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Diagnosis of Array Faults from Far-Field
Amplitude-Only Data
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Abstract—The diagnosis of the faulty elements of aplanararray At first glance, this goal seems nonrealistic. In fact, the
from noisy far-field power pattern data is considered in the case of grray factor is related to the excitation coefficients by a dis-
“on—off” faults. The possible ambiguities of the solutions are con- crete Fourier transform (DFT) relationship. Accordingly, the

sidered both in the theoretical and practical sense and are shown di - bl . ivalent to findi function f th
to be intrinsically less relevant than in the widely studied contin- lagnosis problem IS equivaient {o Tinding a tunction from the

uous case. The probability of the occurrence of the practical am- modulus of its Fourier transform, a topic widely dealt with in
biguities is inferred from a number of numerical examples and is literature. This does not give unambiguous solutions [3].
shown to be negligible in all cases of interest. An effective algorithm  The first aim of this paper is to show that this restriction can

is presented here based on an intersection set finding approach : : . :
and involving the minimization of a suitable objective functional. be practically removed in the case of on—off faults considered

The global minimization of the functional has been successfully here. In particular, it will be shown that the probability of finding
performed by applying a properly modified genetic algorithm. A an ambiguous solution is drastically smaller than that occurring
number of numerical examples shows the effectiveness of the ap-in the general case. As a result, the diagnosis problem proves
proach whose computational complexity essentially increases lin- unambiguous in the practical sense.

ly with th ize. .. o . .
carywi © array size However, this is not enough. One critical point to be consid-

Index Terms—Fault diagnosis, phased-array antennas. ered concerns the ability to effectively explore the solution space
without being trapped by false solutions. Since the algorithms
based on a deterministic local search criterion stop when a local
] optimum of the search criterion is found, global minimization
D ETERMINING the faulty elements of an array is a comy|gorithms [4] are needed. In particular, for an arbitrary pre-
plex problem of practical interest, particularly for large anfixeq accuracy, nondeterministic algorithms such as simulated

tennas gnd/ort_hose arrays which cannot be brought to a |ab%{ﬁ‘nealing [5] or evolutionary algorithms [6], [7], allow a full
tory for inspection [1]. exploitation of the solution space in a probabilistic sense and

One kind of fault widely encountered in practical instances jﬁjarantee the attainment of the global optimum of the search
the so-called “on—off” fault, where the faulty element does ng§iterion asymptotically as the number of trials increases to in-
radiate at all. Later on we consider only these faults. finity [4], [6].

One possible solution to the diagnostic problem could be 10|, 5\ case, it must be noted that the search space is a discrete

make use of a network of sensors integrated with the beagh-e as the unknowns can assume only one of the two values
forming network, while monitoring the array “status” in reaj o ;a6 or one. However, as is also the case of moderately sized
time. However, such an expensive network must be providedgf, s jts cardinality is extremely large (e.g., for an array with
the design stage of the array and may be affected by faults. 555" 44iators it is equal 1822 = 5.4 - 1057). Accordingly.
Therefore, 't,'S besF to perform the antgnna diagnosis by ME effective searching algorithm is necessary. In this paper, we
suring the_ rad|ated_f|eld W'thO‘%t removing the array from Bse a (suitably modified) genetic algorithm, which, based on a
working site and without a serious interruption of itS NOrMg)jsrete representation of the unknowns, naturally matches the
operating conditions. For satellite borne antennas, the choicg,pf e m at hand. The extensive numerical analysis presented in
far-field measurements is highly important. In the case of IargﬁS paper shows the effectiveness of this choice.
earth-based antennas, where the far-field measurements can B4 statement of the problem is presented in Section II. The
performed as descr!bed in [2] for reflgctor qntennqs, this Cho'ﬁﬁalysis of the practical ambiguities is considered in Section lIl.
proves very convenient from a practical point of view. The diagnostic algorithm is presented in Section IV, where its

