technique for
reducing the computational complexity of MOT solvers remains
desirable.

The complexity problems associated with time domain IE
methods are very similar to those that have for many years re-
stricted the application of classical frequency-domain method of
moments (MoM) solvers to large-scale scattering and radiation
problems. However, these problems have been overcome by the
fast multipole method (FMM), which achieves a very signifi-
cant complexity reduction by expressing radiated fields in terms
of a plane wave basis [15], [16]. Recently, we introduced scalar
PWTD schemes—time-domain analogues of three-dimensional
Helmholtz equation FMM methods—that enable the fast eval-
uation of transient scalar wave fields by decomposing radiated
fields into transient plane waves. In these papers, it was the-
oretically shown that scalar PWTD methods used in conjunc-
tion with classical MOT schemes significantly reduce the com-
putational complexity associated with the analysis of transient
acoustic surface scattering phenomena [17], [18].

This article details a PWTD-enhanced MOT scheme with
computational complexity for solving elec-

tric, magnetic, and combined field integral equations (EFIE,
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Fig. 1. Generic scattering problem description.

MFIE, CFIE) pertinent to the analysis of surface scattering phe-
nomena. Within the context of this paper, the scheme is applied
to the analysis of scattering from large perfect electrically con-
ducting (PEC) objects that reside in free-space. And unless it
is stated otherwise, all results are obtained using an implicit
time-stepping scheme.

This paper will proceed as follows. Section II describes
a time domain EFIE, MFIE, and CFIE, and classical MOT
methods for solving these equations. Section III details the
PWTD algorithm, its practical implementation within the
context of an MOT solver, and the computational complexity
of the resulting scheme. In Section IV the applicability of
PWTD-enhanced MOT solvers to the analysis of scattering
from electrically large structures is demonstrated, and the va-
lidity of the theoretical complexity estimates is experimentally
verified. Section V presents our conclusions.

II. FORMULATION

In this section, three surface IE’s for analyzing transient elec-
tromagnetic scattering phenomena—viz., an EFIE, an MFIE,
and a CFIE—are introduced. In addition, an MOT scheme for
solving these equations is presented along with a brief discus-
sion of its stability properties.

A. Integral Equations

Consider a closed PEC body (Fig. 1) with surfaceresiding
in free-space. In what follows, denotes an outward pointing
position dependent normal to, and and are hypothetical
surfaces that are conformal to but residing just inside and out-
side , respectively. An impressed field with electric and mag-
netic components that is temporally ban-
dlimited to impinges on . The surface current that
is induced on by virtue of this interaction generates a scat-
tered field that is fully characterized by the
vector potential

(1)

where denotes retarded time,is the
speed of light, and is the permeability of free-space. In what
follows, it is assumed that the incident field does not interact
with for , i.e., for .

Fig. 2. Division of the geometry into near- and far-field blocks.

A time-domain EFIE can be constructed by expressing the
scattered electric field in terms of as

(2)

where is the identity dyad. Enforcing the total electric field
tangential to to vanish (the same condition holds on both
and ) yields

(3)

Combining (1)–(3) and denoting
results in the following EFIE:

(4a)

where

(4b)

Equation (4) not only holds true for closed, but also for open
structures.

A time-domain MFIE can be constructed by expressing the
scattered magnetic field in terms of as

(5)

and by enforcing the condition that the total magnetic field tan-
gential to vanishes, i.e.,

(6)

Using (1), (5)–(6) and denoting
, the following MFIE can be derived [19]:

(7a)
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Fig. 3. Two far-field boxes(�;� ) with basis functionsS (r) andS (r).

(a)

(b)

Fig. 4. Temporal basis functions (a) Triangular functions. (b) Approximate
prolate spheroidal functions.

where

(7b)

where .
It has recently been demonstrated that numerical solutions

to the time-domain EFIE and MFIE, obtained using clas-
sical MOT solvers, are often corrupted by perturbed cavity
modes when the spectrum of the incident field encompasses
one or more of the scatterer's resonance frequencies [20].
While corruption by interior cavity modes are expected in
the frequency-domain solutions to the EFIE and MFIE [19]
(as the resonant currents satisfy the corresponding homoge-
neous differential equations), they are not expected in time
domain as at all fields are assumed to be zero. But,
numerical time-marching schemes tend to “forget” [21] these
initial conditions and the resonant modes are a component of
the final solution. To combat this deficiency, a time-domain
CFIE was introduced in [20] and its solutions shown to be
free of resonant modes. Denoting,

where
is the intrinsic impedance of free-space andis a positive

real constant, this CFIE reads

(8a)

where

(8b)

