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Abstract—A fast algorithm is presented for solving electric, Over the past several years, a considerable research effort
magnetic, and combined field time-domain integral equations has been expended on eliminating the aforementioned draw-
pertinent to the analysis of surface scattering phenomena. The p4.ke of MOT solvers. Many a study has deepened our under-
proposed two-level plane wave time-domain (PWTD) algorithm . . . B
permits a numerically rigorous reconstruction of transient near standing of the OI’IgII’I.S of MOT instabilities and proposed new
fields from their far-field expansion and augments classical Methods for confronting them (see [6], [8]-[12] and references
marching-on in-time (MOT) based solvers. The computational therein). A series of recent papers by Walker's group demon-
cost of analyzing surface scattering phenomena using PWTD-en- sirates that MOT schemes for solving magnetic field integral
hanced MOT schemes scales &9(IN,N2/? log N,) as 0pposed ooy jations “can be stabilized for all practical purposes” by re-

to O(N,N?) for classical MOT methods, whereN; and N, are . . s . .

the numbers of temporal and spatial basis functions discretizing lying on implicit tl.m(_a stgpplng m.ethod.f,.[.12],. [13]. Impressive
the scatterer current. Numerical results that demonstrate the &S progress on eliminating MOT instabilities is, the unfavorable
efficacy of the proposed solver in analyzing transient scattering scaling properties of MOT methods impedes their widespread
from electrically large structures and that confirm the above yse. Indeed, the cost of analyzing scattering using a classical
complexity estimate are presented. MOT scheme forV, time steps from an object whose surface

Index Terms—Electromagnetic scattering, fast algorithms, inte- current is discretized in terms d¥, spatial unknowns scales

gral equation methods, transient analysis. asO(N,N?2). As a result, MOT solvers quickly swamp avail-
able computational resources when applied to large-scale scat-
|. INTRODUCTION tering problems and reducing the computational complexity of

time-domain IE schemes is imperative if these methods are to
. ) X . X INeliGecome truly competitive with DE schemes. Recently, Walker
.tranS|ents find Wldespread engineering applicatio oposed a very interesting scheme for amortizing the costs of
ranging from the analysis of broadband scattgrmg to the des BT schemes based on discounting noninteracting portions of a
of modern antennas_ fo the StUd.y of nonlinear phe_nomeg&tterer [14]. While this scheme has been successfully applied
apd more. Thesg S|mula'Eors typically are based elth.er the analysis of scattering from several interesting structures,
differential equations (DE's) [1], [2] or integral equationsy ¢ heyristic in nature and a numerically rigorous technique for

(IE's) [3.]_.[5]' Historical.ly, DE methods have been favo_re_ educing the computational complexity of MOT solvers remains
over their integral equation (IE) counterparts (the vast MaJorif. cirable
of which are marching-on-in-time (MOT) methods [3]) as the '

latter often were found to be unstable 161 and hiahlv expensi The complexity problems associated with time domain IE
. en w u u . [6] IghTy EXPENSIYLethods are very similar to those that have for many years re-
in application [7]. |E-based techniques, however, offer u

. tricted the application of classical frequency-domain method of
mistakable advantages over DE-based methods when app‘ﬁféinents (MoM) solvers to large-scale scattering and radiation

;(z)l\t/féisagﬁlysrlz ?inr(?Oamgigs?:?ee}?zuz;{iﬁrfgcfhescsa(t:taetrng:z.r ES;;Ereoblems. However, these problems have been overcome by the
y ed : . . 1ast multipole method (FMM), which achieves a very signifi-
rather than a volume enclosing the latter, which results in

. nt complexity reduction by expressing radiated fields in terms
sharp decrease in the number of unknowns when compare% plextty y &xp 9

UMERICAL methods for analyzing electromagneti

X : : I is [15], [16]. R I i I
DE methods. Second, IE techniques automatically impose & plane wave basis [15], [16]. Recently, we introduced scalar

i " . . W TD schemes—time-domain analogues of three-dimensional
radiation condition, hence, there is no need for (approxme}qael

local) absorbina bound diti that ired in th mholtz equation FMM methods—that enable the fast eval-
ocal) absorbing boundary conditions that are required In &, of transient scalar wave fields by decomposing radiated
truncation of finite grids used by DE methods.

fields into transient plane waves. In these papers, it was the-
oretically shown that scalar PWTD methods used in conjunc-
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Fig. 1. Generic scattering problem description. Fig. 2. Division of the geometry into near- and far-field blocks.

'
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MF'E, CFIE) pertinent to the ana|ySiS of surface Scattering phe'A time-domain EFIE can be constructed by expressing the

nomena. Within the context of this paper, the scheme is appligghttered electric field*(r, ¢) in terms ofA(r, ¢) as
to the analysis of scattering from large perfect electrically con-

ducting (PEC) objects that reside in free-space. And unless it
is stated otherwise, all results are obtained using an implicit
time-stepping scheme.

This paper will proceed as follows. Section Il describeshereZ is the identity dyad. Enforcing the total electric field
a time domain EFIE, MFIE, and CFIE, and classical MOTangential taS to vanish (the same condition holds on béth
methods for solving these equations. Section Il details tlend.S. ) yields
PWTD algorithm, its practical implementation within the ‘
context of an MOT solver, and the computational complexityn x i X E'(r,t) = —a x n x E°(r,t) Vre S,5_,5;.
of the resulting scheme. In Section IV the applicability of (3)
PWTD-enhanced MOT solvers to the analysis of scattering
from electrically large structures is demonstrated, and the \@ombining (1)-(3) and denoting, {Ei(r, ), H(r,t)} = i x
lidity of the theoretical complexity estimates is experimentally x E‘(r, t) results in the following EFIE:
verified. Section V presents our conclusions.

