2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Theory of Multipath Shape Factors for Small-Scale Fading Wireless Channels

Gregory D. Durgin, Student Member, IEEE and Theodore S. Rappaport Fellow, IEEE

Page 682.

Abstract:

This paper presents a new theory of multipath shape factors that greatly simplifies the description of small-scale fading statistics of a wireless receiver. A method is presented for reducing a multipath channel with arbitrary spatial complexity to three shape factors that have simple intuitive geometrical interpretations. Furthermore, these shape factors are shown to describe the statistics of received signal fluctuations in a fading multipath channel. Analytical expressions for level-crossing rate, average fade duration, envelope autocovariance, and coherence distance are all derived using the new shape factor theory and then applied to several classical examples for comparison.

References

  1. T. S. Rappaport, Wireless Communications: Principles and Practice, Englewood Cliffs, NJ: Prentice-Hall, 1996 .
  2. W. C. Jakes, Ed., Microwave Mobile Communications, New York: IEEE Press, 1974.
  3. S. O. Rice, "Statistical properties of a sine wave plus random noise", Bell Syst. Tech. J., vol. 27, no. 1, pp.  109-157, Jan.  1948.
  4. H. Suzuki, "A statistical model for urban radio propagation", IEEE Trans. Commun., vol. 25, pp.  673-680, July  1977 .
  5. A. J. Coulson, A. G. Williamson and R. G. Vaughan, "A statistical basis for log-normal shadowing effects in multipath fading channels", IEEE Trans. Commun. , vol. 46, pp.  494-502, Apr.  1998.
  6. R. H. Clarke, "A statistical theory of mobile-radio reception", Bell Syst. Tech. J., vol. 47, pp.  957-1000, 1968.
  7. M. J. Gans, "A power-spectral theory of propagation in the mobile radio environment", IEEE Trans. Veh. Technol., vol. VT-21, pp.  27-38,  Feb.  1972.
  8. J.-P. Rossi, J.-P. Barbot and A. J. Levy, "Theory and measurement of the angle of arrival and time delay of UHF radiowaves using a ring array", IEEE Trans. Antennas Propagat., vol. 45, pp.  876-884, May  1997.
  9. J. Fuhl, J.-P. Rossi and E. Bonek, "High-resolution 3-D direction-of-arrival determination for urban mobile radio", IEEE Trans. Antennas Propagat., vol. 45, pp.  672-682,  Apr.  1997.
  10. J. H. Winters, "Smart antennas for wireless systems", IEEE Personal Commun., vol. 1, pp.  23-27, Feb.  1998.
  11. J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless CDMA Communications, Englewood Cliffs, NJ: Prentice-Hall, 1999.
  12. G. D. Durgin and T. S. Rappaport, "Three parameters for relating small-scale temporal fading to multipath angles-of-arrival", in PIMRC'99, Osaka, Japan,Sept. 1999, pp.  1077-1081. 
  13. G. D. Durgin and T. S. Rappaport, "A basic relationship between multipath angular spread and narrow-band fading in a wireless channel", Inst. Elect. Eng. Electron. Lett., vol. 34, pp.  2431-2432, Dec.  1998.
  14. Y. Ebine, T. Takahashi and Y. Yamada, "A study of vertical space diversity for a land mobile radio", Electron. Commun. Jpn., vol. 74, no. 10, pp.  68-76, 1991.
  15. A. F. Naguib and A. Paulraj, "Performance of wireless CDMA with M -ary orthogonal modulation and cell site arrays", IEEE J. Selected Areas Commun., vol. 14, pp.  1770-1783, Dec.  1996 .
  16. T. Fulghum and K. Molnar, "The Jakes fading model incorporating angular spread for a disk of scatterers", in 48th IEEE Veh. Technol. Conf., Ottawa, Canada,May 1998, pp.  489-493. 
  17. S.-S. Jeng, G. Xu, H.-P. Lin and W. J. Vogel, "Experimental studies of spatial signature variation at 900 MHz for smart antenna systems", IEEE Trans. Antennas Propagat., vol. 46, pp.  953-962, July  1998.
  18. N. Patwari, G. D. Durgin, T. S. Rappaport and R. J. Boyle, "Peer-to-peer low antenna outdoor radio wave propagation at 1.8 GHz", in 49th IEEE Veh. Technol. Conf., vol. 1, Houston, TX, May 1999, pp.  371-375. 
  19. G. D. Durgin and T. S. Rappaport, "Effects of multipath angular spread on the spatial cross-correlation of received voltage envelopes", in 49th IEEE Veh. Technol. Conf., vol. 2, Houston, TX, May 1999, pp.  996-1000. 
  20. G. D. Durgin and T. S. Rappaport, "Level crossing rates and average fade duration of wireless channels with spatially complicated multipath", in Globecom'99, Brazil, Dec. 1999.
  21. R. G. Vaughan and N. L. Scott, "Closely spaced monopoles for mobile communications", Radio Sci., vol. 28, no. 6, pp.  1259 -1266, Nov. Dec.  1993.
  22. R. Steele, Mobile Radio Communications, Piscataway, NJ: IEEE Press, 1994.
  23. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed.   New York: McGraw-Hill, 1991.
  24. A. M. D. Turkmani, A. A. Arowojolu, P. A. Jefford and C. J. Kellett, "An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz", IEEE Trans. Veh. Technol., vol. 44, pp.  318-326, May  1995.