B. Marching-On In-Time Formulation

This section develops a classical MOT-based scheme
[6]–[22] for solving the integral equations ((4a), (7a), (8a)).
Throughout this section, a subscript is used to
represent quantities associated with the EFIE, MFIE, and CFIE,
respectively. As a first step toward solving these equations
using an MOT scheme, spatial, and temporal variations of
the current are represented in terms of basis functions

, and as

(9)

Here, is the weight associated with the space-time basis
function . Denoting the surface area of the scatterer
by , the number of spatial basis functions is chosen as

to ensure a discretization dense enough to represent
the current at . Furthermore, assuming that resides
on for and becomes vanishingly small thereafter,
the number of temporal samples is chosen as .

Rao–Wilton–Glisson (RWG) functions, which in the past
have been used extensively in both frequency- and time-domain
analysis [22], [23], are chosen to model the spatial variation
of the current. To this end, is approximated in terms of flat
triangular panels and one basis function associated with
each edge joining two triangles

for

for

elsewhere

(10)

where is the length of the common edge between the trian-
gles and , is the area of the triangle , and is
the position vector with respect to the free vertex of the corre-
sponding triangle [22]. Linearly interpolating (triangular) func-
tions are used to represent the temporal variation of the current,
i.e., , where is the time-step
size and for and linearly interpolates to zero at

.
Substituting (9) in (4), (7), (8) and using a spatial Galerkin

testing procedure at leads to a set of equations that
can be represented in matrix form as

(11a)

where is an array of the weights

(11b)

and

(11c)
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(a)

(b)

Fig. 5. Transient scattering from a plate analyzed using the EFIE. The plate is
discretized with 2170 unknowns. The plate measures 2 m� 15 m. The incident
field is k̂ = �ẑ directed and̂p = x̂ polarized. (a) Current at a location on the
plate. (b) The backscattered far-fieldE .

In the above equations denotes the standard inner product
[22]. Equation (11a) constitutes the basis of the classical MOT
scheme; it relates the currents on the surface atto those at

and, hence, permits the recursive computation of currents
for all times.

Until recently, all MOT schemes were prone to late time in-
stabilities. A vast body of literature on the analysis of, and reme-
dies for addressing, these instabilities exists (see [6], [22], [24],
[25] and references therein). Rynne and Smith [6] provide an in-
sightful explanation of the origin of these instabilities and sug-
gest averaging schemes to stabilize the MOT procedure. Their
analysis hinges on the location and movement of the poles of
the resolvent of the integral operator [21]. More recently,
Dodsonet al. observed that use of an implicit time stepping
procedure stabilizes the MOT procedure “for all practical pur-
poses” [13]. It has also been suggested that the stability of MOT
schemes can be further improved by relying on backward tem-

poral differencing and higher order temporal basis functions
[25].

In our implementation, all inner products are evaluated by
using seven-point Gaussian quadrature rules over triangular do-
mains [23]. This testing procedure leads to an implicit scheme,
even for the time-step size suggested in [22]. In our implemen-
tation, the time-step size chosen is independent of the spatial
discretization and is , where . The re-
sulting scheme is termed implicit because is not diagonal.
However, as this matrix is highly sparse, a nonstationary itera-
tive solver such as quasi-minimal residual (QMR) [26] can be
used to efficiently solve for each and every time step. The
additional cost incurred from the use of such a solver is insignif-
icant when compared to the overall cost. In addition to implicit
time stepping, accurate spatial and temporal integration rules
are used for computing [12], [27].

The dominant cost in the construction of (11a) involves the
vector sum that appears on its right-hand side. The cost of eval-
uating this sum scales as ; indeed the reaction at any
testing point comprises of contributions from all source basis
functions. Since this sum is evaluated for all time steps, the
total cost of this analysis scales as . In the next sec-
tion, a succinct derivation of the two-level PWTD algorithm that
results in a reduction of this cost will be presented and details
regarding its implementation into existing MOT codes will be
outlined.

