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Frequency-Domain Complementary Operators for
Finite-Elements Simulation

Omar M. Ramahi

Abstract—A new mesh-truncation technique is introduced for the
frequency-domain (time-harmonic) solution of open-region radiation
problems. The technique is based on the complementary operators method
(COM), where two independent solutions are averaged to eliminate
first-order boundary reflections. The dual complementariness in the
frequency domain is achieved by introducing a discrete-domain operator
that achieves the objective of in the original time-domain development
of COM.

Index Terms—Absorbing boundary conditions, finite-element methods.

I. INTRODUCTION

The complementary operators method (COM) has been successfully
used for open-region mesh truncation in the finite-difference time-do-
main (FDTD) solution of wave propagation problems [1]–[3]. The un-
derlying mechanism of COM is two auxiliary differential operators,
@x and@t. These two operators are applied separately on an absorbing
boundary condition (ABC) such as Higdon, Liao, etc. The purpose of
the auxiliary operators is to produce reflection coefficients that are 180�

out of phase, not only in the analytic domain, but also in the discrete
domain. By averaging the solutions obtained from the application of
each of the two operators on an ABC, a new solution is obtained that
is devoid of first-order reflections.

In [1]–[3], the COM theory has been fully developed for time-do-
main simulation. In the frequency domain, the analogous dual of@t and
@x must be obtained. This poses a difficulty. The implementation of@x
in the frequency domain is straightforward. However, accomplishing
the effect of@t cannot take place by a simple conversion toj! since
such conversion does not have the desired effect on the numerical im-
plementation. In this work, this difficulty is overcome by introducing
a new operator, which is analogous to@t and achieves its objective in
the time domain.

II. FREQUENCY-DOMAIN COMPLEMENTARY OPERATORS

We consider the problem of wave propagation in open region (free-
space). [The development here is applicable to the two- (2-D) or three-
dimensional (3-D) space.] Let us consider a planar outer boundary
normal to thex-axis. LetB denote the operation of an ABC. Applying
B on the fieldu, we have

Bu = 0: (1)

The reflection coefficient that results from the application ofB, de-
noted asR(B), is found by representing the field at the boundary in
terms of outgoing and incoming plane waves

u = e
�jk x +R(B)ejk x

: (2)
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The first of the two complementary operators is constructed by ap-
plying @x onB

(@xB)u = 0: (3)

The reflection coefficient corresponding to@xB can be obtained by
applying (3) on (2) to give

R(@xB) = �R(B): (4)

When implemented numerically, however, the reflection coefficient
due to @xB is affected by the discretization of the domain [2].
Therefore, to account for this discretization, we represent the field as

u = e
�jk i�x +Re

jk i�x (5)

wherei is the space index in thex-direction. Naturally, the represen-
tation of the field, as in (5), assumes structured grid in the boundary
region.

Approximating@x in (3) as a backward finite difference, we have

@x � Dx =
I � S�1

�x
(6)

whereI is the identity operator andS�1 is the shift operator. Finally,
substituting (6) into (4) and applying the resulting operator on (5), we
have

R(@xB) � R(DxB
d) = (�1)ejk �x

R(Bd) (7)

whereBd denotes the boundary operatorB in the discrete domain.
Notice that once in the discrete domain, the division by�x in (6) be-

comes inconsequential since the operation of@xB is equated to zero.
Therefore, we can use the difference operator� = I � S�1 instead
of the finite-difference one in (6) to arrive at the same reflection coef-
ficient in (7), viz.

R(DxB
d) � R(�Bd) = �ejk �x

R(Bd): (8)

For the complementary operation to be exact, we need a second com-
plementary operator that gives a reflection coefficient of�R(�Bd).
This can be accomplished by defining a new discrete-domain operator,
which we denote by��

�� = I + S
�1
: (9)

Applying �� onBd, we have

R( ��Bd) = e
jk �x

R(Bd): (10)

The reflection coefficients in (8) and (10) are precisely 180� out of
phase, thus achieving full complementariness.