E’(r,t) = —/Ot dt' (97— VV) -Ar,t) (2

VAE (r,t),H (r,t)} = L{I(r,t)} VYreS S_,S,
Il. FORMULATION (4a)
In this section, three surface IE’s for analyzing transient elec-
tromagnetic scattering phenomena—viz., an EFIE, an MFI&here
and a CFIE—are introduced. In addition, an MOT scheme for ‘
solving these equations is presented along with a brief discug—e{J(n )} =h x h x {@ / dt’/ ds’ (BE,I _ CQVV)
sion of its stability properties. ' ' 4m Jo s
J(', ¥ — R/e)

A. Integral Equations TR [ (4b)

Consider a closed PEC body (Fig. 1) with surfé&eesiding )
in free-space. In what follows) denotes an outward pointing Equation (4) not only holds true for closé( but also for open
position dependent normal & andS_ andS.. are hypothetical Structures. _
surfaces that are conformal to but residing just inside and outA time-domain MFIE can be constructed by expressing the
side S, respectively. An impressed field with electric and magecattered magnetic fiel* (r, ¢) in terms ofA(r, t) as
netic component§ E’(r, ), H'(r,#)} that is temporally ban-

- L 1
dlimited to f,,ax impinges onS. The surface curred(r, t) that Ho(r,t) = —V x A(r,t) (5)
is induced onS' by virtue of this interaction generates a scat- Ho
tered field{ E*(r, ), H*(r, #) } that is fully characterized by the anq py enforcing the condition that the total magnetic field tan-
vector potentialA (r, ¢) gential toS_ vanishes, i.e.,

J, 7 4
A(r,t) = Z—O/ as' LT 1) nx Hi(r,t) = - x H*(r,t) Vre S_. (6)
T Js R

whereR = |r—r'|, 7 = t — R/c denotes retarded timejs the Using (1), (5)—(6) and denoting;, {E‘(r, #), H'(r,#)} = 11 x
speed of light, ang. is the permeability of free-space. In whai(r, t), the following MFIE can be derived [19]:

follows, it is assumed that the incident field does not interact

with S fort < 0,i.e.,J(r,t) = 0fort < 0. Vi{E'(r,t), H (r,t)} = L,{J(r,t)} Vre S (7a)
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R where
2 N 18,0 I
; l& \ ISR LAT (0} = —B/moLo{I (0,0} + L14T(r,0)}. (8b)
1 S (r) ' 1 .
|‘\ n ]'n /, ]\‘ Rs I‘:l Inl
| K X / B. Marching-On In-Time Formulation
Sl This section develops a classical MOT-based scheme
Source Box Observation Box [6]-[22] for solving the integral equations ((4a), (7a), (8a)).
i R. | Throughout this section, a subscript = ¢, h,c is used to

i represent quantities associated with the EFIE, MFIE, and CFIE,
respectively. As a first step toward solving these equations
using an MOT scheme, spatial, and temporal variations of
the currentJ(r, ¢) are represented in terms of basis functions
Sp(r),n=1,---,Ns;,and;(t), 5 =1,---,N; as

Fig. 3. Two far-field boxega, o) with basis function$.,, (r) andS...(r).

Ny N,

I t) = > I ;Su(r)Ty(t). (9)

j=1ln=1

Here, I,, ; is the weight associated with the space-time basis
functionS,,(r)T;(¢). Denoting the surface area of the scatterer
by S., the number of spatial basis functions is chosefVasx
S.f2 ... /c* to ensure a discretization dense enough to represent
the current aff,,... Furthermore, assuming thdfr, ¢) resides
on S for 0 < ¢t < T and becomes vanishingly small thereafter,
the number of temporal samples is chosetVasx 1 fy,.x.
Rao—Wilton—Glisson (RWG) functions, which in the past
ave been used extensively in both frequency- and time-domain
nalysis [22], [23], are chosen to model the spatial variation
of the current. To this endy is approximated in terms of flat
triangular panels and one basis functy(r) associated with

(b)

h
Fig. 4. Temporal basis functions (a) Triangular functions. (b) Approximatg
prolate spheroidal functions.

where each edge joining two triangles
Lp{I(r,t)} 2fz+p;';(r), forr e I}t
_ 1. . ! 1 / 1 / _ l "
= —En X /S ds [ﬁa-,-v](r 77_) =+ ﬁJ(r 77_) Sn(r) = 2‘/27 p;(r)’ for re F; (10)
x (r—r') (7b) 0, elsewhere
whered, J(r', 7) = dJ(r',t)/0t| o wherel,, is the length of the common edge between the trian-

It has recently been demonstrated that numerical solutig#§SL'+ andl’,;, A7 is the area of the triangle;;, andp;; (r) is
to the time-domain EFIE and MFIE, obtained using cladbe position vector with respect to the free vertex of the corre-
sical MOT solvers, are often corrupted by perturbed Ca\,iﬁponding triangle [22]. Linearly interpolating. (triangular) func-
modes when the spectrum of the incident field encompasdi&gs are used to represent the temporal variation o_f the current,
one or more of the scatterer's resonance frequencies [28): 1i(t) = T(t — jA:), whereA, = T/N, is the time-step
While corruption by interior cavity modes are expected ifiz€ andl’(t) = 1for¢ = 0 and linearly interpolates to zero at
the frequency-domain solutions to the EFIE and MFIE [19] = iA?- . ) ) ] .
(as the resonant currents satisfy the corresponding homoge>ubstituting (9) in (4), (7), (8) and using a spatial Galerkin
neous differential equations), they are not expected in tinfesting procedure &t = jA, leads to a set of equations that
domain as at = 0 all fields are assumed to be zero. Butan be represented in matrix form as
numerical time-marching schemes tend to “forget” [21] these j—1
initial conditions and the resonant modes are a component of Z(?Ij - fg _ ZZ;IJ—Z‘ (11a)
the final solution. To combat this deficiency, a time-domain =
CFIE was introduced in [20] and its solutions shown to be

free of resonant modes. Denoting, {Ei(r, ), Hi(r,#)} = WhereZ;isanarray of the weights, ;,n =1,---, N,
—B/noVAE!(r,t), H (r,t)} + V,{Ei(r,t), H (r,t)} where i i i