III. PLANE WAVE TIME-DOMAIN ALGORITHM

From the proceeding discussion, it is apparent that computing
interactions between individual basis functions, as in traditional
MOT schemes, leads to a computationally inefficient algorithm.
This suggests that one of the keys to developing a reduced-com-
plexity algorithm is constructing schemes that permit the com-
putation of interactions in a group-wise manner. To this end, as-
sume that the scatterer can be enclosed in a fictitious cubical box
which is further subdivided in many smaller equal-sized cubes
or boxes (Fig. 2). The radius of a sphere circumscribing each
cube is denoted by and the set of basis functions, which
are contained in a box is called a group. Then, all nonempty
boxes are identified and numbered from . Next,
a pair of boxes is classified as either a “near-field” or
“far-field” pair, depending on a separation criterion based on
the distance between the box centers. In our analysis, this dis-
tance was chosen to be , where . Since

, the number of near-field pairs is proportional
to the total number of nonempty boxes. The interactions be-
tween the basis functions that reside in a near-field box pair are
computed using the classical MOT scheme. However, the in-
teractions between those that reside in a far-field box pair are
computed in a group-wise manner using the PWTD algorithm.
The foundations of the PWTD algorithm lie in expressing the
field at a point due to a sufficiently separated source distribu-
tion as a superposition of plane waves. Such a representation,
as in the FMM, has been extremely effective in reducing the
computational complexity of the frequency domain IE solvers.
Consequently, the analysis in the first part of this section will
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(a)

(b)

Fig. 6. Transient scattering from an almond, which is discretized using 4680
spatial basis functions, analyzed using the MFIE. The incident field propagates
alongk̂ = �ẑ and isp̂ = x̂ polarized. (a) Current at a location on the almond.
(b) The backscattered far-fieldE .

focus on the development of such a scheme in the time domain.
Next, the incorporation of this algorithm into an MOT scheme
in a two-level setting is elucidated. Finally, it is shown that the
resulting PWTD-enhanced MOT algorithm has a computational
complexity of .

A. Plane Wave Representations

Consider a far-field box pair as shown in Fig. 3, one of which
contains the basis function and is dubbed the source box,
the other contains the basis function and is called the
observation box. The centers of these boxes are located at
and , respectively. The vector connecting the centers of these
boxes is denoted by and . For the
purpose of this exposition, let the current associated with the
source basis function be characterized as

(12)

The time signature is divided into consecutive subsig-
nals , each of duration (with

) occupying a time slice for
, where , and

(see Fig. 4(a)). In keeping with this division, the current
source can be rewritten as

(13a)

where

(13b)

Then, the vector potential associated with one subsignal is

(14)

Alternatively, motivated by frequency-domain fast multipole
methods that rely heavily on plane wave expansions, consider
the field

(15a)

where denotes a
temporal convolution and

(15b)

To relate to the vector potential , the spec-
tral integral in (15a) is evaluated by interchanging the order of
integrations and transforming the spatial variables to a new co-
ordinate system in which is parallel to . Defining and
as the angular coordinates in this new system, (15a) reduces to
[28], [29]

(16)
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(a) (b)

(c) (d)

Fig. 7. Radar cross section of a sphere in thez-x plane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates alongk̂ = �ẑ and isp̂ = x̂ polarized and the sphere is discretized using 9414 spatial basis functions. (a) 280 MHz.
(b) 350 MHz. (c) 420 MHz. (d) 500 MHz.

Comparing (14) and (16), it is apparent that the evaluation of
(15a) yields the true vector potential (first term) and an anti-
causal signal (second term), which will henceforth be referred
to as the ghost signal. As the ghost signal appears at the ob-
server before the true signal arrives, it is possible to time-gate

and recover the true vector potential provided that
certain conditions are met.

