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Doubly Diffracted Ray from a Hard Quarterplane
N. Chr. Albertsen

Abstract—The scattering of the electromagnetic field from a half
wave dipole source around a quarterplane can be calculated from
the solutions to two scalar problems, one with a soft quarterplane
and one with a hard quarterplane. In both cases, a doubly dif-
fracted ray may exist, but only in the case of the hard quarter-
plane does this present a problem. The paper develops the neces-
sary transition functions for the diffraction coefficients from the
exact wave solution.

Index Terms—Electromagnetic scattering, geometrical theory of
diffraction, scattering near a vertex.

I. INTRODUCTION

T HE electromagnetic field scattered by a quarterplane was
derived in [1] for a halfwave dipole source. Here it was

shown that the and components of the scattered field could
be found on the far-field sphere through quadrature formulas
involving the scattered field from two properly chosen scalar
problems, where the perfectly conducting quarterplane is re-
placed by a soft or hard quarterplane, respectively. The theory
is valid for any position of the source, but for the numerical ex-
ample it was necessary to choose a position that excluded the
existence of doubly diffracted rays, since they would cause the
vertex diffraction coefficient for the hard quarterplane to have a
singularity. In the case of the soft quarterplane, the doubly dif-
fracted rays would not cause a problem since they would con-
tribute only through slope diffracted components, which are not
included in the present analysis. The present paper considers
the calculation of the scattered field from a hard quarterplane in
the case where a doubly diffracted ray exists (see Fig. 1). Here
the field from scattered by the quarterplane consists of a re-
flected ray, two (singly) edge diffracted rays, a vertex diffracted
ray, and one doubly diffracted edge ray fromvia and
to the far field. When the distance between the two diffraction
points reaches zero, the amplitude of this ray becomes singular,
as does that of the vertex diffracted from. This situation will
occur when either theor coordinate of or both are positive
and the far-field observation point lies on the Keller cone for the
doubly diffracted ray when and coalesce at . A transi-
tion function correcting this problem was first considered in [2]
and [3], where it is was derived from an approximate quadrature
form, based on an assumption of mutual interaction between the
two edges and applicable to any angular sector. In the particular
case of a hard quarterplane, the exact quadrature form for the
scattered field is known, however, and this will be used to derive
a transition function for the 90angular sector in the following.
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Fig. 1. Quarterplane geometry.

II. FIELD EXPRESSION

Since the problem satisfies the requirements of reciprocity,
the scattered near field due to an incident plane wave will be
considered. Following the procedure of Radlow [4], the scat-
tered field at from a hard quarterplane, lying in the
first quadrant of the – plane and illuminated by a plane wave,
incident from the direction with unit am-
plitude, time dependence and wavenumber can be ex-
pressed as

(1)

where

(2)

(3)

(4)

(5)

(6)

The function is obtained by two Wiener–Hopf fac-
torizations of . It can be expressed by standard special func-
tions, and is defined in [1, Appendix]. The singularities of the in-
tegrand in (1) are illustrated in Fig. 2. The pole lines and branch
lines are due to the singularities at
and . The branch points along the quarter circle in the
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3rd quadrant is due to the presence of in the de-
nominator of (2).

The integral (1) can be evaluated asymptotically as follows
(cf. [5]): Consider as a parameter and perform a stationary
phase expansion with respect to, then perform a stationary
phase expansion with respect toalong the dashed curve in Fig.
2 passing through . Alternatively, the evalu-
ations can be done in the opposite order withfollowing the
dashed curve passing through . The point
where the dashed curves intersect, is the stationary point for the
integrand and represents the ray from the vertex. The two points

and , where the dashed curves intersect the pole lines, cor-
respond to singly diffracted edge rays (which will exist if
lies to the left of the vertical pole line, respectively below the
horizontal pole line). Additionally, there may be a contribution
from representing the reflected ray, if lies belowand to
the left of the pole lines. The two points, and , where the
dashed curves intersect the branch lines, correspond to doubly
diffracted edge rays (which will exist if lies to the left of the
vertical branch line, respectively, below the horizontal branch
line). It is clear from the geometry that only one doubly dif-
fracted ray can exist for a particular. The transition function
required when is close to a pole line is the same [6] as used
for the halfplane problem [1, Appendix]. When is close to
a branch line, however, a different uniform expansion must be
used [5, sect. 2.4]. Since the new transition functions, which
only correct the field near the branch cut, are multiplicative, as
is the one in [6], both will in general be applied simultaneously.