7o is the intrinsic impedance of free-space ahis a positive Faam = (Sm(r), VB (v, 8), H'(r, ) i, (11b)
real constant, this CFIE reads and

VAE' (r,6), H'(r, )} = L{I(r,t)} VreS.  (8a) Zmn = (Sm(0), Lo{Sn(0)Tj—s(D)}) e, (11c)
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107 ; ; : ; poral differencing and higher order temporal basis functions
[25].
] In our implementation, all inner products are evaluated by
using seven-point Gaussian quadrature rules over triangular do-
/\ mains [23]. This testing procedure leads to an implicit scheme,
[ 1 — direat 3 even for the time-step size suggested in [22]. In our implemen-
--- PWTD tation, the time-step size chosen is independent of the spatial

discretization and ig\; = «/(10 fiax), Wherea > 1. The re-
sulting scheme is termed implicit becaugg is not diagonal.
However, as this matrix is highly sparse, a nonstationary itera-
tive solver such as quasi-minimal residual (QMR) [26] can be
used to efficiently solve foZ; each and every time step. The
additional cost incurred from the use of such a solver is insignif-
icant when compared to the overall cost. In addition to implicit
5 25 time stepping, accurate spatial and temporal integration rules
x107 are used for computing,{J(r,¢)} [12], [27].
@ The dominant cost in the construction of (11a) involves the
vector sum that appears on its right-hand side. The cost of eval-
' ‘ ‘ =, uating this sum scales &(N?); indeed the reaction at any
‘ testing point comprises of contributions from &ll source basis
. z N functions. Since this sum is evaluated for &ll time steps, the
L\

3 ; \%// t_otal cost of this ar_waly_sis scales @& N, N2). In the next sec-
- tion, a succinct derivation of the two-level PWTD algorithm that
L ] results in a reduction of this cost will be presented and details
regarding its implementation into existing MOT codes will be
outlined.

, Ill. PLANE WAVE TIME-DOMAIN ALGORITHM

Current (A/m)

_.
oI

3
R

Far field E_x (V/m)
3

10°F | et i From the proceeding discussion, it is apparent that computing
- PWTD , interactions between individual basis functions, as in traditional
MOT schemes, leads to a computationally inefficient algorithm.
1070 s : : : ‘ This suggests that one of the keys to developing a reduced-com-
Time {s) x 107 plexity algorithm is constructing schemes that permit the com-
putation of interactions in a group-wise manner. To this end, as-
_ _ _ _ sume that the scatterer can be enclosed in a fictitious cubical box
Ciscretzed with 2170 Unknoans. The plate measures? 5 m. The ncident HHICH 1S further subdivided in many smaller equal-sized cubes
field is k = —2 directed ang = % polarized. (a) Current at a location on theO POXes (Fig. 2). The radius of a sphere circumscribing each

(b)

plate. (b) The backscattered far-fiefé, . cube is denoted by?, and the set of basis functions, which
are contained in a box is called a group. Then, all nonempty
In the above equatiorts, -) denotes the standard inner produdboxes are identified and numbered frem= 1,---, NV,. Next,

[22]. Equation (11a) constitutes the basis of the classical MGiTpair of boxeq«, o) is classified as either a “near-field” or
scheme; it relates the currents on the surfa¢etatthose at <  “far-field” pair, depending on a separation criterion based on
t;—1 and, hence, permits the recursive computation of currertte distance between the box centers. In our analysis, this dis-
for all times. tance was chosen to B&. ,..;, < vR., where4 < v < 6. Since
Until recently, all MOT schemes were prone to late time inR. .in = O(KR,), the number of near-field pairs is proportional
stabilities. A vast body of literature on the analysis of, and remts the total number of nonempty box&%. The interactions be-
dies for addressing, these instabilities exists (see [6], [22], [2&veen the basis functions that reside in a near-field box pair are
[25] and references therein). Rynne and Smith [6] provide an ioemputed using the classical MOT scheme. However, the in-
sightful explanation of the origin of these instabilities and sugeractions between those that reside in a far-field box pair are
gest averaging schemes to stabilize the MOT procedure. Theamputed in a group-wise manner using the PWTD algorithm.
analysis hinges on the location and movement of the polesTdfe foundations of the PWTD algorithm lie in expressing the
the resolvent of the integral operatdy, [21]. More recently, field at a point due to a sufficiently separated source distribu-
Dodsonet al. observed that use of an implicit time steppindion as a superposition of plane waves. Such a representation,
procedure stabilizes the MOT procedure “for all practical puas in the FMM, has been extremely effective in reducing the
poses” [13]. It has also been suggested that the stability of M@®mputational complexity of the frequency domain IE solvers.
schemes can be further improved by relying on backward te@ensequently, the analysis in the first part of this section will
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‘ The time signaturg,,(¢) is divided intoL consecutive subsig-

107 — diteat 1 nals £, ;(t), each of duratiol; = (M, + 1)A, (with LM, =

\ -—~PWTD N;) occupying a time Slicel] gpare < t < Tjgp0p fOr 1 =
107 3 17 Ty La Where{rl,start = (l_l)MtAtv andﬂ,stop = lMtAt+
ool ] A, (see Fig. 4(a)). In keeping with this division, the current

sourceld,,(r, t) can be rewritten as

£
S
E L
g Jn(ra t) = Z Jn,l(r7 t) (13&)
=1
where
Jn,l(r7 t) = Sn(r)fn,l(t);
Aoie 08 1 12 1M,
Time (s) %107 fn,l (t) — Z Indjjj(t) (13b)
() j=(1—1)M,+1
1o’ ‘ Then, the vector potential associated with one subsignal is
10k — direct i
--- PWTD - R
. Anl I‘ t NO/ dS/ n fnl( /C) (14)
] 1

iy
°I

Alternatively, motivated by frequency-domain fast multipole
methods that rely heavily on plane wave expansions, consider

