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Doubly Diffracted Ray from a Hard Quarterplane

N. Chr. Albertsen

Abstract—The scattering of the electromagnetic field from a half
wave dipole source around a quarterplane can be calculated from
the solutions to two scalar problems, one with a soft quarterplane y
and one with a hard quarterplane. In both cases, a doubly dif-
fracted ray may exist, but only in the case of the hard quarter-
plane does this present a problem. The paper develops the neces-
sary transition functions for the diffraction coefficients from the d;
exact wave solution. 0 da

Index Terms—Electromagnetic scattering, geometrical theory of
diffraction, scattering near a vertex. Fig. 1. Quarterplane geometry.

I. INTRODUCTION Il. FIELD EXPRESSION

T HE electromagnetic field scattered by a quarterplane WasSince the problem satisfies the requirements of reciprocity,

derived in [1] for a halfwave dipole source. Here it waéhe scattered near field due to an incident plane wave will be
shown that thé and¢ components of the scattered field coulc?onfj'?,erlgd' Following ]Ehe profc]eddure of Ra:jlow 54] th_e shcat-
be found on the far-field sphere through quadrature formulgd €@ "€ atP(z, y, z) from a hard quarterplane, lying in the
involving the scattered field from two properly chosen scal fstquadrant of the—y plane and illuminated by a plane wave,

problems, where the perfectly conducting quarterplane is t‘gfc'dent _from the dlrectlor(Q; ¢) = (b0, do) with unit am-
placed by a soft or hard quarterplane, respectively. The the(HJyUde’ time dependenae™* and wavenumbek can be ex-
is valid for any position of the source, but for the numerical el essed as

ample it was necessary to choose a position that excluded the 0 0 ‘

existence of doubly diffracted rays, since they would cause the ~— ¥(z, ¥, ) = / du/ F(p, eV dx (1)

vertex diffraction coefficient for the hard quarterplane to have a I I
singularity. In the case of the soft quarterplane, the doubly difthere

fracted rays would not cause a problem since they would con-

tribute only through slope diffracted components, whichare not  F(p, \) = —
included in the present analysis. The present paper considers

k cos oMY (p, ko )Mt (ky, M)
(2m)2MAH(—ky, —ka)MF+ (1, A)

the calculation of the scattered field from a hard quarterplane in [ = k)N = F2)] 1 @
the case where a doubly diffracted ray exists (see Fig. 1). Here VEuy + AWk + 1

the field from P scattered by the quarterplane consists of a re-

flected ray, two (singly) edge diffracted rays, a vertex diffracted

ray, and one doubly diffracted edge ray frdivia d; andds glp, A) = vz — px — Ay (3)

to the far field. When the distance between the two diffraction

points reaches zero, the amplitude of this ray becomes singular,

as does that of the vertex diffracted fram This situation will

occur when either the or y coordinate ofP or both are positive v=VE —p? =N (4)

and the far-field observation point lies on the Keller cone for the

doubly diffracted ray whew; andd, coalesce af). A transi-

tion function correcting this problem was first considered in [2]

and [3], where it is was derived from an approximate quadrature

form, based on an assumption of mutual interaction between the

two edges and applicable to any angular sector. In the particular

case of a hard quarterplane, the exact quadrature form for the ke = /K2 — k2, k= JE2 = k3. (6)

scattered field is known, however, and this will be used to derive

a transition function for the $0angular sector in the following. The functionM ** (1, A) is obtained by two Wiener—Hopf fac-
torizations ofy. It can be expressed by standard special func-
tions, and is defined in [1, Appendix]. The singularities of the in-

Manuscript received October 2, 1998, revised December 16, 1999.  tagrand in (1) are illustrated in Fig. 2. The pole lines and branch
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3rd quadrant is due to the presenceMf+(u, A) in the de- A
nominator of (2). |

