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Diagnosis of Array Faults from Far-Field
Amplitude-Only Data

O. M. Bucci, Fellow, IEEE, Amedeo Capozzoli, and G. D'Elia

Abstract—The diagnosis of the faulty elements of a planar array
from noisy far-field power pattern data is considered in the case of
“on–off” faults. The possible ambiguities of the solutions are con-
sidered both in the theoretical and practical sense and are shown
to be intrinsically less relevant than in the widely studied contin-
uous case. The probability of the occurrence of the practical am-
biguities is inferred from a number of numerical examples and is
shown to be negligible in all cases of interest. An effective algorithm
is presented here based on an intersection set finding approach
and involving the minimization of a suitable objective functional.
The global minimization of the functional has been successfully
performed by applying a properly modified genetic algorithm. A
number of numerical examples shows the effectiveness of the ap-
proach whose computational complexity essentially increases lin-
early with the array size.

Index Terms—Fault diagnosis, phased-array antennas.

I. INTRODUCTION

DETERMINING the faulty elements of an array is a com-
plex problem of practical interest, particularly for large an-

tennas and/or those arrays which cannot be brought to a labora-
tory for inspection [1].

One kind of fault widely encountered in practical instances is
the so-called “on–off” fault, where the faulty element does not
radiate at all. Later on we consider only these faults.

One possible solution to the diagnostic problem could be to
make use of a network of sensors integrated with the beam-
forming network, while monitoring the array “status” in real
time. However, such an expensive network must be provided at
the design stage of the array and may be affected by faults.

Therefore, it is best to perform the antenna diagnosis by mea-
suring the radiated field without removing the array from its
working site and without a serious interruption of its normal
operating conditions. For satellite borne antennas, the choice of
far-field measurements is highly important. In the case of large
earth-based antennas, where the far-field measurements can be
performed as described in [2] for reflector antennas, this choice
proves very convenient from a practical point of view.

Furthermore, to avoid measuring the complex far-field pat-
tern, which requires a reference phase signal and an expensive
measurement setup, it is of great practical interest to perform
the array diagnosis by exploiting only the amplitude far-field
pattern.
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At first glance, this goal seems nonrealistic. In fact, the
array factor is related to the excitation coefficients by a dis-
crete Fourier transform (DFT) relationship. Accordingly, the
diagnosis problem is equivalent to finding a function from the
modulus of its Fourier transform, a topic widely dealt with in
literature. This does not give unambiguous solutions [3].

The first aim of this paper is to show that this restriction can
be practically removed in the case of on–off faults considered
here. In particular, it will be shown that the probability of finding
an ambiguous solution is drastically smaller than that occurring
in the general case. As a result, the diagnosis problem proves
unambiguous in the practical sense.

However, this is not enough. One critical point to be consid-
ered concerns the ability to effectively explore the solution space
without being trapped by false solutions. Since the algorithms
based on a deterministic local search criterion stop when a local
optimum of the search criterion is found, global minimization
algorithms [4] are needed. In particular, for an arbitrary pre-
fixed accuracy, nondeterministic algorithms such as simulated
annealing [5] or evolutionary algorithms [6], [7], allow a full
exploitation of the solution space in a probabilistic sense and
guarantee the attainment of the global optimum of the search
criterion asymptotically as the number of trials increases to in-
finity [4], [6].

In our case, it must be noted that the search space is a discrete
one, as the unknowns can assume only one of the two values,
i.e., zero or one. However, as is also the case of moderately sized
arrays, its cardinality is extremely large (e.g., for an array with
225 radiators it is equal to ). Accordingly,
an effective searching algorithm is necessary. In this paper, we
use a (suitably modified) genetic algorithm, which, based on a
discrete representation of the unknowns, naturally matches the
problem at hand. The extensive numerical analysis presented in
this paper shows the effectiveness of this choice.

The statement of the problem is presented in Section II. The
analysis of the practical ambiguities is considered in Section III.
The diagnostic algorithm is presented in Section IV, where its
effectiveness is addressed. Conclusions are drawn in Section V.