Farfield E_x (V/m)
3

the field
107 e ! 5
| ~ a
o | ' An7l( _ I’LO t / d2 / dS/ /
x 6<t k(o) fut)  (159)
10°; oz o7 o6 o3 ] o wherek = )Acsin9fjos¢ + ysinfsin ¢ 4+ zcos 6, * denotes a
Time (s) x107 temporal convolution and
®) 27 T
Fig. 6. Transient scattering from an almond, which is discretized using 4680 /dQQ = / d¢/ dfsin 6. (15b)
spatial basis functions, analyzed using the MFIE. The incident field propagates
alongk = —z and isp = x polarized. (a) Current at a location on the almond.

b) The backscattered far-fielf,, . ~ .
(b) The backscattered far-fie To relateA,, ;(r, t) to the vector potential, ;(r,t), the spec-

_ _ tral integral in (15a) is evaluated by interchanging the order of
focus on the development of such a scheme in the time domagiegrations and transforming the spatial variables to a new co-
Next, the incorporation of this algorithm into an MOT schemgydinate system in whic is parallel toR. Definingé’ and¢’

in a two-level setting is elucidated. Finally, it is shown that thgs the angular coordinates in this new system, (15a) reduces to
resulting PWTD-enhanced MOT algorithm has a computationgig], [29]

complexity of O(N,N; NZ/? log Ny).

27
A Noat
A. Plane Wave Representations A, (r, / s’ / d¢’ / d0/ sin¢'S,, (')
Consider a far-field box pair as shown in Fig. 3, one of which
contains the basis functic),(r) and is dubbed the source box, X fri <t — —cosf )

the other contains the basis functiBp,(r) and is called the

27 R/c
observation box. The centers of these boxes are locatef] at = ’“‘Oat / dS’/ d</>/ /
andr:,, respectively. The vector connecting the centers of these R/c
boxes is denoted bR, = r¢, — rS andR. = |R.|. For the fn A(t—1)
purpose of this exposition, let the current associated with the R
source basis function be characterized as _Ho [ e Sn(r') fau(t — R/c)

N, T 4ry R
=3 LSa®Ti(t) = S fu().  (12) / ag SR g
j=1
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Fig. 7. Radar cross section of a sphere inthe plane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates akng —z and isp = x polarized and the sphere is discretized using 9414 spatial basis functions. (a) 280 MHz.
(b) 350 MHz. (c) 420 MHz. (d) 500 MHz.

Comparing (14) and (16), it is apparent that the evaluation tfatA,, ;(r,t) = 0for ¢t < Tj g0 andA,, (r.t) = A, (1, t)
(15a) yields the true vector potential (first term) and an anfier ¢ > Tj .., as the ghost signal vanishes for>- —(R, —
causal signal (second term), which will henceforth be referr@,)/c + T; «.op. Summarizing these observations, the choice
to as the ghost signal. As the ghost signal appears at the ob?, < (R. — 2R;)/c ensures that
server before the true signal arrives, it is possible to time-gate
A, (r,t) and recover the true vector potential provided that 0 fort < Tjaon
certain conditions are met Api(rt) =93 & el 17)
' ~ ’ n,l(r7 t)v fort 2 71l,stop~

To develop a scheme for time-gatidg, ;(r, t), the following
observations are in order. With reference to (16), the true Vectol; sollows that both the electric and magnetic fields can be
potential radiated by the SUbSi,g'ﬁl:l(t) reaches the Obs_erverevaluated from (15a). Indeed, using (2) and (5) and the fact that
no sooner tham = Tj,sa; + min{ £} /c, and the ghost signal ¢; —d8,k/c holds for plane wave basis, the fields in the ob-
vanishes aftet = 1j ..o, — min{R}/c. Hence, choosing the go .\ a4ion sphere due to th source time slice fof > 7; stop
duration of the signall’, < min{R}/c implies thatf.i(t) ~an pe written as '
vanishes before the true signal reaches the observer and that
the ghost and true fields never overlap in time. These obser- t .
vations can now be generalized for an arbitrary distribution of}, ;(r,) = % / dt' 9% / d*Q (T — kk)
sources and observers residing in their respective spheres. For T I T sop
this configuration, the arrival of the true signal can be no sooner . / ds’ S, (r')8(t — k. (r — ') /c) * fuu(t))
than (R. — 2R,)/c following the onset of a source signal at s, " "
t = T start. Hence, the choic&, < (R, — 2R;)/c dictates (18a)
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Fig. 8. Radar cross section of an almond in the plane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates akng —z and isp = x polarized and the almond is discretized using 10 620 spatial basis functions. (a) 210.2
MHz. (b) 261.8 MHz. (c) 322 MHz. (d) 390.8 MHz.

1 /
2.2
8mc T stop

y /S 48 Sp(@ )6t — k- (r — 1) /)

n

* .
FnilE) for t > T} s0p, Where the superscrigh is used to denote a
Equations (18) indicate that the scattered electric and magnétanspose. Similarly, using (4), (7), (8), (18), it can be shown that
fields can be constructed using the transverse components oftieinner products of the fields;, ,(r,t) andH, ,(r, t) with
vector potential. It should also be noted that the time integrals$. (r) are zero fort < 1 qop, and fort > 1 siop
(18) should not be cancelled by one of the time derivatives that (S,(r ) LoAT(r,t)

]
follow as this will introduce an undesirable static ghost signal. . .