To develop a scheme for time-gating , the following
observations are in order. With reference to (16), the true vector
potential radiated by the subsignal reaches the observer
no sooner than , and the ghost signal
vanishes after . Hence, choosing the
duration of the signal implies that
vanishes before the true signal reaches the observer and that
the ghost and true fields never overlap in time. These obser-
vations can now be generalized for an arbitrary distribution of
sources and observers residing in their respective spheres. For
this configuration, the arrival of the true signal can be no sooner
than following the onset of a source signal at

. Hence, the choice dictates

that for and
for as the ghost signal vanishes for

. Summarizing these observations, the choice
of ensures that

for
for

(17)

It follows that both the electric and magnetic fields can be
evaluated from (15a). Indeed, using (2) and (5) and the fact that

holds for plane wave basis, the fields in the ob-
servation sphere due to theth source time slice for
can be written as

(18a)
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(a) (b)

(c) (d)

Fig. 8. Radar cross section of an almond in thez-x plane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates alongk̂ = �ẑ and isp̂ = x̂ polarized and the almond is discretized using 10 620 spatial basis functions. (a) 210.2
MHz. (b) 261.8 MHz. (c) 322 MHz. (d) 390.8 MHz.

(18b)

Equations (18) indicate that the scattered electric and magnetic
fields can be constructed using the transverse components of the
vector potential. It should also be noted that the time integrals in
(18) should not be cancelled by one of the time derivatives that
follow as this will introduce an undesirable static ghost signal.

To explore the merits of a plane wave representation in con-
structing a fast algorithm, note that tested with a basis
function can be written as

(19)

for , where the superscript is used to denote a
transpose. Similarly, using (4), (7), (8), (18), it can be shown that
the inner products of the fields and with

are zero for and for

(20a)

(20b)
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(a) (b)

(c) (d)

Fig. 9. Radar cross section of a cone sphere in thez-y plane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates alongk̂ = �ŷ and isp̂ = ẑ polarized and the cone sphere is discretized using 11 412 spatial basis functions. (a) 500
MHz. (b) 700 MHz. (c) 900 MHz. (d) 1100 MHz.

and

(20c)

In the above equations, denotes the translation function

(21a)

and

(21b)
where .

Computing all interactions requires numerical implementa-
tion of (20a)–(20c). In practice, as all spherical integrals are
computed using quadrature rules, it is necessary to temporally
bandlimit the current densities. This follows naturally as the ex-
citation is assumed to be bandlimited to . Thus, the current

density can be locally interpolated using temporally bandlimited
and approximately time-limited functions such that the time sig-
nature of the current for theth time-slice can be written as

(22)

where is an interpolant bandlimited to
. In this study, is chosen to be a variant of the

approximate prolate spheroidal functions [30] [see Fig. 4(b)].
Timelimiting these functions to a duration of intro-
duces an error which decreases exponentially with increasing.
As a result, can be considered bandlimited and spans a
duration . Evaluation of (20a)–(20c) is
done by sampling on the surface of the sphere. As the far field
is bandlimited, it is possible to show that the number of samples
needed to completely characterize the field is of , where

(23)
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(a) (b)

(c) (d)

Fig. 10. Radar cross section of an aircraft (VFY 218) in thex-y plane extracted from the time-domain CFIE result is compared to that obtained from FISC
for four different frequencies. The incident wave propagates alongk̂ = �ŷ and isp̂ = x̂ polarized and the cone sphere is discretized using 9747 spatial basis
functions. (a) 75 MHz. (b) 85 MHz. (c) 105 MHz. (d) 130 MHz.

and is an oversampling factor [31], [32]. Note that the trans-
lation function (21a) can be succinctly expressed as

, where [27]

for (24)

and are Legendre polynomials of degree. In keeping
with the bandlimitedness of the fields, the upper limit in the
above summation can be truncated to [33]. Conse-
quently, (20a)–(20c) can be evaluated numerically using

(25a)

(25b)

The corresponding equation for the can
be obtained using (20c), and the time integral in the above equa-
tion is performed using standard integration rules [34]. In the
above equations, are the quadrature weights [33] given by

(26)

(27)

and (28)

is the zero of (29)

To gain insight into (25) note that the rightmost convolution
maps the source distribution onto a set of plane waves which will
henceforth be referred to as “outgoing rays.” In the literature,
this mapping is also known as the slant stack transform (SST)
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(a) (b)

(c) (d)

Fig. 11. Radar cross section of an almond in thez-x plane extracted from the time domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates alongk̂ = �ẑ and isp̂ = x̂ polarized, and the almond is discretized using 29 700 spatial basis functions. (a) 400 MHz.
(b) 460 MHz. (c) 520 MHz. (d) 600 MHz.