II. STATEMENT OF THE PROBLEM

Let us consider an array of elements regularly dis-
tributed with spacing and along the and axes, respec-
tively (see Fig. 1). The nominal excitation coefficients of the
array, say , are assumed
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Fig. 1. Geometry of the problem.

to be different from zero and are the components of the excita-
tion matrix . The corresponding array

factor is given by

(1)

where , ,
the wavelength, ( ) the spherical coor-

dinates (Fig. 1), the Fourier series associated toand a
time dependence is subtended.

For the sake of convenience, the excitation coefficients ma-
trix, say , corresponding to the faulty array, will be ex-
pressed in the following as the product (element by element)
between and the matrix, say , whose ( )th entry is
one or zero, according to the status (working or faulty) of the
corresponding array element.

In order to account for the noise and measurement errors af-
fecting the power pattern measured, the maximum additive error
on the data, say , is introduced. Accordingly, the square
amplitude of the array factor actually radiated by the array, say

, belongs to the set

(2)

where denotes the measurement sector in the plane and
is the square amplitude measured of the array factor.

However, must belong to the set, say, of the
square amplitudes of the array factors associated

with the antenna being tested and corresponding to the excita-
tion vector .

Therefore, any point of the intersection set can provide
an acceptable estimate of the actual array factor and thus of the
corresponding excitation coefficients.

III. OCCURRENCE OFAMBIGUITIES

In order for a diagnosis technique to be effective, the first
property necessary is the uniqueness of the solution. When
dealing with this problem, it is convenient first to address
the general problem of how to retrieve a matrixfrom the
modulus of its Fourier series and then the
on–off faults case of interest here.

A. Continuous Case

As mentioned in the Section I, this problem does not admit
a unique solution, i.e., there are matrices such that

, so that ambiguous solutions are indeed pos-
sible.

It is convenient to distinguish between trivial and nontrivial
ambiguities [8].

Trivial ambiguities occur in the following three cases:

1) ;
2) ;
3) can be obtained by zero filling a smaller matrix, say,

up to a matrix with dimensions and is any other
matrix (with dimensions ) obtainable from by
zero filling.
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These ambiguities will be referred later on as trivial ambigu-
ities of the first, second, and third kind, respectively.

To discuss nontrivial ambiguities, it is convenient to set
, in (1) and consider , as a polynomial in

the complex variables , say . Nontrivial ambiguous
solutions occur when is a factorable two-dimensional
(2-D) polynomial [9], [3].

Since it can be shown that the probability of finding a fac-
torable polynomial is zero,1 this could appear a slight drawback
although not serious. However, as will be discussed later on, the
existence of measurement errors makes this kind of ambiguity
quite relevant.

In fact, due to measurement error, any matrix belonging to the
set is a possible solution of
the problem at hand, but it is acceptable only if it is also close
to .

Now, let us assume that a matrix, say, corresponding to
a reducible polynomial, belongs to so that matrices, say

, such that
do exist. According to the previous considerations, all

these matrices are possible solutions. However, if at least one of
such matrices is not close to the true solution, an ambiguous
solution occurs and cannot be univocally (within the measure-
ment error) determined from the measured data.

This ambiguity, which can be present even if is not
factorable, will be referred to later as a “practical” ambiguity.
Furthermore, the probability of its occurrence, which is strictly
related to the existence of ambiguities in the ideal case of exact
measurements, has a finite value that can be significantly dif-
ferent from zero [8].

B. Discrete On–Off Case

The on–off faults case will now be discussed by showing that
the ambiguity problem is more favorable even in the case of
exact measurements.

Let us note that the matrix involved in the ambiguity problem
discussion is now the faulty excitation coefficient matrix

.
Obviously, the two-level quantized nature of the unknown

drastically reduces the solution space from to a set
with cardinality.

First of all, let us consider the case of trivial ambiguities.
The trivial ambiguities of can correspond to faulty ar-

rays, only if they can be put in the form where is
a mask matrix, and this can be done if and only if the matrix
has certain symmetry properties whose occurrence in practice
is not very likely.

As a matter of fact, with reference to trivial ambiguities of the
second kind (it is easy to verify that trivial ambiguities of first
kind never occur), let us remember that we have assumed that
the matrix has no zero elements.

The matrix is a solution of the on–off array diagnosis
problem if and only if for those

1In fact, the set of all factorable polynomials with a given degree is a surface
in the space of all polynomials (with the same degree [9]) and, thus, has a zero
Lebesque measure.

such that . In practice, the number of faulty
elements in the array being tested is always a small fraction
of the number of array radiators, and so the above symmetry
condition is very strong.

