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Letters

Frequency-Domain Complementary Operators for The first of the two complementary operators is constructed by ap-
Finite-Elements Simulation plying &, on B
Omar M. Ramahi (0:B)u = 0. 3

) o o duced for th The reflection coefficient corresponding & B can be obtained by
Abstract—A new mesh-truncation technique is introduced for the 5hn1ving (3) on (2) to give
frequency-domain (time-harmonic) solution of open-region radiation pplying (3) (9)tog
problems. The technique is based on the complementary operators method
(COM), where two independent solutions are averaged to eliminate R(0.B) = —R(B). 4)
first-order boundary reflections. The dual complementariness in the
frequency domain is achieved by introducing a discrete-domain operator When implemented numerically, however, the reflection coefficient
that achieves the objective 0@, in the original time-domain development e t0 9. B is affected by the discretization of the domain [2]
of COM. ° . N o
Therefore, to account for this discretization, we represent the field as
Index Terms—Absorbing boundary conditions, finite-element methods.
= 67]/61-2&1 + Rejkl-zAx (5)
I INTRODUCTION wherei is the space index in the-direction. Naturally, the represen-
The complementary operators method (COM) has been successftdljon of the field, as in (5), assumes structured grid in the boundary
used for open-region mesh truncation in the finite-difference time-deegion.
main (FDTD) solution of wave propagation problems [1]-[3]. The un- Approximatingd.. in (3) as a backward finite difference, we have
derlying mechanism of COM is two auxiliary differential operators, i
0, andd;. These two operators are applied separately on an absorbing 8. ~D. = I-5 (6)
boundary condition (ABC) such as Higdon, Liao, etc. The purpose of ' Az
the auxiliary operators is to produce reflection coefficients that areé 180

. . . 1 . .
out of phase, not only in the analytic domain, but also in the discre‘f‘@ere[ Is the identity operator anéi™ is the shift operator. Finally,

domain. By averaging the solutions obtained from the appli(:ationl‘?);%IbStitUting (6) into (4) and applying the resulting operator on (5), we
each of the two operators on an ABC, a new solution is obtained t
is devoid of first-order reflections.

In [1]-[3], the COM theory has been fully developed for time-do-
main simulation. In the frequency domain, the analogous dual ahd
9, must be obtained. This poses a difficulty. The implementatiah.of

in the frequency domain is straightforw_ard. However,_ accorr_lplishinc%mes inconsequential since the operatiof.aB is equated to zero.
the effect ofd; cannot take place by a simple conversiorjdosince Therefore. we can use the difference operé&o:: T — 51 instead

such conversion does not have the desired effect on the numerical imp;, . " " . . .
. . e . . .~ ot the finite-difference one in (6) to arrive at the same reflection coef-
plementation. In this work, this difficulty is overcome by 'erducmq’icient in (7), viz

a new operator, which is analogousdpand achieves its objective in
the time domain. R(D.B") =~ R(AB?) = —e/*%* R(BY). ®)

R(d,B) = R(D,B") = (-1)¢’**"R(B") )

whereB“ denotes the boundary operaf®iin the discrete domain.
Notice that once in the discrete domain, the divisionMyin (6) be-

Il. FREQUENCY-DOMAIN COMPLEMENTARY OPERATORS For the complementary operation to be exact, we need a second com-

. . . . / d
We consider the problem of wave propagation in open region (freiémentary operator that gives a reflection coefficientgt(AB*).
space). [The development here is applicable to the two- (2-D) or thrérél'_s can be accomplished by defining a new discrete-domain operator,
dimensional (3-D) space.] Let us consider a planar outer bounddffjich we denote byA
normal to ther-axis. LetB denote the operation of an ABC. Applying

A —1
B on the fieldu, we have A=T+5". 9)

ey A d
Bu=0. 1) Applying A on B“, we have

R(AB%) = ¢**2"R(B"). 10
The reflection coefficient that results from the applicationAf de- ( )= (B%) (10)

noted asi¥(B), is found by representing the field at the boundary ifne reflection coefficients in (8) and (10) are precisely L@@t of
terms of outgoing and incoming plane waves phase, thus achieving full complementariness.