[29]. The center convolution “translates” these to “incoming
rays,” which impinge on the observation sphere. Finally, via the
last convolution and the spectral integration the incoming rays
are mapped onto the observers. The reconstruction of transient
field using this three-stage process of aggregation, translation,
and disaggregation, is reminiscent of the popular frequency-do-
main FMM.

B. Implementation of Two-Level PWTD Enhanced
MOT Solvers

The ideas outlined in the preceding subsection give rise to
a procedure via which the interaction between basis functions
residing in any far-field box pair can be computed as a
superposition of transient plane waves. To complete the PWTD
algorithmic prescription, these ideas are now systematized such
that they can be efficiently applied in conjunction with an MOT
scheme. With this in mind, a fundamental subsignal duration

is defined, where

(30)

and is the distance between the centers of the boxes (
). Such a definition stems from the fact thatcorresponds to

the duration of the longest possible subsignal that can be trans-
lated “ghost-free” between the closest far-field pair. For all other
far-field pairs, the subsignal lengths are chosen to be an integer
multiple of the fundamental duration, i.e.,

, where .
The rationale behind this choice will soon become transparent.

The task of computing the current distribution at each time
step is divided into (i) evaluating near-field interactions using
the usual MOT scheme and (ii) computing far-field interactions
using the PWTD algorithm.

i) Near-Field Evaluation: at each time step, the sum

and (31)

is computed for all near-field interaction pairs .
ii) Far-Field Evaluation: to take all the far-field interactions

into account, the algorithm follows the three stage process
that was alluded to in the previous subsection.
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Fig. 12. Comparison of the computational complexity of the classical and
PWTD augmented MOT schemes.

a) The first task is the construction of outgoing rays for all
boxes. This involves computing for all
ray directions for a fundamental subsignals comprised of

samples and a duration . Note that once this
information has been computed, it can be reused for dif-
ferent interaction pairs. Furthermore, the number of time
slices for which one needs to store these outgoing rays is
proportional to the largest linear dimension of the scat-
terer.

b) The next step is to translate the outgoing rays from a
source group to an observer group . This is done
every time steps. As is an integer multiple
of , the rays to be translated can be formed by con-
catenating an appropriate number of outgoing rays from
group . Since the length of the translation function is

time steps, the convolu-
tion of the outgoing ray with the translation function can
be efficiently accomplished using fast Fourier transforms
(FFT’s) since the length of the outgoing ray to be trans-
lated is of the same order. Unfortunately, as the transla-
tion function is not bandlimited, simple FFT’s cannot be
used to transform it into the Fourier domain. However,
this hurdle can be surmounted as an analytical expres-
sion for the Fourier transform of the translation function
is available. For a far-field pair ( ), the Fourier trans-
form of the translation function is

(32)

where is the normalized frequency and
is a spherical Bessel function of theth order [27].

This equation also indicates that the translation function

for an arbitrary sphere pair can be constructed from a
function that is bandlimited in both the and
. Hence, this function can be sampled at a discrete set of

points and the translation function for any far-field sphere
pair reconstructed by interpolating through these sam-
ples. After convolving the outgoing rays with the trans-
lation function, the resulting rays are then superimposed
on to the incoming rays of the observer group. It should
be noted that as the evaluation of yields
two real signals, viz., the and components of the field
which are to be translated, this operation is most effi-
ciently performed using one complex FFT [34].

c) Finally, the rays entering all the spheres are projected on
to the observers. This is done via the leftmost convolution
in (25).

It should be pointed out that the error incurred in computing
the fields via a plane wave expansion method can be controlled
to arbitrary precision [17], [33].

C. Complexity Analysis

To analyze the computational complexity of the PWTD-en-
hanced MOT solver described above, assume that there
are nonempty boxes, each containing approximately

unknowns. In what follows, implementation
dependent constants are denoted as . The cost
of a PWTD-MOT analysis is comprised of near- and far-field
components. The computation of all near field interactions for
the duration of the analysis requires

(33a)

operations. The cost of evaluating all far field interactions
consists of those incurred in constructing outgoing rays ,
translating the latter onto incoming rays , and projecting
incoming rays onto observers . Constructing outgoing
rays involves the projection of all current elements in the
nonempty boxes onto plane waves for all
time steps. Projecting incoming rays onto observers involves a
very similar set of operations. Hence, the cost associated with
these operations is