III. N UMERICAL IMPLEMENTATION

The complementary operators are applicable only on boundaries that
are parallel to the Cartesian coordinates. In this respect, their imple-
mentation is similar to perfectly matched layer (PML) truncation tech-
niques. ForB in the above equations, we use Higdon's ABC’s [4],
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Fig. 1. Computational domain used for the problem ofE-polarization scattering by a perfectly conducting rectangular slab.

which were developed for time-domain mesh truncation after carrying
out the conversion to the frequency domain.

Higdon'sN th-order operator in the frequency domain is expressed
as

B = (@n + jk)N (11)

wherek is the wave number andn = x; y; z. Implementing (11) using
backward finite-difference approximation for@n, we have

B
d = [(1 + jk�h)I � S

�1]N (12)

where�h = �x;�y;�z. Therefore, the two complementary opera-
tors simply become

�B
d = (I � S

�1)[(1 + jk�h)I � S
�1]

N

(13)

��B
d = (I + S

�1)[(1 + jk�h)I � S
�1]N : (14)

An important requirement for the implementation of the above oper-
ators is an orthogonal grid in the boundary region. The minimum width
of this grid depends on the order of the operator employed.

The numerical implementation of the two discrete-domain comple-
mentary operators�Bd and ��Bd in a frequency-domain finite-ele-
ment code is made possible by the recently introduced methodology in
[5]. In [5], a procedure was introduced to incorporate Bayliss–Turkel
(BT) ABC’s of any order in a finite-element code. Since the discrete-
domain complementary operators introduced in this work are identical
in form to the BT operators, the implementation of COM follows an
identical procedure to that in [5].

The effectiveness of this new construction is demonstrated by con-
sidering a numerical experiment in 2-D space in which we study the
problem ofE-polarization scattering by a thin perfectly conducting
slab measuring 0.225� � 2.95�. The direction of the incident wave
is taken to be parallel to the long axis of the slab as shown in Fig. 1.
The outer boundary is positioned such that the separation between it
and the conductor is0:4� from the left- and right-hand sides and0:2�
from the top and bottom, as illustrated in Fig. 1. Fig. 2 shows the
magnitude of the scattered electric field on the observation contour
�, which is highlighted in Fig. 1. A total of 148 nodes span the ob-
servation contour�. The numbering of the nodes starts at the lower
left-hand corner and proceeds clockwise. Due to the symmetry of the
problem, results are only shown for field values on the upper half of

Fig. 2. Scattered electric field calculated on the contour� using the MoM and
the finite-element method employing the COM, Higdon's second-order ABC
(Higdon 2nd), and Higdon's third-order ABC (Higdon 3rd).

the contour. For comparison, the method of moments (MoM) solu-
tion is also provided, along with the solutions obtained using Higdon's
second- and third-order boundary conditions. The COM solution em-
ployed Higdon's third-order ABC (N = 3 in (13) and (14)), which,
after the application of� and �� results in a fourth-order difference
operation. The numerical results presented in Fig. 2 show very strong
agreement between the MoM and the COM solutions. Such strong
agreement is achieved in spite of the very close proximity of the outer
boundary to the conductor.

IV. CONCLUSION

This paper presented the development of frequency-domain com-
plementary operators. The complementariness is achieved in both the
analytic and discrete domains. A numerical experiment was presented
in 2-D space showing the effectiveness and practicality of this new
scheme.

The application of this method requires two independent simulations
of the problem. Despite this, however, computer memory and execution
time can be saved by positioning the outer mesh-truncating boundary
very close to the conductor as was demonstrated in the numerical ex-
ample presented.
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Full-Wave Analysis of Planar Stratified Media with
Inhomogeneous Layers

Lucio Vegni and Alessandro Toscano

Abstract—In this paper, the dyadic Green's functions for an inhomo-
geneous isotropic grounded slab embedded in an unbounded isotropic
half-space fed by an electric three-dimensional (3-D) point-source based
on the equivalent two-port circuit representation along the axis normal to
the stratification is presented. The working case is extensively investigated
by deriving important information on the radiation of the structure and
on how to control the radiation on the horizon plane. Numerical results
are also presented showing the effects of the electromagnetic parameters
on radiation pattern of the integrated structure.