In the same way, we can discuss factorable ambiguities.
One necessary condition causing the fault diagnosis problem

to be ambiguous is that the faulty excitation coefficients ma-
trix belongs to the ambiguity surface (a zero likelihood
event), which implies very strong constraints on the matrix.
To highlight this point, let us consider, for example, the case

. Denoting a general matrix as , the
surface ambiguity equation is [8]

(3)

When a single fault occurs, for instance, , the fault
excitation coefficients matrix belongs to the ambiguity surface if
and only if the matrix belongs to the surface

. When two faults are present, e.g., , the
matrix never belongs to the ambiguous surface.

Moreover, even if belongs to the ambiguity surface, the
problem may prove unambiguous. In fact, it is also necessary
that at least one of the ambiguous counterparts of is a faulty

array, i.e., it can be put in the factorized form . Again
this is a very unlikely occurrence.

Let us now turn to the problem of practical ambiguities.
Since the presence of practical ambiguities is related to the

existence of ambiguities in the ideal case of zero measurement
error, it is evident from the above discussion that the practical
ambiguity problem is certainly less relevant in the on–off fault
array diagnosis problem. In other words, the probability of am-
biguous solutions should be drastically reduced to very small
values so that the diagnosis problem becomes unambiguous in
the practical sense.

In order to show that this is indeed the case, an extensive nu-
merical analysis was performed in a way similar to that followed
in [8] in the case of continuous values of the excitation coeffi-
cients. From this analysis, the probability of the ambiguous so-
lutions was inferred as discussed in Section III-C.

C. Numerical Investigation of the Ambiguity Problem

Let us denote by

the matrix of samples of at twice the Nyquist
rate, and with the complex matrix of the array excitation co-
efficients, zero padded to a matrix. The spaces of such
matrices will be called image space and object spaces, respec-
tively. Following [8], we define the distances2 and in the
object and image space, respectively, as (it can be proved that

[8])

(4a)

2Strictly speaking a metric in the quotient space of the matrices normalized
to their norm.
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Fig. 2. Percentage of cases for which� < " and� < k � .

and

(4b)

where

and is defined equal to one for .
The diagnosis algorithm should find a set of excitation coeffi-

cients whose distance from the true one is as close as possible
to , say less than , where is a factor close to one. Ac-
cordingly, among all points of , only those corresponding
to excitations whose distance from the true one (in the object
space) is greater than give rise to an ambiguity in the prac-
tical sense.

A numerical analysis was performed on a set of 20 matrices of
randomly chosen complex coefficients. For each matrix, all

possible faulty arrays with two, three, and four faults were con-
sidered. For each fault array, its distance from any other possible
faulty array, irrespective of the number of faults, was computed
both in the object and image space. For space-saving purposes,
only the results referring to three faults are reported. Fig. 2(a)
and (b) shows the mean value and the standard deviation, re-
spectively, (over the whole set of 20 considered arrays) of the
percentage number, say%, of cases for which is less than
a given value, say , and is less than for several values
of versus .

As can be seen, the probability thatis significantly greater
than is very close to zero for small values of (as in any
practical instance is). The results of the numerical analysis for
two and four faults confirm this behavior, especially when the
number of faults is not a major fraction of the total number of
the array elements.

IV. DIAGNOSTIC ALGORITHM AND NUMERICAL RESULTS

For closed-bounded sets, finding a point of the set is
equivalent to finding a matrix minimizing the functional

(5)

where is the metric projector3 onto and represents
the norm in the space of square integrable functions over, say

. Any array factor whose squared amplitude differs from
for less than , is an absolute

minimum (zero) of the functional (5).
As pointed out in Section I, we used a genetic algorithm,

which, generally speaking, successfully obtained the solution
of difficult minimization problems with a weak dependence on
the complexity of the problem, i.e., the dimensions of the array
being tested and with reasonable computing time.

Since the defining space of the functionalis the space of
binary matrices, a binary coded genetic algorithm was consid-
ered where each chromosome of the population represents one
mask matrix. In order to improve the convergence properties of
the algorithm, a modified version of a canonical genetic algo-
rithm [10] was adopted.