The integral (1) can be evaluated asymptotically as follows Branch hnT p= —ka Pole liné p = k1
(cf. [B]): Considery as a parameter and perform a stationary [PPSO
phase expansion with respect Xpthen perform a stationary g ’ 7 f
phase expansion with respecgtalong the dashed curve in Fig. ! \}\\ //
2 passing througky:, A) = (£k, 0). Alternatively, the evalu- ——4—-/—— ______________
ations can be done in the opposite order witfollowing the / :
dashed curve passing through, A) = (0, +k). The pointV’ —k;’ , | ) Lk 7
where the dashed curves intersect, is the stationary point for the M | \ /,7
integrand and represents the ray from the vertex. The two points /"\ \ L/
S1 andS., where the dashed curves intersect the pole lines, cor- Dy” N \ ( / 52
respond to singly diffracted edge rays (which will existVif !\\ \\\\ \% Bran'ch line X — —k
lies to the left of the vertical pole line, respectively below the _._J_\_._ ‘_E;._J - “
horizontal pole line). Additionally, there may be a contribution ‘ A ‘
from R representing the reflected ray, ¥f lies belowand to , k :
the left of the pole lines. The two point®); andD-, where the l !
dashed curves intersect the branch lines, correspond to doubly
diffracted edge rays (which will exist ¥ lies to the left of the Fig. 2. Singularities for integrand.
vertical branch line, respectively, below the horizontal branch
line). It is clear from the geometry that only one doubly difyii,
fracted ray can exist for a particul&t. The transition function

required wherV is close to a pole line is the same [6] as used . T s Y

for the halfplane problem [1, Appendix]. Whan is close to N =r p1 2= A% A hia £ A

a branch line, however, a different uniform expansion must be 2E2 = \2\/2mei(7/ D)

used [5, sect. 2.4]. Since the new transition functions, which X p1/DT (12)

only correct the field near the branch cut, are multiplicative, as
is the one in [6], both will in general be applied simultaneously.
We now consider the situation, whérdies close taD;. The

uniform expansion of (1) then becomes Ap = [h(=ke) = R(A)|, A= [As +kal. (13)
W ~ (R +R()) /2 The situation considered corresponds to the ray picture shown
in Fig. 1 and it is easily found that’(—k;;) = —wo, where

X {AoD—(1/2)(t@7i(w/4)) + BoD1/2(t@7i(w/4))} (7) 4y is the ordinate of the diffraction poink;. When the para-
bolic cylinder functions in (7) are expanded asymptotically for
large|t|, which physically corresponds to larggg |, and only the

= leading term of each function is retained, we obtainfpr 0
h(A) =g <—p— VEZ =A% A) ; (when the doubly diffracted ray does not exist)
1
]Cy —i(w/4
pL=VvVz2+22, A = - (8) Wb ~ MO e~ V() (14)
VL

Here,r is the distance fron©O to P, D_(; /s and Dy, are
the parabolic cylinder functions of orderl /2 and1/2, respec-
tively, and the expressions for Aq and By are (notice printing

whereas foryg > 0

”(/} ~ ih()\s)\/_ —i(37/4) f()\S)

error in [5, eq. (2.47a)]), L

. & th(—k¢1 e~ im \/_f( kﬂ)
Ay = \/%e—z(37r/8)21/4f(_k-t1) VA ©) + ¢th=ka) foro—ilw/4) Y2\ L) (15)

[P/ (=K1 Yol
with
e~ i(7/8)9—(1/4) ) 5

By =— 1" r 2 2 ky

sign(1/ (k) VA Ly = MW O] = 5 (o2 + (6 = 2um0) (3 ) — -
1

fs) f(=ku)
\/A)\|h”()\5)| \/|h ktl (10)

(16)

The single term in (14) and the first term in (15) correspond to
the vertex diffracted ray fron®, whereas the second term in
t = 2A,sign(A (—ki1)) (11) (15) corresponds to the doubly diffracted ray.
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I1l. TRANSITION FUNCTIONS v

It is now possible to define a set of transition functions, that o

will neutralize the singularities in both the vertex ray and the , ]

doubly diffracted ray, occurring wheg, = 0 as the ratio be-

tween the uniform ray expression and its asymptotic represen- -+

tation. The transition function for the vertex rdjy,,, assumes

different forms foryy > 0 andy, < 0, while the transition func-

tion for the doubly diffracted rayqq only exists foryy > 0.
Foryy < 0, Fy, is obtained as the ratio between (7) and