To explore the merits of a plane wave representation in con- 8 — / dt’ / d?Q S, (k¢ k)]F
structing a fast algorithm, note that(r, t) tested with a basis ™2 1 e

«6(t—k-R./c)

* [/S ds’ S, (r')é (t+f<-(r’ - r%)/C)} * fra(t)
(19)

o (r,t) = dt’ 93 /dQQk

(18b)

functionS,,,(r) can be written as « T(k, ')+ [ST(k, ¥ K)] + fra(t) (20a)
(Sp(r), igt)> (S (r) ch{an r,t)}
- / 2Q / / P
T 87T 62 T} stop nl
{ / dS Sp,(r ( (r—rm)/cﬂ x T(k,t') * [SF(k, ¢/, k)] * fau(t) (20D)
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Fig. 9. Radar cross section of a cone sphere intheplane extracted from the time-domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates akorg —y and isp = z polarized and the cone sphere is discretized using 11412 spatial basis functions. (a) 500
MHz. (b) 700 MHz. (c) 900 MHz. (d) 1100 MHz.

and density can be locally interpolated using temporally bandlimited
and approximately time-limited functions such that the time sig-
{Sm (1), ['c{J":l(rvg)H nature of the current for thigh time-slice can be written as
= _%<Sm(r)a['e{']n,l(ra tHh IM,
+ (Spu(r), L {Tna(r,0)}).  (20c) Fad®) = > L0 (22)

. F=(—1)My+1
In the above equationg,(k, ¢) denotes the translation function
T(k,t) = 926(t — k-R./c) (21a) whereW;(¢t) = ¥(t — jA,) is an interpolant bandlimited to
‘ ) fs > fmax. In this study,¥;(¢) is chosen to be a variant of the
and approximate prolate spheroidal functions [30] [see Fig. 4(b)].
R R Timelimiting these functions to a duration @p + 1)A, intro-
SF(k,t,v) = / dS' v x S,(r')6 (t +k-(r - 1‘2)/0) duces an error which decreases exponentially with increasing
So (21b) Asaresultf, (t) can be considered bandlimited and spans a
whereo = {m,n}. durationM; A, = (M, + 2p)A,. Evaluation of (20a)—(20c) is
Computing all interactions requires numerical implement&lone by sampling on the surface of the sphere. As the far field
tion of (20a)—(20c). In practice, as all spherical integrals afebandlimited, it is possible to show that the number of samples
computed using quadrature rules, it is necessary to tempordl§eded to completely characterize the field i€X§f\/*), where
bandlimit the current densities. This follows naturally as the ex-
citation is assumed to be bandlimitedfg.,. Thus, the current M =Tat(4rx fsRs/c) + 1 (23)
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Fig. 10. Radar cross section of an aircraft (VFY 218) in thg plane extracted from the time-domain CFIE result is compared to that obtained from FISC
for four different frequencies. The incident wave propagates alorg —y and isp = x polarized and the cone sphere is discretized using 9747 spatial basis
functions. (a) 75 MHz. (b) 85 MHz. (c) 105 MHz. (d) 130 MHz.

andy is an oversampling factor [31], [32]. Note that the trans- 1 t - X

lation function (21a) can be succinctly expressed ék, ¢) = - W/T dt Z Z Whp

7 (k,t,00), where [27] e k=0p=—M
5 N X [ (Kip, ', )] 5 T (K, ', M)

T 1) = 50 S D, () Puloost) 1S (R ! K]+ Fa (). (250)
fv=0 ’ R The corresponding equation for tf®,, (r), £.{J,i(r,t)}) can
for || < —= (24) be obtained using (20c), and the time integral in the above equa-
C

tion is performed using standard integration rules [34]. In the

ar_de,,(a:) are _Le_gendre polynomi_als of degreeln k_ee_pi_ng above equationsy;,, are the quadrature weights [33] given by
with the bandlimitedness of the fields, the upper limit in the

above summation can be truncatedMb = M [33]. Conse- - 4m (1 — cos? Oy, (26)
guently, (20a)—(20c) can be evaluated numerically using P (2M + D[(M + 1) P (cos 6]

(Spn(r), LAT na(r, 1)} Rkp = Xsinfy cos ¢, + ysinbysing, +zcos by, (27)

o [t LA ¢p =2mp/(2M +1) and (28)

= &n2e2 /T dt Z Z Wrp by is the(k + 1)th zero of Ppy41(cos 6). (29)

Lstor  k=0p=—M
- P NT L A / To gain insight into (25) note that the rightmost convolution
. [Sfr"’(}{kp’f ’Akkp)] * T(lfkp’ £, M) maps the source distribution onto a set of plane waves which will
# (S (K, ' Kiep)] # fra(t) (252) henceforth be referred to as “outgoing rays.” In the literature,
(Sin(r), Lo{Tni(r,H)}) this mapping is also known as the slant stack transform (SST)
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Fig. 11. Radar cross section of an almond inthe plane extracted from the time domain CFIE result is compared to that obtained from FISC for four different
frequencies. The incident wave propagates alorg —z and isp = x polarized, and the almond is discretized using 29 700 spatial basis functions. (a) 400 MHz.
(b) 460 MHz. (c) 520 MHz. (d) 600 MHz.

[29]. The center convolution “translates” these to “incomingnd R, .- is the distance between the centers of the boxes (
rays,” which impinge on the observation sphere. Finally, via the). Such a definition stems from the fact tHatcorresponds to

last convolution and the spectral integration the incoming ragtse duration of the longest possible subsignal that can be trans-
are mapped onto the observers. The reconstruction of transiated “ghost-free” between the closest far-field pair. For all other
field using this three-stage process of aggregation, translatiéar-field pairs, the subsignal lengths are chosen to be an integer
and disaggregation, is reminiscent of the popular frequency-doultiple of the fundamental duration, i.€ 4o = (M a0 +

main FMM. 2p)As, whereM, oo = M| (Reaar — 2Rs — 2pcAy) /M ].