_ —Jkax Jjkax
u=e R(B)e . 2
+ ( ) ( ) I1l. NUMERICAL IMPLEMENTATION

. . The complementary operators are applicable only on boundaries that
Manuscript received March 20, 1999; November 22, 1999.
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Fig. 1. Computational domain used for the problenEbpolarization scattering by a perfectly conducting rectangular slab.

which were developed for time-domain mesh truncation after carryii 1.025
out the conversion to the frequency domain. 1.000
Higdon's N'th-order operator in the frequency domain is expresse 0.075 1
as -
8 0.950
N g
B = (0, + jk)’ (11) % 0.925
§ 0.900
wheref is the wave number and = w, y, z. Implementing (11) using — 0.875
backward finite-difference approximation fay,, we have g -
© 0.850
, 3 .
B — [(1+ jkAR) — 571]A\/ (12) 1% 0.825 «seeeeess Higdon.2nd
-8 0.800 1 e Higdon.3rd
whereAh = Az, Ay, Az. Therefore, the two complementary opera ;'_.? 0.775 —COM
tors simply become § 0.750
4 . ) 4N 0.725
AB:(I_S )[(1+7kAh)I_S] (13) YR 2T N U NPUN NUPUN NPE URPUN RPN NPV TP SV NI ST N 1 3
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node number along T
AB? = I+ 5*1)[('1 + jRART - 5*1]1”'_ (14) Fig. 2. Scattered electric field calculated on the confousing the MoM and

the finite-element method employing the COM, Higdon's second-order ABC

. . . . (Higdon 2nd), and Higdon's third-order ABC (Higdon 3rd).
An important requirement for the implementation of the above oper-

ators is an orthogonal grid in the boundary region. The minimum width

of this grid depends on the order of the operator employed. the contour. For comparison, the method of moments (MoM) solu-
The numerical implementation of the two discrete-domain complgon is also provided, along with the solutions obtained using Higdon's
mentary operators B* and AB* in a frequency-domain finite-ele- second- and third-order boundary conditions. The COM solution em-
ment code is made possible by the recently introduced methodologyigyed Higdon's third-order ABCX = 3 in (13) and (14)), which,
[5]. In [5], a procedure was introduced to incorporate Bayliss—Turkafter the application ofA and A results in a fourth-order difference
(BT) ABC’s of any order in a finite-element code. Since the discreteperation. The numerical results presented in Fig. 2 show very strong
domain complementary operators introduced in this work are identiegjreement between the MoM and the COM solutions. Such strong
in form to the BT operators, the implementation of COM follows amgreement is achieved in spite of the very close proximity of the outer

identical procedure to that in [5]. boundary to the conductor.
The effectiveness of this new construction is demonstrated by con-

sidering a numerical experiment in 2-D space in which we study the
problem of E-polarization scattering by a thin perfectly conducting
slab measuring 0.225 x 2.95\. The direction of the incident wave This paper presented the development of frequency-domain com-
is taken to be parallel to the long axis of the slab as shown in Fig. dlementary operators. The complementariness is achieved in both the
The outer boundary is positioned such that the separation betweeanialytic and discrete domains. A numerical experiment was presented
and the conductor 8.4\ from the left- and right-hand sides afidA  in 2-D space showing the effectiveness and practicality of this new
from the top and bottom, as illustrated in Fig. 1. Fig. 2 shows tlecheme.

magnitude of the scattered electric field on the observation contourThe application of this method requires two independent simulations
T, which is highlighted in Fig. 1. A total of 148 nodes span the olnfthe problem. Despite this, however, computer memory and execution
servation contouf’. The numbering of the nodes starts at the lowefme can be saved by positioning the outer mesh-truncating boundary
left-hand corner and proceeds clockwise. Due to the symmetry of thery close to the conductor as was demonstrated in the numerical ex-
problem, results are only shown for field values on the upper half ample presented.