Index Terms—Green's dyad, inhomogeneous media, layered media, spec-
tral domain.

I. INTRODUCTION

In the past few years, the attention paid to the study of electromag-
netic propagation in inhomogeneous media has increased notably. This
increasing interest is raised by the potential applications of the inhomo-
geneous material as well as its theoretical and academic significance.

The most outstanding properties of inhomogeneous media con-
cerning the propagation of electromagnetic fields are reported to be
their ability either for enlarging the bandwidth and for improving the
coupling effects due to the surface waves.

Although today there are no known natural media showing inho-
mogeneity properties at microwave and millimeter frequencies, the
progress in the polymers science is expected to make these media of
common use in future technology. In this event, many of the proposed
devices whose performance lies on the inhomogeneity properties of
the media could be built.

The electromagnetic propagation in inhomogeneous materials has
not been extensively studied in the literature. General features on
the bi(iso/ani)sotropic materials are presented in [1] and different
aspects about electromagnetic propagation in homogeneous stratified
bi(iso/ani)sotropic media are considered in [2]. Propagation along
closed waveguides inhomogeneously filled with isotropic materials
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Fig. 1. Radiation pattern sustained by a vertical electric source for different
values of" (f = 10 GHz,d = 1:55 mm,h = 1:0 mm, " = 2:1; �

" = 2:5;4 " = 3; � " = 4).

has been considered for example in [3]. A microstrip on an homoge-
neous stratified substrate is analyzed in [4].

Since, to the authors' knowledge, no method has been reported to
compute in a closed analytical form the complete electric and magnetic
spectral Green's dyad for layered media with inhomogeneous layers, in
this paper the Green's functions for such media will be presented.

Finally, numerical results will be shown to see the effect of the inho-
mogeneity on the electromagnetic behavior of the stratified structure.

II. A NALYTICAL DEVELOPMENT

Let us now consider an isotropic inhomogeneous medium character-
ized by a dielectric constant"(y) and a magnetic permeability�(y) =
1.

Following the method developed in [6] for the bianisotropic homo-
geneous case, we start from the Maxwell's equations in presence of
electricJ and magneticM sources (ej!t is assumed).

By applying the two-dimensional (2-D) Fourier transform defined as
in [5] and by rotating the Cartesian coordinate system
(x; y; z) into
the associated one
(v; y; u) defined by the matrixT [5] with:

� = � sin(�)

� = � cos(�)

under the following hypotheses on the constitutive relations: 1)"(y) =

("
(1)
r =y); 2) "(y) = ("

(2)
r =y2); and 3)"(y) = "re

�Ky it is possible to
show that the analytical solutions for the spectral electromagnetic field
components~Eu and ~Hu in the three cases are:

1) when"(y) = ("
(1)
r =y) for y 6= 0:

~Eu =
e�y�

y
C1M

� � k20"
(1)
r

2�
; 2; 2y�

+ C2U
� � k20"

(1)
r

2�
; 2; 2y�

~Hu = e�y� D1M
� � k20"

(1)
r

2�
; 1; 2y�

+ D2U
� � dTE

2�
; 1; 2y�

(1)
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Fig. 2. Examples of radiation on the horizon plane (f = 10 GHz, d = 12 mm,h = 4 mm," = 1; � d = 8:7 mm,h = 2:9 mm," = 3;4 d = 15 mm,
h = 5 mm, " = 5:2).