(33b)

The cost of translating one ray between groups scales
as . As this operation has to be per-
formed for all time slices and
directions, the cost of translating information between a
given pair of spheres for the duration of the analysis scales
as . Since is bounded by the
maximum linear dimension of the scatterer , the cost of
translations for all far-field group interactions is

(33c)

The total cost associated with the PWTD-enhanced MOT anal-
ysis is

(34)

Minimizing with respect to reveals that the optimal
number of unknowns per group grows as and that

scales as .
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IV. NUMERICAL RESULTS

This section presents numerical results that serve both to val-
idate the above described PWTD-enhanced MOT scheme and
to demonstrate its efficacy. The algorithm is verified in two
stages. In a first set of simulations, scattering from electrically
small structures is analyzed using PWTD-enhanced and clas-
sical EFIE- and MFIE-based MOT codes and compared in the
time domain directly. In a second set of simulations, frequency-
domain radar cross section (RCS) data is extracted from the
Fourier transformed temporal far-field signatures [22] obtained
using a PWTD-augmented CFIE-based MOT solver. This data
is compared against similar results obtained using the fast Illi-
nois solver code (FISC), an FMM-based CFIE frequency-do-
main [16] code. In all the examples presented herein, the inci-
dent pulse is a modulated Gaussian plane wave parameterized
as

(35)

where is the pulse's center frequency,and denote its
direction of travel and polarization, , and

. The parameter will be referred to as the “bandwidth”
of the signal. It is to be noted that the power in the incident pulse
is down by 160 dB at relative to . Also, the
details on the geometries of some of the scatterers that are used
here to illustrate the capabilities of this code can be obtained
from [35].

To establish that both PWTD-enhanced and classical MOT
schemes yield identical results, transient scattering from two
objects is analyzed. The first object is a rectangular plate of
dimensions 2 m 15 m that resides in the- plane. A
polarized pulse traveling in the direction, with center
frequency MHz and bandwidth MHz is
incident on the plate. The current on the plate is represented
using 2170 spatial basis functions and solved for using the EFIE.
The magnitudes of the current at on the plate's
surface, computed using both the PWTD-enhanced and classical
MOT schemes are compared in Fig. 5(a). Similarly, the temporal
far field signatures of the field scattering along , computed
using both methods, are compared in Fig. 5(b). Obviously, our
PWTD-enhanced MOT solver yields results that agree very well
with those obtained using the classical scheme.

The second object studied is an almond that fits into a rect-
angular box of size 5.00 m 1.92 m 0.64 m. The almond is
excited by a pulse traveling along and polarized along

. The center frequency and bandwidth of the pulse are
and MHz, respectively. The current on the

almond is represented using 4680 spatial basis functions and
solved for using an MFIE. Figs. 6(a) and (b) compare the mag-
nitude of the current at on the almond and the
far field signature of the traveling scattered field obtained
using PWTD-enhanced and classical MOT codes; again, good
agreement between both sets of results is observed.

Via the above numerical simulations, it has been verified that
the solutions to the EFIE and the MFIE obtained using PWTD-
enhanced and classical MOT schemes are in agreement. Next,

the PWTD-accelerated MOT codes is applied to the analysis of
scattering from electrically large objects and is further validated
by comparing their bistatic RCS extracted at a number of fre-
quency points against RCS data computed using a frequency-
domain solver. In all the examples that follow, the time-domain
CFIE is used as the solution to the time-domain EFIE and MFIE
can be corrupted by internal resonance modes [20]. First, tran-
sient scattering from a sphere of unit radius is analyzed. The
sphere is illuminated by a modulated Gaussian pulse traveling
in the direction and polarized along . The center
frequency and bandwidth of the pulse are MHz and

MHz, respectively, and the sphere is discretized
using 9414 spatial basis functions. Figs. 7(a)–(d) compare the
RCS pattern in the - plane obtained using the PWTD-en-
hanced MOT scheme and FISC for a range of frequencies within
the band of excitation. Specifically, the RCS is compared at 280,
350, 420 and 500 MHz. Results obtained from the time and fre-
quency domain codes are in good agreement with each other,
even at 280 and 500 MHz, where the power in the incident pulse
is down by 65 and 40 dB from its peak at, respectively. In this
and subsequent examples, comparisons at frequencies where the
power is down by at least 30 dB are made to highlight the fact
that meaningful results can be obtained at these points through
the use of the CFIE. Indeed, if either the MFIE or the EFIE were
used, errors induced by nonphysical currents at resonance fre-
quencies would propagate in any MOT scheme and would be
most visible at the ends of the band [20].