IV. CONCLUSION
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Radiation Pattern

Full-Wave Analysis of Planar Stratified Media with
Fig. 1. Radiation pattern sustained by a vertical electric source for different
Inhomogeneous Layers values ofs(" (f = 10 GHz,d = 1.55 mm,h = 1.0 mm,m () = 2.1, o

. . e =25, Al =3, 0 = 4),
Lucio Vegni and Alessandro Toscano T e oo )

has been considered for example in [3]. A microstrip on an homoge-
Abstract—in this paper, the dyadic Green'’s functions for an inhomo-  neous stratified substrate is analyzed in [4].

geneous isotropic grounded slab embedded in an unbounded isotropic Since, to the authors' knowledge, no method has been reported to
half-space fed by an electric three-dimensional (3-D) point-source based " . ’ . .
on the equivalent two-port circuit representation along the axis normalto COMPUte in a closed analytical form the complete electric and magnetic
the stratification is presented. The working case is extensively investigated spectral Green's dyad for layered media with inhomogeneous layers, in
by deriving important information on the radiation of the structure and this paper the Green's functions for such media will be presented.
on how to control the radiation on the horizon plane. Numerical results Finally, numerical results will be shown to see the effect of the inho-

are also presented showing the effects of the electromagnetic parameters f . . o
on radiation pattern of the integrated structure. mogeneity on the electromagnetic behavior of the stratified structure.

. Index Tgrms—Green's dyad, inhomogeneous media, layered media, spec- II. ANALYTICAL DEVELOPMENT
ral domain.

Let us now consider an isotropic inhomogeneous medium character-
ized by a dielectric constanfy) and a magnetic permeabilipfy) =
1.

In the past few years, the attention paid to the study of electromag-ollowing the method developed in [6] for the bianisotropic homo-
netic propagation in inhomogeneous media has increased notably. TEseous case, we start from the Maxwell's equations in presence of
increasing interest is raised by the potential applications of the inhomedectricJ and magnetid sources4’~! is assumed).
geneous material as well as its theoretical and academic significance By applying the two-dimensional (2-D) Fourier transform defined as

The most outstanding properties of inhomogeneous media cam{5] and by rotating the Cartesian coordinate sysfem, y. z) into
cerning the propagation of electromagnetic fields are reported to the associated orfé(v, y, «) defined by the matrifC [5] with:
their ability either for enlarging the bandwidth and for improving the )
coupling effects due to the surface waves. { a = ¢sin(6)

Although today there are no known natural media showing inho- 3= €cos(d)
mogeneity properties at microwave and millimeter frequencies, the

progress in the polymers science is expected to make these medié;&)erthefollowmg hypotheses on the constitutive relations{4) =
S

|. INTRODUCTION

h /N IR N (o — e o~ Ky ;
common use in future technology. In this event, many of the propos d /v):2)ey) = (&7 [y°); and 3)z(y) = ere itis possible to

devices whose performance lies on the inhomogeneity properties fnw tr;atr::lsg anilé/gali:czllqutl?hnrs for the sp?c.tral electromagnetic field
the media could be built. componentst. a by € fhree cases are.

- _ (1) .
The electromagnetic propagation in inhomogeneous materials hast) When=(y) = (s /y) fory # 0:

not been extensively studied in the literature. General features on e 2 (1)
.. . i . . . ~ e i ) 5 — kofr
the bi(iso/ani)sotropic materials are presented in [1] and different E, = ciM .7,2,2%)
aspects about electromagnetic propagation in homogeneous stratified Y 2¢
bi(iso/ani)sotropic media are considered in [2]. Propagation along £ — kgg,@) o
. E . i . . + CU | —,2,2y9¢
closed waveguides inhomogeneously filled with isotropic materials 2¢
i ¢~ k2D @
_ H,=e ¥ |D/M [ >2—2" 1,2¢9¢
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Fig. 2. Examples of radiation on the horizon plafie£ 10 GHz,md = 12 mm,h = 4 mm,&{?) = 1,0 d = 8.7 mm,h = 2.9 mm,s» = 3, A d = 15 mm,
h =5 mm,e? = 5.2).