The rationale behind this choice will soon become transparent.
B. Implementation of Two-Level PWTD Enhanced The task of computing the current distribution at each time
MOT Solvers step is divided into (i) evaluating near-field interactions using

The ideas outlined in the preceding subsection give rise i usual MOT scheme and (i) computing far-field interactions
a procedure via which the interaction between basis functiow&ng the PWTD algorithm.
residing in any far-field box paifc, o) can be computed as a i) Near-Field Evaluationat each time step, the sum
superposition of transient plane waves. To complete the PWTD j—1
algorithmic prescription, these ideas are now systematized such Z Z; vnLi—in YmeEa and Vn € o (31)
that they can be efficiently applied in conjunction with an MOT =
scheme. With this in mnjd, a fundamental subsignal duration g computed for all near-field interaction pais, o).
T, = (M; + 2p)A, is defined, where i) Far-Field Evaluation to take all the far-field interactions
. R, a0 — 2R, into account, the algorithm follows the three stage process
M; = min { { A, J } —2p (30) that was alluded to in the previous subsection.

(@)
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4 ' ' ' for an arbitrary sphere pair can be constructed from a
function7 (k, ©2) that is bandlimited in both th ; and
8. Hence, this function can be sampled at a discrete set of
points and the translation function for any far-field sphere
pair reconstructed by interpolating through these sam-
ples. After convolving the outgoing rays with the trans-
lation function, the resulting rays are then superimposed
on to the incoming rays of the observer group. It should
be noted that as the evaluation®f (k. t, ki) yields
two real signals, viz., thé and¢ components of the field
PWTD which are to be translated, this operation is most effi-
¢ diect | ciently performed using one complex FFT [34].
1 c) Finally, the rays entering all the spheres are projected on
k to the observers. This is done via the leftmost convolution
4 45 in (25).

It should be pointed out that the error incurred in computing

3.5F

25

-0.5 L L
3.5
Log(N, )

Fig. 12. Comparison of the computational complexity of the classical affie fields via a plane wave expansion method can be controlled
PWTD augmented MOT schemes. to arbitrary precision [17], [33].

a) The first task is the construction of outgoing rays for alL. Complexity Analysis

b) The next step is to translate the outgoing rays from a

I

boxes. This involves computing’ (k. #, k) for all - 16 analyze the computational complexity of the PWTD-en-
ray directions for a fundamental subsignals comprised ghnced MOT solver described above, assume that there
M, + 2p samples and a duratidf}. Note thatonce this 5re v nonempty boxes, each containing approximately
information has been computed, it can be reused for dify _ N,/N, unknowns. In what follows, implementation
ferent interaction pairs. Furthermore, the number of timgnendent co%stants are denoted’as = 0,1,2,3. The cost
slices for which one needs to store these outgoing raysjsa pWTD-MOT analysis is comprised of near- and far-field
proportional to the largest linear dimension of the scatomponents. The computation of all near field interactions for
terer. the duration of the analysis requires

source groupy’ to an observer group:. This is done O = CoNyMIN, (332)
everyM, .. time steps. A\, ..’ is an integer multiple operations. The cost of evaluating all far field interactions
of M., the rays to be translated can be formed by cogensists of those incurred in constructing outgoing 1@ys; ),
catenating an appropriate number of outgoing rays frotranslating the latter onto incoming ra¢§32:), and projecting
groupc’. Since the length of the translation function isSncoming rays onto observefg2;.). Constructing outgoing
2R, qor [(cAy) = O(M, o) time steps, the convolu- rays involves the projection of all current elements in fiig

tion of the outgoing ray with the translation function camonempty boxes ont®@(A?) = O(M,) plane waves for alV,

be efficiently accomplished using fast Fourier transform#me steps. Projecting incoming rays onto observers involves a
(FFT’s) since the length of the outgoing ray to be transsery similar set of operations. Hence, the cost associated with
lated is of the same order. Unfortunately, as the transldiese operations is

tion function is not pgndlimited, sir_nple FFT"s cannot be Cég’ = () 3N, M2N, (33b)
used to transform it into the Fourier domain. However, ’

this hurdle can be surmounted as an analytical exprédl€ cost of translating one ray between grogpse’) scales
sion for the Fourier transform of the translation functio®S O(Mt,aar 10g My qar). As this operation has to be per-
is available. For a far-field pair( <), the Fourier trans- formed for all N, /M, . time slices andD(M?) = O(M;)

form of the translation function is directions, the cost of translating information between a
R oo o R given pair of spheres for the duration of the analysis scales
k,w)= / dt ¢ VT (k,t, M) as O(N;M?log M; o). Since M, s is bounded by the
o maximum linear dimension of the scatte(gfNV,), the cost of
= / dt eIt/ Beaor T (k ¢, M) translations for allV; far-field group interactions is
‘°ff , o Cp = CoN,N?/M,log N,. (33c)
= _%Qi} 2(21/ + 1)(=4)"ju(y)Py(cos#)  The total cost associated with the PWTD-enhanced MOT anal-
‘e, x’ =0 ysIs IS
j s
=—53—1(k, Q) (32) Or = Onp + Cp + Ckp + Cip. (34)

whereQ; = wR. .. /cis the normalized frequency andMinimizing C7- with respect toM, reveals that the optimal
Jv(+) is a spherical Bessel function of thxh order [27]. number of unknowns per group grows &§ Nsl/2 and that
This equation also indicates that the translation functiafl; scales a@(NtN,f’/2 log N;).
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IV. NUMERICAL RESULTS the PWTD-accelerated MOT codes is applied to the analysis of
\Ejﬁgttering from electrically large objects and is further validated
g;(dcomparing their bistatic RCS extracted at a number of fre-
uency points against RCS data computed using a frequency-

This section presents numerical results that serve both to
idate the above described PWTD-enhanced MOT scheme

to demonstrate its efficacy. The algorithm is verified in twd . | n all th les that follow. the time-d .
stages. In a first set of simulations, scattering from electrical main Solver. In all the examples that follow, the ime-domain

small structures is analyzed using PWTD-enhanced and cl F|E is used as the solution to the time-domain EFIE and MFIE

sical EFIE- and MFIE-based MOT codes and compared in tRan be corrupted by internal resonance modes [20]. First, tran-
g{_;t scattering from a sphere of unit radius is analyzed. The

time domain directly. In a second set of simulations, frequenc o : : .
domain radar cross section (RCS) data is extracted from ere is illuminated by a modulated Gaussian pulse traveling