Next, transient scattering from an almond that fits into a rect-
angular box of dimensions 5.0 m1.92 m 0.64 m is analyzed.
A pulse traveling along and polarized along
excites the almond. The center frequency and bandwidth of the
pulse are and MHz, respectively, and the
almond is discretized using 10 620 spatial basis functions. RCS
patterns in the - plane are extracted from temporal far-field
signatures at 210.2, 261.8, 322.0, and 390.8 MHz, and compared
against FISC data in Fig. 8(a)–(d); again, all RCS patterns agree
well with each other. It should also be pointed out that at both
210.2 and 390.8 MHz the power in the incident pulse is down
by about 30 dB from its peak at .

Next, scattering from a cone sphere is studied. The cone is 1
m long and the radius of the half sphere attached to the cone is
0.235 m. The incident pulse has a center frequency of
and bandwidth MHz is polarized and travels
along the direction. This cone sphere is discretized
using 11 412 spatial basis functions. The RCS patterns in the
- plane obtained from the time-domain PWTD-enhanced

MOT code is compared against that obtained from FISC 500,
700, 900, 1100 MHz, as shown in Fig. 9(a)–(d). Examination of
Fig. 9(a)–(d) shows that both the FISC and the PWTD results
agree very well with each other, even at 500 and 1100 MHz
where the power in the incident pulse is down by 25 dB from
that at 750 MHz.

All examples analyzed thus far involved relatively simple ge-
ometries. Next, scattering from a VFY 218 aircraft, discretized
using 9747 spatial basis functions is analyzed. The incident field
travels in the direction and is polarized along ,
has a center frequency of MHz and bandwidth of

MHz. Fig.10(a)–(d) compares the RCS patterns in
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the - plane at 75, 85, 105, and 130 MHz, where the pulse's
power at these frequencies is down by 27, 9.7, 1.07, and 39 dB
with respect to its peak value. Again, the results of the time-do-
main code replicate all of the RCS nulls and peaks computed
using the frequency-domain solver.

Finally, scattering from an almond discretized with 29 700
spatial basis functions is analyzed. This simulation pushes the
limits of the two-level PWTD algorithm insofar as computa-
tional resources are concerned. This almond fits inside a rect-
angular box of dimensions 6.00 m 2.31 m 0.77 m and
is illuminated by a polarized Gaussian pulse traveling
along , with a center frequency of MHz and
a bandwidth of MHz. Fig.11(a)–(d) compares the
RCS pattern in the- plane computed using the time- and fre-
quency-domain codes at 400, 460, 520, and 600 MHz. At both
400 and 600 MHz, power in the incident field is down by 27 dB
from its peak. As is apparent in Figs. 11(a)–(d) , the RCS pat-
terns computed by both the time-domain and frequency-domain
codes are in very good agreement with each other.

Finally, the predicted computational complexity of both the
PWTD-enhanced and classical MOT schemes is verified. All
results presented above were obtained using an SGI Origin2000
with peak performance rated at 360 Mflops. In Fig. 12, the log-
arithm of the central processing unit (CPU) time required to
compute the interactions at one time point is plotted against
the . This graph reveals that the computational cost of a
PWTD-MOT algorithm scales as , which
is very close to the theoretically predicted scaling law. Also, it
should be noted that the break-even point or the number of un-
knowns where it becomes more advantageous to use the PWTD-
enhanced MOT schemes as opposed to a classical MOT solver,
is as low as .

V. CONCLUSION

This paper presented a two-level PWTD-enhanced MOT
algorithm that permits the fast EFIE-, MFIE-, and CFIE-based
analysis of transient electromagnetic scattering phenomena.
The computational complexity of this algorithm scales as

, as opposed to for the con-
ventional MOT algorithm. Numerous simulations that were
conducted during the course of this study demonstrate the use-
fulness of these solvers in characterizing broad-band scattering
from large objects.
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