(14). The result is greatly simplified by assuming thf@} is a,ual | |

slowly varying, so thatf(A;) = f(—k:1) since this allows us
to eliminatef() from the transition function. The result, which ~ **-**
is valid also wherV lies close taD-, is conveniently expressed
through two angles, and/s,, wheregs, can equaliy , or 3o, 4,
defined as the angle between the directity) ¢o) and the edge
alongz or y, respectively, whilg3; can equal3; , or 3. ,,

defined as the angle between the vector fronto P and the -0y

edge along: or y, respectively. If lies close taD;, f, . and

040

2P\

RN

TT-3log

—-124

B, apply; if V' lies close taDs, /3y, , and 3, , apply. With
these definitions we havg = r cos (8o + 51)/ cos Sy and

Fq'v(ﬂOv [317 T) v
o ) — s ) 1.00
=e 042043D_(1/2)(042) + oz D1/2(a2)

: 080
Go+ P1 > g (17) W

where

0.40 4+

ap = %/ﬁ’(l —sin(fo+ f1)), «2= Vo e M8 (18) R

|

In spite of appearances, the terms with ; /oy and D, /» are of 'M#

the same order ik and are therefore of equal importance.
For 8o + 31 < (w/2) (yo > 0) it is necessary to sepa-

rate (7) into two expressions such that the first asymptotically -1.0

cos Jo(sin g — cos B1)
sin? 3 cos(fo + A1)

(19) L.V

equals (14), the second (15). Rewriting (7) as follows, adding
and subtracting the teroe /2 D_, jo)(—te "/} in-
side the parentheses leads to

Fig. 3. Vertex ray plus doubly diffracted rays. (a) Without correction. (b) With
correction.

fO) =

W ~ iR +R(A))/2
+[A0 (D_(I/Q) (t@*i<w/4)) _ oilx/2)

xD_ g1z (—te= Y} + BDy o (=)}
(20)

come

where the term in the first bracket is the uniform expression for
the vertex ray and the term in the second bracket is the uniform
expression for the doubly diffracted ray. Taking the ratio be-
tween the uniform and nonuniform expressions, again assuming

(b)

f(—ki1), the transition functiond,,, and F,4 be-

Fq'v(ﬁOv /317 T)
=i {agagD_(l/Q) (a%) -

H1~as) D1/2(—a§)}

Q2

fo + P < g 1)
Fyaa(Bo, B1, 1)
_ Cm% {D_(1/2) (—a3) +iD_12) (03)}
Bo+ L < g (22)
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IV. NUMERICAL RESULTS rectangular plates down t630 dB. As a consequence, the ap-
é)lication of the theory for scattering of electromagnetic fields

ound a quarterplane in [1] can be extended to any position of
ﬁe dipole source.

To illustrate the effect of the transition functions, Fig.
shows part of the diffracted field in the upper hemisphere wi
a source placed i'* = (3, 5, 1)\, plotted in a standard — v
projection. Only the vertex ray, calculated using the diffraction
coefficient Dy, y defined in [1] and the doubly diffracted
rays are included. In Fig. 3(a) the singularity.at= 0.535 [1] N. C. Albertsen, “I?iffraction by a quarterplane of the field from
corresponds to the coalescencelofnd D; in Fig. 2, while ?,r:;;g'gj’\elof_j'fﬂley’pifsltéf_'fgg Tod Proc. Microwave Antennas
the singularity atv = 0.862 corresponds to the coalescence [2] E. Capolino, S. Maci, R. Tiberio, and A. Toccafondi, “Uniform diffrac-
of V and D.. In Fig. 3(b) the (same) ray contributions have tion coefficients at a plane angular sector,"lEEE AP-S Symp. Dig.

: : June 1994, pp. 586-589.
been corrected. The doubly diffracted ray that exists for [3] F.Capolinoand S. Maci, “Uniform high-frequency description of singly,
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V. CONCLUSION

The paper presents transition functions for acoustical rays c
fracted at the vertex of a hard quarterplane and for doubly d
fracted edge rays. The results are obtained by a uniform asy
totic expansion of an exact expression for the scattered field. diffraction theory. .
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