2) when"(y) = ("
(2)
r =y2), for y 6= 0:

~Eu =
p
y C1 Bessel I �1

2
1� 4k20"

(2)
r ; y�

+ C2 Bessel I
1

2
1� 4k20"

(2)
r ; y�

~Hu =
1p
y

D1Bessel I �1

2
1� 4k20"

(2)
r ; y�

+ D2 Bessel I
1

2
1� 4k20"

(2)
r ; y�

(2)

3) when "(y) = "re
�Ky, letting � = K2 + 4�2=K; � =

2(k0=K)
p
"r:

~Eu = C1 Bessel J �2�

K
; �e�

+C2Bessel J
2�

K
; �e�

~Hu =
e�K

�
D1 Bessel J ��; �e�

+ D2Bessel J �; �e�

(3)

M(a; b; c) andU(a; b; c) are the hypergeometric confluent func-
tions,Bessel J [n; z] gives the Bessel function of the first kind:Jn(z).
Bessel I[n; z] gives the modified Bessel function of the first kind
In(z).

The elements of the first and third row of the spectral electric Green's
dyad may be obtained in terms of the integrals of the wave equations for
~Eu in the grounded slab and in the isotropic half-space, respectively,
by making use of the equivalent transmission line representation of the
material which fills the grounded slab as a superposition ofTE(ŷ) and
TM(ŷ) spectral waves [5]. The elements~Gxy and ~Gzy can be derived
by applying the reciprocity theorem together with the Parsevaal the-
orem [5]. From the transmission line equations and the discontinuity
relations proper of the point-source excitation the~Gyy term for each
one of the three regions into which the structure is divided can be ob-
tained in a very straightforward manner [5].

III. N UMERICAL RESULTS

In order to present an example of determination of the radiated elec-
tromagnetic field by applying the spectral theory we consider the case

of a three-dimensional (3-D) electric point-source embedded in an ho-
mogeneous isotropic grounded slab at they = �h plane.

The spatial electromagnetic field radiated in a spherical coordinate
system
(r; �; ') can be evaluated by applying the equivalence the-
orem in the interface planey = 0. In this section, some examples
of radiated patterns are shown for different values of the electromag-
netic parameters under both vertical and planar excitation conditions.
The role of the inhomogeneity can be fully examined by comparison
with the homogeneous case as shown in Fig. 1 for an inhomogeneous
isotropic grounded slab characterized by different dielectric constant
profiles. From this figure it is observed that the inhomogeneous mate-
rial exhibits an increased directivity in the radiation pattern. As it is well
evident, the behaviors of the radiation patterns are strongly affected by
"(y). Therefore, the inhomogeneity controls in a strong way the value
and the directivity of the radiated pattern. Fig. 1 also gives some infor-
mation about the reduction of the radiation in the' = 0�; 90� planes.
This means that in far zone the effect of the electromagnetic waves trav-
eling with wave numbers parallel to thex-y plane becomes negligible.
This result may lead to an increased radiation efficiency of the structure
when inhomogeneous grounded slabs with metallic patches are used as
printed antennas.

Finally, in Fig. 2 we show the effect of the inhomogeneity on the ra-
diation along thêz-axis of the horizon plane. For some practical appli-
cations (for instance: microstrip patch antennas in array configuration)
it is important to know and control the radiation on the horizon plane.
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Phased-Array Radiator Reflection Coefficient Extraction
from Computer Waveguide Simulator Data When Grating

Lobes Are Present

Eric L. Holzman

Abstract—Commercially available finite-element software that solves
Maxwell's equations for arbitrary three-dimensional bounded structures
has enabled phase-array radiator designers to perform waveguide
simulator modeling of phased-array radiating elements on the computer
very efficiently. Published work on waveguide simulator design has
concentrated on array performance in the absence of grating lobes,
a requirement for many radar applications. For such simulators, the
reflection coefficient of each propagating mode at the waveguide simulator
port gives the radiator reflection coefficient at a discrete scan angle.
However, the design of limited scan arrays can lead to selection of an array
element spacing that allows grating lobes in real space. When a waveguide
simulator is modeled on the computer, and a grating lobe is present, the
two waveguide modes representing the main lobe and the grating lobe will
propagate in the waveguide simulator and they will be coupled together.
The simulator port-reflection coefficient of either mode is not the true
reflection coefficient seen by the radiating element. We describe a method
for extracting the reflection coefficient of the radiating element from the
waveguide simulator data when one or more grating lobes are present.

Index Terms—Grating lobes, phased-array antennas, reflection coeffi-
cient.