We now consider the situation, wherelies close to . The
uniform expansion of (1) then becomes

(7)

(8)

Here, is the distance from to , and are
the parabolic cylinder functions of order and , respec-
tively, and the expressions for, and are (notice printing
error in [5, eq. (2.47a)]),

(9)

sign

(10)

sign (11)

Fig. 2. Singularities for integrand.

with

(12)

(13)

The situation considered corresponds to the ray picture shown
in Fig. 1 and it is easily found that , where

is the ordinate of the diffraction point . When the para-
bolic cylinder functions in (7) are expanded asymptotically for
large , which physically corresponds to large , and only the
leading term of each function is retained, we obtain for
(when the doubly diffracted ray does not exist)

(14)

whereas for

(15)

with

(16)

The single term in (14) and the first term in (15) correspond to
the vertex diffracted ray from , whereas the second term in
(15) corresponds to the doubly diffracted ray.
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III. T RANSITION FUNCTIONS

It is now possible to define a set of transition functions, that
will neutralize the singularities in both the vertex ray and the
doubly diffracted ray, occurring when as the ratio be-
tween the uniform ray expression and its asymptotic represen-
tation. The transition function for the vertex ray , assumes
different forms for and , while the transition func-
tion for the doubly diffracted ray only exists for .

For , is obtained as the ratio between (7) and
(14). The result is greatly simplified by assuming that is
slowly varying, so that since this allows us
to eliminate from the transition function. The result, which
is valid also when lies close to , is conveniently expressed
through two angles and , where can equal or ,
defined as the angle between the direction and the edge
along or , respectively, while can equal or ,
defined as the angle between the vector fromto and the
edge along or , respectively. If lies close to , and

apply; if lies close to , and apply. With
these definitions we have and

(17)

where

(18)

(19)

In spite of appearances, the terms with and are of
the same order in and are therefore of equal importance.

For ( ) it is necessary to sepa-
rate (7) into two expressions such that the first asymptotically
equals (14), the second (15). Rewriting (7) as follows, adding
and subtracting the term in-
side the parentheses leads to

(20)

where the term in the first bracket is the uniform expression for
the vertex ray and the term in the second bracket is the uniform
expression for the doubly diffracted ray. Taking the ratio be-
tween the uniform and nonuniform expressions, again assuming

(a)

(b)

Fig. 3. Vertex ray plus doubly diffracted rays. (a) Without correction. (b) With
correction.

, the transition functions and be-
come

(21)

(22)
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IV. NUMERICAL RESULTS

To illustrate the effect of the transition functions, Fig. 3
shows part of the diffracted field in the upper hemisphere with
a source placed in , plotted in a standard
projection. Only the vertex ray, calculated using the diffraction
coefficient defined in [1] and the doubly diffracted
rays are included. In Fig. 3(a) the singularity at
corresponds to the coalescence ofand in Fig. 2, while
the singularity at corresponds to the coalescence
of and . In Fig. 3(b) the (same) ray contributions have
been corrected. The doubly diffracted ray that exists for

is corrected with the factor ,
while the doubly diffracted ray that exists for
is corrected with the factor . The vertex
ray, which exists everywhere, is corrected with the factor

. Since the transition
functions have been defined such that they tend to unity away
from the singularity they compensate, it is legitimate to multiply

with two transition functions. Extensive calculations
of the scattering from a hard, rectangular plate, for which a
method of moments solutions can be found for comparison,
has shown that the present theory is accurate down to levels of
approximately 30 dB for plate sizes above (see [7]).

V. CONCLUSION

The paper presents transition functions for acoustical rays dif-
fracted at the vertex of a hard quarterplane and for doubly dif-
fracted edge rays. The results are obtained by a uniform asymp-
totic expansion of an exact expression for the scattered field. The
transition functions ensure the accuracy of geometrical theory
of diffraction calculations of acoustical scattering from hard,

rectangular plates down to30 dB. As a consequence, the ap-
plication of the theory for scattering of electromagnetic fields
around a quarterplane in [1] can be extended to any position of
the dipole source.
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