First of all, an elitist strategy was considered [11], [12]. In
addition, a “2-D” crossover was introduced and a quasilinear
scaling of the fitness function was applied [10].

In particular, given the mating matrices and and two
randomly chosen indexes, sayand , the two “2-D” crossed
matrices are defined as

for such that
or
for such that
or

(6)

3The metric projector ontoY associates the point ofY nearest tox to any
point x.
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for such that
or
for such that
or .

(7)

In this way the algorithm explicitly takes into account the 2-D
characteristics of the unknown, and so building blocks in the
form of submatrices are allowed to grow.

The quasi-linear scaling realizes the following correspon-
dence between the objective functional and the fitness function,
say

for
for

(8)

where the constantsand are chosen in order to fix the mean
value and obtain mean and where is a
scaling parameter. An appropriate value ofis able to guarantee
a constant selection pressure and so to speed up the convergence
of the algorithm (by about ten times, in our numerical analysis)
with respect to the simple more conventional correspondence:

.
The minimization genetic algorithm was subjected to an ex-

tensive numerical analysis in order to choose the optimal set of
parameters and to prove its effectiveness.

In an initial investigation, the excitation coefficients have
constant amplitude and a random phase in order to avoid
the problem of detecting faults corresponding to coefficients
whose amplitude is much smaller than the maximum. The
mean number of generations (over ten runs with different initial
populations) needed to obtain the solution with a number of
faults equal to is shown in Table I for four different
values of and . In the examples worked out, the population
consists of 101 chromosomes and a uniformly distributed noise

50 dB under the norm of the square amplitude of the array
factor was assumed. Table I shows that the computing time
required to find the solution weakly depends on the complexity
of the problem. In fact, while the number of possible solutions
( ) increases exponentially with the array dimension, the
number of generations only shows a linear increase.

The algorithm was also tested on excitation coefficients ma-
trices of practical interest. The excitation coefficient matrix of

elements, shown together with the correspondent array
factor in Fig. 3, was used for this purpose. In this case, a matrix
with a large dynamical range of elements and with symmetry
properties is involved. Ten different fault configurations with 20
faults were considered. Ten runs with different initial population
were worked out for each fault configuration. The cardinality of
the population was always set equal to 101.

In the case of zero measurement error, ambiguity problems
never occurred.

When a maximum error equal to50 dB was present, the
algorithm was able to reconstruct the correct fault matrix,
apart from the excitation coefficients whose amplitude is much
less than the maximum modulus coefficient in the array being
tested. Numerical analysis showed that the differences between
the computed mask matrix and the true one were generally

TABLE I
MEAN NUMBER OF GENERATIONSNEEDED TOGET THE SOLUTION FOR

DIFFERENTARRAY DIMENSION

(a)

(b)

Fig. 3. Array excitation coefficients and the corresponding array factor.

confined to one or two coefficients whose amplitudes were
40 dB below the maximum one.
The dependence of the mean value of the objective function

on the population, its minimum value and its standard deviation
at each generation (as a mean of all the ten considered cases)
are shown in Fig. 4 versus the number of generations.

V. CONCLUSIONS

In conclusion, it can be said that the on–off diagnosis of a
planar array is an affordable task both from the point of view
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Fig. 4. The minimum value of the objective function over the population, its
mean value, and its standard deviation at each generation (as a mean over ten
cases and over ten different starting populations for each case) versus the number
of generations with a semilogarithmic scale.

of the ambiguity problem and computational effort. The ambi-
guity problem was shown to be intrinsically less relevant with
respect to that encountered in the continuous case. Furthermore,
the probability of the occurrence of the ambiguous (in the prac-
tical sense) solutions, as inferred from the numerical investiga-
tion presented, assumes fairly small values and can be consid-
ered negligible in any practical application. The global mini-
mization of the objective functional was successfully performed
by applying a (suitably modified) genetic algorithm. The com-
putational effort required proved to be modest in the examples
worked out and showed an essentially linear dependence on the
size of the array being tested.

The approach and the investigation presented here may also
be applied to more general kind of faults, to near-field or Fresnel
zone intensity measurement, as well as to cases where the mu-
tual coupling between radiating elements is taken into account.
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