I. INTRODUCTION

The use of waveguide simulators to determine the reflection coef-
ficient of phased-array radiating elements in an infinite array environ-
ment is widespread. The development of fast user-friendly commer-
cially available finite-element software in the 1990’s has made possible
waveguide simulator modeling of phased-array radiating elements on
the computer. Eisenhart [1] provides an excellent discussion including
detailed examples of the computerized method and its many advan-
tages. His discussion and other published work on waveguide simulator
design theory (see references in [1]) focus on array performance in the
absence of grating lobes, a requirement for many radar applications.
However, the design of limited scan arrays can lead to the selection of
an array element spacing that allows grating lobes in real space. For ex-
ample, a phased array placed in geosynchronous orbit might have a rel-
atively wide element separation, two wavelengths or more, to minimize
the number of elements. The array can point its main beam anywhere on
the Earth's surface within a scan cone of 20� and keep its grating lobes
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Fig. 1. Two radiator cell waveguide simulator.TE mode propagates in each
waveguide radiator. Radiators are separated by zero-thickness metal septum.
Frequency: 10 GHz.

pointed into empty space. When a waveguide simulator is modeled
on the computer and a grating lobe is present, extraction of the radi-
ator reflection coefficient from theS-parameter data is not completely
straightforward. In this paper, we present a method for extracting the
reflection coefficient of the radiating element from the waveguide sim-
ulator data.

II. DISCUSSION

Fig. 1 shows a simple waveguide simulator. There are three physical
ports to this simulator. At the top of the figure are two waveguide radi-
ating elements (ports 2 and 3), which, in an actual array, would be con-
nected to phase shifters or T/R modules and an RF beamformer. Each
of the waveguide radiator cells propagates a singleTE10 mode (not to
be confused with the simulator modes). For this example, the element
spacing and frequency have been chosen so that a grating lobe will ap-
pear when the beam is scanned past 18�. At the bottom of the figure,
the waveguide simulator propagates three modes. Note that one narrow
wall of the simulator is a perfect magnetic conductor and the other is
a perfect electric conductor (creating a compact structure equivalent to
a four-cell all-metal simulator). Fundamentally, the reflection coeffi-
cient of each propagating mode at the waveguide simulator port gives
the radiator reflection coefficient at a discrete scan angle, which is a
function of the frequency of analysis, the mode's field configuration,
and the cutoff frequency. In our example, the three modes correspond
to three pairs ofH-plane scan angles,�9.43�,�29.46�, and�55.05�.
Table I shows theS-parameter data, simulator mode propagation co-
efficients and corresponding scan angles obtained from the computer
model. When a grating lobe is not present in real space, we can interpret
theS-parameter data obtained from a computer waveguide simulator
in a straightforward manner. For a scan angle of 9.4�, the magnitude
of S11, mode 1 is the phased-array radiator reflection coefficient in the
infinite array environment. Any energy reflected at the radiator/simu-
lator interface reflects back in mode 1 only.

In contrast to mode 1, simulator modes 2 and 3 are coupled together.
As Eisenhart shows in [1], the existence of a grating lobe is the cause.
When the array is scanned to+29.46� (simulator mode 2), a grating
lobe will appear at�55.05� (simulator mode 3). Conversely, when the

0018–926X/00$10.00 © 2000 IEEE



634 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 4, APRIL 2000

TABLE I
SCATTERING PARAMETER MATRIX, MODE PROPAGATIONCONSTANTS ANDSIMULATOR SCAN ANGLES. PORT 1 IS WAVEGUIDE SIMULATOR, AND PORTS2 AND 3

ARE RADIATING ELEMENT PORTS. FREQUENCY: 10 GHz. HIGHLIGHTED PARAMETERS ARE COUPLED SIMULATOR MODES2 and 3

array is scanned to+55.05�, a grating lobe appears at�29.46�. From
the symmetry of this behavior, we can conclude that the radiator re-
flection coefficient must be the same for either scan angle, a fact that
appears to be contradicted by the highlighted data in Table I. Hence,
the simulator port reflection coefficient of either mode cannot be the
true reflection coefficient seen by the radiating element.