2) whenz(y) = (e(rz)/yz), fory # 0: of a three-dimensional (3-D) electric point-source embedded in an ho-
: 1 - mogeneous isotropic grounded slab atghe —# plane.
E,.=y {01 Bessel T <—§\/ 1- 4k§€5r‘), yE) The spatial electromagnetic field radiated in a spherical coordinate
1 . system((r, 8, ) can be evaluated by applying the equivalence the-
+ C3 Bessel I <§\/1 — 4k§e£‘), yﬁ)} orem in the interface plang = 0. In this section, some examples
N 1 1 ‘ (2) of radiated patterns are shown for different values of the electromag-
H,=— {Dl Bessel I <——\/1 — 4k§s$2), y§> netic parameters under both vertical and planar excitation conditions.
VY 2 The role of the inhomogeneity can be fully examined by comparison
+ D, Bessel I <1 1- 4k§a£2)./ y£>:| with the homogeneous case as shown in Fig. 1 for an inhomogeneous
2 isotropic grounded slab characterized by different dielectric constant
3) whensz(y) = =z.e XY lettingp = /K2 +4/K,0 = profiles. From this figure it is observed that the inhomogeneous mate-
(ko /K ) /27 rial exhibits anincreased directivity in the radiation pattern. Asiitis well
) evident, the behaviors of the radiation patterns are strongly affected by
E, = C, Bessel .J <_ 25 Jef%) £(y). Therefore, the inhomogeneity controls in a strong way the value
K and the directivity of the radiated pattern. Fig. 1 also gives some infor-
+Cy Bessel J <2é M—%) mation about the reduction of the radiation in the= 0°, 90° planes.
K (3) Thismeansthatin far zone the effect of the electromagnetic waves trav-

. K%

b = eling with wave numbers parallel to they plane becomes negligible.

This result may lead to an increased radiation efficiency of the structure
+ Dy Bessel J (p, ge—%ﬂ when inhomogeneous grounded slabs with metallic patches are used as
printed antennas.

M(a,b,c) andU(a, b, c) are the hypergeometric confluent func- Finally, in Fig. 2 we show the effect of the inhomogeneity on the ra-
tions, Bessel J[n, 2] gives the Bessel function of the first kind; (»).  diation along the:-axis of the horizon plane. For some practical appli-
Bessel I[n, 2] gives the modified Bessel function of the first kindcations (for instance: microstrip patch antennas in array configuration)
In(2). it is important to know and control the radiation on the horizon plane.

The elements of the first and third row of the spectral electric Green's
dyad may be obtained in terms of the integrals of the wave equations for
E, in the grounded slab and in the isotropic half-space, respectively,

Ky
[Dl Bessel J (—p, (7(377)
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Phased-Array Radiator Reflection Coefficient Extraction
from Computer Waveguide Simulator Data When Grating H-plane
Lobes Are Present

Eric L. Holzman

Fig. 1. Two radiator cell waveguide simulat@it;, mode propagates in each
waveguide radiator. Radiators are separated by zero-thickness metal septum.

Abstract—Commercially available finite-element software that solves
Frequency: 10 GHz.

Maxwell's equations for arbitrary three-dimensional bounded structures
has enabled phase-array radiator designers to perform waveguide
simulator modeling of phased-array radiating elements on the computer
very efficiently. Published work on waveguide simulator design has pointed into empty space. When a waveguide simulator is modeled
concentrated on array performance in the absence of grating lobes, on the computer and a grating lobe is present, extraction of the radi-
a requirement for many radar applications. For such simulators, the 54 reflection coefficient from thé-parameter data is not completely
reflection coefficient of each propagating mode at the waveguide simulator . . -

port gives the radiator reflection coefficient at a discrete scan angle. Straightforward. In this paper, we present a method for extracting the
However, the design of limited scan arrays can lead to selection of an array reflection coefficient of the radiating element from the waveguide sim-

element spacing that allows grating lobes in real space. When a waveguide ulator data.

simulator is modeled on the computer, and a grating lobe is present, the

two waveguide modes representing the main lobe and the grating lobe will

propagate in the waveguide simulator and they will be coupled together. II. DISCUSSION
The simulator port-reflection coefficient of either mode is not the true

reflection coefficient seen by the radiating element. We describe a method  Fig. 1 shows a simple waveguide simulator. There are three physical
for extracting the reflection coefficient of the radiating element from the ports to this simulator. At the top of the figure are two waveguide radi-
waveguide simulator data when one or more grating lobes are present. ating elements (ports 2 and 3), which, in an actual array, would be con-
_Index Terms—Grating lobes, phased-array antennas, reflection coeffi- nected to phase shifters or T/R modules and an RF beamformer. Each
clent. of the waveguide radiator cells propagates a sifitfleo mode (not to
be confused with the simulator modes). For this example, the element
|. INTRODUCTION spacing and frequency have been chosen so that a grating lobe will ap-
pear when the beam is scanned past 28 the bottom of the figure,

