2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Broad-Band Cavity-Backed and Capacitively Probe-Fed Microstrip Patch Arrays

Miguel A. González de Aza, Juan Zapata, Member, IEEE and José A. Encinar Member, IEEE

Page 784.

Abstract:

In this paper, a hybrid full wave method for the analysis of probe-fed infinite phased arrays of single and stacked microstrip patches,backed by metallic cavities, is applied to investigate the combined utilization of the capacitive probe-feeding technique and the cavity enclosure of microstrip patches. The goal is to obtain broad-band microstrip antennas on thick substrates without the limitations due to the generation of surface waves of the conventional microstrip antennas on infinite substrates. A design procedure for the capacitive coupling is investigated and theoretical results for the active input impedance and radiation characteristics of different wide-band antenna designs are presented.

References

  1. D. M. Pozar, "A review of bandwidth enhancement techniques for microstrip antennas,"in Microstrip Antennas, Piscataway, NJ: IEEE Press, 1995, ch. 4.
  2. D. M. Pozar and D. H. Schaubert, "Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  1101-1107, Oct.  1984.
  3. E. Chang, S. A. Long and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  767-772, June  1986.
  4. F. Zavosh and J. T. Aberle, "Infinite phased arrays of cavity-backed patches", IEEE Trans. Antennas Propagat., vol. 42, pp.  390-398, Mar.  1994.
  5. M. Davidovitz, "Extension of E-plane scanning range in large microstrip arrays by substrate modification", IEEE Microwave Guided Wave Lett., vol. 2, pp.  492-494, Dec.  1992.
  6. J. M. Jing and L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity", IEEE Trans. Antennas Propagat., vol. 39, pp.  1598-1604, Nov.  1991.
  7. J.-C. Cheng, N. I. Dib and L. P. B. Katehi, "Theoretical modeling of cavity-backed patch antennas using a hybrid technique", IEEE Trans. Antennas Propagat., vol. 43, pp.  1003-1013, Sept.  1995.
  8. K. S. Fong, H. F. Pues and M. J. Withers, "Wideband multilayer coaxial-fed microstrip antenna element", Electron. Lett., no. 21, pp.  497-499, 1985 .
  9. P. S. Hall, "Probe compensation in thick microstrip patches", Electron. Lett., no. 23, pp.  606-607, 1987.
  10. A. K. Bhattacharyya, "A modular approach for probe-fed and capacitively coupled multilayered patch arrays", IEEE Trans. Antennas Propagat., vol. 45, pp.  193-202, Feb.  1997.
  11. M. González, J. A. Encinar, J. Zapata and M. Lambea, "Full wave analysis of cavity-backed and probe-fed microstrip patch arrays by a hybrid mode-matching, generalized scattering matrix and finite-element method", IEEE Trans. Antennas Propagat., vol. 46, pp.  234-242, Feb.  1998.
  12. M. A. González, J. A. Encinar and J. Zapata, "Radiation pattern computation of cavity-backed and probe-fed stacked microstrip patch arrays", IEEE Trans. Antennas Propagat., vol. 48, pp.  502-509, Apr.  2000.
  13. J. F. Zürcher, "The SSFIP: A global concept for high-performance broadband planar antennas", Electron. Lett., vol. 2, no. 23, pp.  1433-1435, Nov.  1988.