Fourier transformed temporal far-field signatures [22] obtainjra thek = —igiilgect(ijon_(zjat?]d [})ct);]arizeld alorfg_z 4%.0Thr)leHcent§r
using a PWTD-augmented CFIE-based MOT solver. This d }gquency and bandwidth of the pulse ge= zan

is compared against similar results obtained using the fast Ifi2¥ — 200 MHZ_’ resp_ectivelyz and the sphere is discretized
nois solver code (FISC), an FMM-based CFIE frequency-d sing 9414 sp_atlal basis funct|ons_. Figs. ?(a)—(d) compare the
main [16] code. In all the examples presented herein, the in cs %a&g_? mhthe:—z p(ljaglesgt;ttamed usmgfthe PW'.I'D—e|_1t;]'
dent pulse is a modulated Gaussian plane wave parameteri 8859 scheme and F15% forarange otirequencies within
as the band of excitation. Specifically, the RCS is compared at 280,

‘ ) 350, 420 and 500 MHz. Results obtained from the time and fre-
E'(r,t) = pcos(2r fo[t — r-k/c]) quency domain codes are in good agreement with each other,
(ct—r -k —ct,)? even at 280 and 500 MHz, where the power in the incident pulse

5572 (35) isdown by 65 and 40 dB from its peak At respectively. In this
and subsequent examples, comparisons at frequencies where the
where f, is the pulse's center frequendy,and p denote its Power is down by at least 30 dB are made to highlight the fact
direction of travel and polarizatiow, = 6/(27 fi. ), andt, = that meaningful results can be obtained at these points through

3.50. The parametefbw will be referred to as the “bandwidth” the use of the CFIE. Indeed, if either the MFIE or the EFIE were

of the signal. Itis to be noted that the power in the incident puls&€d, errors induced by nonphysical currents at resonance fre-
is down by 160 dB aif = fo + fi. relative to fo. Also, the duencies would propagate in any MOT scheme and would be
details on the geometries of some of the scatterers that are us@gt Visible at the ends of the band [20].

here to illustrate the capabilities of this code can be obtainedNext, transient scattering from an almond that fits into a rect-
from [35]. angular box of dimensions 5.0 m1.92 mx 0.64 mis analyzed.

To establish that both PWTD-enhanced and classical M@ pulse traveling alond = —2 and polarized along = %
schemes yield identical results, transient scattering from tw¥cites the aimond. The center frequency and bandwidth of the
objects is analyzed. The first object is a rectangular plate pfilse arefo = 303.4 and fi,, = 200 MHz, respectively, and the
dimensions 2 nk15 m that resides in the-y plane. Ap = x almond is discretized using 10 620 spatial basis functions. RCS
polarized pulse traveling in tHe = —z direction, with center patterns in the:-z plane are extracted from temporal far-field
frequencyf, = 100 MHz and bandwidthf;,, = 50 MHz is signatures at210.2,261.8, 322.0, and 390.8 MHz, and compared
incident on the plate. The current on the plate is represenggrinst FISC data in Fig. 8(a)—(d); again, all RCS patterns agree
using 2170 spatial basis functions and solved for using the EFUIl with each other. It should also be pointed out that at both
The magnitudes of the current @.2,2.0,0.0) on the plate's 210.2 and 390.8 MHz the power in the incident pulse is down
surface, computed using both the PWTD-enhanced and classiyapbout 30 dB from its peak gb.

MOT schemes are compared in Fig. 5(a). Similarly, the temporalNext, scattering from a cone sphere is studied. The cone is 1
far field signatures of the field scattering along, computed m long and the radius of the half sphere attached to the cone is
using both methods, are compared in Fig. 5(b). Obviously, 001235 m. The incident pulse has a center frequendfy ef 800
PWTD-enhanced MOT solver yields results that agree very welhd bandwidthyy,, = 750 MHz is p = z polarized and travels
with those obtained using the classical scheme. along thek = —y direction. This cone sphere is discretized

The second object studied is an almond that fits into a reetsing 11412 spatial basis functions. The RCS patterns in the
angular box of size 5.00 m 1.92 mx 0.64 m. The almond is y-z plane obtained from the time-domain PWTD-enhanced
excited by a pulse traveling alodg= —z and polarized along MOT code is compared against that obtained from FISC 500,
p = %. The center frequency and bandwidth of the pulse ar®0, 900, 1100 MHz, as shown in Fig. 9(a)—(d). Examination of
fo = 204 and fi,,, = 200 MHz, respectively. The current on theFig. 9(a)—(d) shows that both the FISC and the PWTD results
almond is represented using 4680 spatial basis functions sgiee very well with each other, even at 500 and 1100 MHz
solved for using an MFIE. Figs. 6(a) and (b) compare the maghere the power in the incident pulse is down by 25 dB from
nitude of the current &0.01,0.58, 0.03) on the almond and the that at 750 MHz.
far field signature of therz traveling scattered field obtained All examples analyzed thus far involved relatively simple ge-
using PWTD-enhanced and classical MOT codes; again, gomuietries. Next, scattering from a VFY 218 aircraft, discretized
agreement between both sets of results is observed. using 9747 spatial basis functions is analyzed. The incident field

Via the above numerical simulations, it has been verified thavels in thek = —§ direction and is polarized along = X,
the solutions to the EFIE and the MFIE obtained using PWTDas a center frequency ¢gf = 100 MHz and bandwidth of
enhanced and classical MOT schemes are in agreement. Néxt, = 60 MHz. Fig.10(a)—(d) compares the RCS patterns in