The use of waveguide simulators to determine the reflection cogfe waveguide simulator propagates three modes. Note that one narrow
ficient of phased-array radiating elements in an infinite array envirofig|| of the simulator is a perfect magnetic conductor and the other is
ment is widespread. The development of fast user-friendly commerperfect electric conductor (creating a compact structure equivalent to
cially available finite-element software in the 1990’s has made possiblgoyr-cell all-metal simulator). Fundamentally, the reflection coeffi-
waveguide simulator modeling of phased-array radiating elements Qant of each propagating mode at the waveguide simulator port gives
the computer. Eisenhart [1] provides an excellent discussion includipg radiator reflection coefficient at a discrete scan angle, which is a
detailed examples of the computerized method and its many advgifliction of the frequency of analysis, the mode's field configuration,
tages. His discussion and other published work on waveguide simulaigt the cutoff frequency. In our example, the three modes correspond
design theory (see references in [1]) focus on array performance in {§&nree pairs off -plane scan angles;9.43, £:29.46, and=+55.05.
absence of grating lobes, a requirement for many radar applicatiofgp|e | shows thes-parameter data, simulator mode propagation co-
However, the design of limited scan arrays can lead to the selections@icients and corresponding scan angles obtained from the computer
an array element spacing that allows grating lobes in real space. Forg¥el. When a grating lobe is not present in real space, we can interpret
ample, a phased array placed in geosynchronous orbit might have agd-s_parameter data obtained from a computer waveguide simulator
atively wide element separation, two wavelengths or more, to minimize 5 straightforward manner. For a scan angle of 9tde magnitude
the number of elements. The array can pointits main beam anywherggm: | mode 1 is the phased-array radiator reflection coefficient in the
the Earth’s surface within a scan cone of 20d keep its grating lobes jxfinjte array environment. Any energy reflected at the radiator/simu-

lator interface reflects back in mode 1 only.

The author was with Lockheed Martin GES, Moorestown, NJ 08057. He j In pomraSt to mOd? L SimUIatO.r modes 2 and S.are COUp.IEd together.
now with Telaxis Communications Corporatioh, South Dee’rfield, MA 0137§s Eisenhart shqws in [1], the eX|StenC_e of a grating lobe is the _Cause'
USA. When the array is scanned #29.46 (simulator mode 2), a grating

Publisher Item Identifier S 0018-926X(00)03248-8. lobe will appear at-55.05 (simulator mode 3). Conversely, when the
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TABLE |
SCATTERING PARAMETER MATRIX, MODE PROPAGATION CONSTANTS AND SIMULATOR SCAN ANGLES. PORT 1 IS WAVEGUIDE SIMULATOR, AND PORTS2 AND 3

ARE RADIATING ELEMENT PORTS FREQUENCY. 10 GHz. HGHLIGHTED PARAMETERS ARE COUPLED SIMULATOR MODES2 and 3

S-MATRIX Port 1, mode 1 | Port 1, mode 2 | Port 1, mode 3 | Port 2, mode 4 | Port 2, mode 5
Port 1, mode 1 0.1343, -44.1° 0.0012, 158.9° | 0.9155,-60.9° | 0.3792, -61.0°
Port 1, mode 2 0.0007, -76.2° 0.3115,-38.8° | 0.7508, 141.2°
Port 1, mode 3 0.0012, 158.9° 0.2222,40.0° | 0.5383,-140.2°
Port 2, mode 4 0.9155, -60.9° 0.2222,40.0 0.1154, 101.5° | 0.0460, 106.1°
Port 3, mode 5 0.3792,-61.0° | 0.7508, 141.2° | 0.5383,-140.2° | 0.0460, 106.1° | 0.0242, 85.0°
Propagat Constant | 206.7493 m™ 182.4887 m!' | 120.0658 m™ | 158.2383 m” | 158.2383 m™
Scan Angle 9.43° 29.46° 55.05°

array is scanned t¢-55.05, a grating lobe appears at29.46. From I';=b,/a, ['=by/a,

the symmetry of this behavior, we can conclude that the radiator re-

flection coefficient must be the same for either scan angle, a fact that b, 4 bs 35

appears to be contradicted by the highlighted data in Table I. Hence,
the simulator port reflection coefficient of either mode cannot be the
true reflection coefficient seen by the radiating element.