III. EXTRACTION METHOD

To determine the radiator reflection coefficient, we refer to Fig. 2,
which shows a five-port network model of the waveguide simulator in
Fig. 1. Each port of the model represents one of the propagating modes,
one in each radiator and three in the waveguide simulator. The circled
numbers identify the physical ports of the simulator. As Eisenhart states
in [1], we can determine the radiator reflection coefficient from either
the simulator port (looking in) or the radiating element port (looking
out). When a grating lobe is not present, this task is easiest from the
simulator side. However, when a grating lobe is present, we must resort
to looking out from the radiator side. Because the array is infinite and
all radiating elements are identical, the radiator reflection coefficient
should be the same in either radiating element port, as our analysis
will show. In Fig. 2,�4 and�5 are the unknown radiator reflection
coefficients we seek. In terms of the five-portS-parameters, we can
write

b4 = S41a1 + S42a2 + S43a3 + S44a4 + S45a5

b5 = S51a1 + S52a2 + S53a3 + S54a4 + S55a5:

Now consider that the array is transmitting only. Then,a1 = a2 =

a3 = 0 because no energy is being received from the simulator port.
The above equations simplify considerably

b4 = S44a4 + S45a5

b5 = S54a4 + S55a5:

When we solve for the reflection coefficients of the radiating elements,
we get

�4 = b4=a4 = S44 + S45a5=a4 (1)

�5 = b5=a5 = S54a4=a5 + S55: (2)

The ratioa4=a5 is an unknown. However, we only want to transmit the
two coupled modes represented byb2 andb3. Thus, we setb1 equal to
zero, which gives

b1 = S14a4 + S15a5 = 0:

We solve this equation for the unknown ratio to get

a4=a5 = �S15=S14: (3)

Fig. 2. Five-port network representation of two radiator cell, waveguide
simulator. Each port represents a propagating mode. Circled numbers denote
physical ports.� and� are unknown feed coefficients.

Equations (1) and (2) with (3) give the radiating element reflection
coefficients

�4 = S44 � S45S14=S15 (4)

�5 = �S54S15=S14 + S55: (5)

If we substitute the values from Table I into these equations, we get
�4 = 0:0101; 39:3� and�5 = 0:0094; 38:1�, which are identical
within the accuracy of theS-parameter data we used.

We have verified this method against published waveguide array data
in which a grating lobe was present [2] and obtained excellent agree-
ment. The same method can be applied to simulators with more radiator
cells; the computations just become more tedious and should be done
with a computer.

Designers of limited-scan arrays sometimes use highly directive ra-
diators to suppress grating lobes. Even so, our formulation is general
and still valid; however, in this case it is unnecessary. If the level of sup-
pression is high, the coupling between the waveguide simulator modes
corresponding to the main beam and grating lobes will approach zero
and the magnitude of the reflection coefficient at the grating lobe angle
will approach unity. Consequently, we can use the conventional proce-
dure of calculating the reflection coefficient from the waveguide sim-
ulator port with reasonable accuracy.
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IV. CONCLUSION

We have described a method for extracting the reflection coefficient
of a radiating element from waveguide simulator data when one or more
grating lobes are present. Because the waveguide simulator modes cor-
responding to the main beam and grating lobe become coupled, we
must determine the radiating element reflection coefficient from the
radiating element port, rather than from the waveguide simulator port.
However, the reflection coefficient of each radiating element contains
contributions from all the waveguide simulator modes. Viewed differ-
ently, if we excite the radiating element port mode, all three propa-
gating modes in the simulator port are excited (see data in Table I);
thus, the radiating element port reflection coefficients are not mean-
ingful without manipulation. To excite a pair of modes corresponding

to a main beam and grating lobe (the example presented in this paper),
we must adjust the radiating element excitations to suppress the unde-
sired modes. This procedure is analogous to setting phase shifters in an
actual phased array to produce a desired progressive phase distribution
across the array.
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