X exp l—
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the z-y plane at 75, 85, 105, and 130 MHz, where the pulse's[5] R. Mitra, Transient Electromagnetic Fields New York:

power at these frequencies is down by 27, 9.7, 1.07, and 39 dB_ Springer-Verlag, 1976, ch.2. _

with respect to its peak value. Again, the results of the time-do-[©! ?Hep'e:z?r?ff%‘g rﬁtgé;m;hdatsi;iﬂ%gggg%ﬂf&gﬁi%’g&gggor

main code replicate all of the RCS nulls and peaks computed o/, 12, pp. 11811205, 1990.

using the frequency-domain solver. [7] E. K. Miller, “A selective survey of computational electromagnetics,”
Finally, scattering from an almond discretized with 29700 _!EEE Trans. Antennas Propagatol. 36, pp. 1281-1305, Sept. 1988.

spatial basis functions is analyzed. This simulation pushes th 8l gn(fj's_T'\J/h,\Ll’l'Js gclfcgg?f gnetic Inverse Profiling Utrecht, The Nether-

limits of the two-level PWTD algorithm insofar as computa- [9] p. A. Vechinski and S. M. Rao, “A stable procedure to calculate the

tional resources are concerned. This almond fits inside a rect- transient scattering by conducting surfaces of arbitrary shdp&E

angular box of dimensions 6.00 m 2.31 m x 0.77 m and Trans. Antennas Propagaicol. 40, pp. 661-665, June 1992. .
L . ~ N . . . [10] B. P. Rynne, “Stability and convergence of time marching methods in
IS '”unjmated by_ P =x polarlzed Gaussian pUIse travellng scattering problems/fht. J. Appl. Math, vol. 35, pp. 297-310, 1985.
alongk = —z, with a center frequency gf, = 500 MHz and  [11] w. Pinello, A. Ruehli, and A. Cangellaris, “Stabilization of time do-
a bandwidth off,,, = 300 MHz. Fig.11(a)—(d) compares the main solutions of the efie based on the partial element equivalent cir-
RCS pattern in the-z plane computed using the time- and fre- cuit models,” inProc. IEEE Antennas Propagat. Soc. Int. Sympl. 3,

. Montreal, Canada, July 1997, pp. 966—969.
quency-domain codes at 400, 460, 520, and 600 MHz. At bothy 5 3. Bluck and S. P. Walker, “Time-domain BIE analysis of large

400 and 600 MHz, power in the incident field is down by 27 dB three dimensional electromagnetic scattering probledZEE Trans.
from its peak. As is apparent in Figs. 11(a)—(d) , the RCS pat-  Antennas Propagatvol. 45, pp. 894-901, May 1997.

terns computed by both the time-domain and frequency-domai}3] S: Dodson, S. P. Walker, and M. J. Bluck, *implicitness and stability of
. . time domain integral equation scattering analysigjpl. Comp. Elec-
codes are in very good agreement with each other. tromagn. Soc. Jvol. 13, no. 3, pp. 291-301, 1998.

Finally, the predicted computational complexity of both the[14] S. P. Walker, “Scattering analysis via time-domain integral equations:
PWTD-enhanced and classical MOT schemes is verified. All Methods to reduce the scaling of cost with frequentiyEE Antennas

. . P Propagat. Mag. vol. 39, pp. 13-20, Oct. 1997.
results presented above were obtained using an SG Or|g|n20(’[)95] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method

with peak performance rated at 360 Mflops. In Fig. 12, the log-  for the wave equation: A pedestrian prescriptidEEE Antennas Prop-
arithm of the central processing unit (CPU) time required to  agat. Mag, vol. 35, pp. 7-12, June 1993.

compute the interactions at one time point is plotted againdt6] J- M. Song, C. C. Lu, and W. C. Chew, "MLFMA for electromagnetic
thelog IV,. This graph reveals that the computational cost of a \Slgﬁtfg'”pgp‘b’l' Lasffli%?pgét?%e;;#'z'z Trans. Antennas Propagat.
PWTD-MOT algorithm scales a®(N,N}-*"" log N, ), which [17] A A érgin, B. Shanker‘, and E. Michielssen, “Fast evaluation of tran-
is very close to the theoretically predicted scaling law. Also, it sient wave fields using diagonal translation operatatsComp. Phys.
should be noted that the break-even point or the number of un-__ vo!- 146, pp. 157-180, 1998.

. 8] A.A.Ergin, B. Shanker, and E. Michielssen, “Fast transient analysis of
knowns where it becomes more advamageous touse the PWTB' acoustic wave scattering from rigid bodies using a two-level plane wave

enhanced MOT schemes as opposed to a classical MOT solver,  time domain algorithm,J. Acoust. Soc. Amerol. 106, pp. 2405-2416,
is as low asV, = 700. 1999.
[19] J. R. Mautz and R. F. Harrington H-field, e-field, and combined

field solutions for conducting bodies of revolutiomXEU, vol. 32, pp.

This paper presented a two-level PWTD-enhanced MO0l B: Shanker, A A. Ergin, K. Agyln, and E. Michielssen, "Analysis of
transient electromagnetic scattering from closed surfaces using the com-

algorithm that per_mits the fast EFIE'{ MFIE-, ar]d CFIE-based  pjined field integral equation,” IEEE Trans. Antennas Propagat., to be
analysis of transient electromagnetic scattering phenomena. published.
The computational complexity of this algorithm scales ad?21] D.S. JonesMethods in Electromagnetic Wave PropagatiorOxford,

3/2, 2 U.K.: Oxford Sci., 1994.
O(NtNS log NS)’ as opposed tCO(Nth) for the con- [22] S.M.RaoandD.R. Wilton, “Transient scattering by conducting surfaces

ventional MOT algorithm. Numerous simulations that were of arbitrary shape,JEEE Trans. Antennas Propagatol. 39, pp. 56-61,
conducted during the course of this study demonstrate the use- 1991. _ _ _ _
fulness of these solvers in characterizing broad-band scatterifg?! S- M- Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
. by surfaces of arbitrary shapdEEE Trans. Antennas Propagatol.
from large objects. AP-30, pp. 408—418, May 1982.
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