I1l. EXTRACTION METHOD

To determine the radiator reflection coefficient, we refer to Fig. 2,
which shows a five-port network model of the waveguide simulator in
Fig. 1. Each port of the model represents one of the propagating modes,
one in each radiator and three in the waveguide simulator. The circled
numbers identify the physical ports of the simulator. As Eisenhart states
in [1], we can determine the radiator reflection coefficient from either
the simulator port (looking in) or the radiating element port (looking
out). When a grating lobe is not present, this task is easiest from the
simulator side. However, when a grating lobe is present, we must resort
to looking out from the radiator side. Because the array is infinite and
all radiating elements are identical, the radiator reflection coefficient
should be the same in either radiating element port, as our analysis

T T

Radiator element ports
(1 propagating mode each)

Waveguide
@ Simulator
(3 propagating modes)
b, g b, a, b; a;

will show. In Fig. 2,T'y andT's are the unknown radiator reflectionfig. 2. Five-port network representation of two radiator cell, waveguide
coefficients we seek. In terms of the five-pdttparameters, we can simulator. Each port represents a propagating mode. Circled numbers denote

write

by = Sqrar + Sazaz + Sizaz + Siaaq + Sasas
bs = Ssi1a1 + Ss2a2 + Sszas + Ssaaq + Sssas.

Now consider that the array is transmitting only. Then,= a> =
az = 0 because no energy is being received from the simulator port.
The above equations simplify considerably

by = Ssaas + Sasas
bs = Ssaa4 + Sssas.

physical portsI"y andT's are unknown feed coefficients.

Equations (1) and (2) with (3) give the radiating element reflection
coefficients

F4 - 544 - 545514/515 (4)

s = —S554515/514 + Sss- )

If we substitute the values from Table | into these equations, we get
'y = 0.0101,39.3° andI's = 0.0094, 38.1°, which are identical

When we solve for the reflection coefficients of the radiating elementsijthin the accuracy of thé-parameter data we used.

we get

Ty =bs/as = Saa + Sasas/as

s =bs/as = Ssaaq/as + Sss.

@)
)

We have verified this method against published waveguide array data
in which a grating lobe was present [2] and obtained excellent agree-
ment. The same method can be applied to simulators with more radiator
cells; the computations just become more tedious and should be done
with a computer.

Designers of limited-scan arrays sometimes use highly directive ra-

The ratioas /as is an unknown. However, we only want to transmit thejiators to suppress grating lobes. Even so, our formulation is general

two coup_led modes representedibyandbs. Thus, we set; equalto  gn siill valid; however, in this case it is unnecessary. If the level of sup-
zero, which gives

We solve this equation for the unknown ratio to get

b1 = S1aa4 + Sisa5 = 0.

asz/as = —=Si5/5a.

@)

pression is high, the coupling between the waveguide simulator modes
corresponding to the main beam and grating lobes will approach zero
and the magnitude of the reflection coefficient at the grating lobe angle
will approach unity. Consequently, we can use the conventional proce-
dure of calculating the reflection coefficient from the waveguide sim-
ulator port with reasonable accuracy.
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IV. CONCLUSION to a main beam and grating lobe (the example presented in this paper),
We have described a method for extracting the reflection coefficieNt must adjust the radiating element excitations to suppress the unde-

of aradiating element from waveguide simulator data when one or mosrléed modes. This procedure is analogous to setting phase shifters in an

grating lobes are present. Because the waveguide simulator modes%%trgal phased array to produce a desired progressive phase distribution
responding to the main beam and grating lobe become coupled, QLoss the array.
must determine the radiating element reflection coefficient from the

radiating element port, rather than from the waveguide simulator port.

However, the reflection coefficient of each radiating element contains

contributions from all the waveguide simulator modes. Viewed differ- [1] R. L. Eisenhart, “Antenna element and array simulation with commer-
ently, if we excite the radiating element port mode, all three propa- %'al't;?ﬂ(";"a;%;;;‘i':';‘r':g E";ri‘l’ve;sttgrc’fé"ézre fﬁgv"c'\c(g;‘i’(‘{ao’v?lfn%‘gg“'”g
gating modes in the simulator port are excited (see data in Table )5, 5 £ Farrel and D. H. Kuhn, “Mutual coupling in infinite p?/énar arrays
thus, the radiating element port reflection coefficients are not mean- ~ of rectangular waveguide horn$EEE Trans. Antennas Propagatol.
ingful without manipulation. To excite a pair of modes corresponding AP-16, pp. 405-414, July 1968.

REFERENCES