Furthermore, to avoid measuring the complex far-field patssectiveness is addressed. Conclusions are drawn in Section V.
tern, which requires a reference phase signal and an expensive

measurement setup, it is of great practical interest to perform
the array diagnosis by exploiting only the amplitude far-field

. INTRODUCTION

pattern. [l. STATEMENT OF THE PROBLEM
Let us consider an array &f x M elements regularly dis-
Manuscript received March 17, 1999; revised November 8, 1999. tributed with spacingl,, andd,, along ther andy axes, respec-
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di Napoli “Federico II,” Napoli 80125 Italy. Ively (see Fig. 1). The nominal excitation coefficients of the
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Fig. 1. Geometry of the problem.

to be different from zero and are the components of the excitaith the antenna being tested and corresponding to the excita-
tion matrix C = {Cyp,m} net, ., v . The corresponding array tion vectorC@ = {Cy, nC% 1} et o v -

m=1, -, M =1, M .
factor F'(u, v) is given by Therefore, any point of the intersection gt ) can provide
N M an acceptable estimate of the actual array factor and thus of the

F(u, U) _ Z Z Cnmejnuejmv _ F(g) (1) correspondlng excitation coefficients.

n=1 m=1

where v = kd,sindcosg, v = kd,sin 9 sin ¢, I1l. OCCURRENCE OFAMBIGUITIES

k= 2m/A A the wavelength, § ) the spherical coor- |y order for a diagnosis technique to be effective, the first

dinates (Fig. 1)7 the Fourier series associatedf@nd ac’“*  property necessary is the uniqueness of the solution. When
time dependence is subtended. dealing with this problem, it is convenient first to address
For the sake of convenience, the excitation coefficients Mgy general problem of how to retrieve a matelxfrom the
trix, say g(g), corresponding to the faulty array, will be eX-modulus of its Fourier serie(u, v) = FA) and then the
pressed in the following as the product (element by elemepi)_off faults case of interest here. -
betweenC' and the matrix, sag®), whose ¢, m)th entry is
one or zero, according to the status (working or faulty) of th&_ Continuous Case
corresponding array element.
In order to account for the noise and measurement errors afAs mentioned in the Section |, this problem does not admit
fecting the power pattern measured, the maximum additive erfotinique solution, i.e., there are matricds# A such that
on the data, say*(u, v), is introduced. Accordingly, the square| F[A]| = |F[4]|, so that ambiguous solutions are indeed pos-
amplitude of the array factor actually radiated by the array, saiple.

M?(u, v), belongs to the set It is convenient to distinguish between trivial and nontrivial
., ambiguities [8].
Y= {y(u, v): ‘y(% v) — M (u, v)‘ Trivial ambiguities occur in the following three cases:
< &(u, )V (u,v) € 2} 2 DA=cAld=1)

2) éAL’Zln, m = (AN—n, l\/f—rn,)*;
where(2 denotes the measurement sector in(thev) planeand ~ 3) A can be obtained by zero filling a smaller matrix, say
HQ(u, v) is the square amplitude measured of the array factor.  up to a matrix with dimensiond” x M and is any other

However, M?(«, v) must belong to the set, say, of the matrix (with dimensionsV x M) obtainable fromé by
square amplitudes of the array factdré?)(u, v) associated zero filling.
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These ambiguities will be referred later on as trivial ambigsuch thatO](\?)_n M—m = 1. In practice, the number of faulty
ities of the first, second, and third kind, respectively. elements in the array being tested is always a small fraction

To discuss nontrivial ambiguities, it is convenient to&et  of the number of array radiators, and so the above symmetry
e, n = ¢ in (1) and considef (u, v), as a polynomial in condition is very strong.
the complex variable§, n, sayP(&, n). Nontrivial ambiguous  In the same way, we can discuss factorable ambiguities.
solutions occur wheP(&, n) is a factorable two-dimensional One necessary condition causing the fault diagnosis problem
(2-D) polynomial [9], [3]. to be ambiguous is that the faulty excitation coefficients ma-

Since it can be shown that the probability of finding a facrix ¢ belongs to the ambiguity surface (a zero likelihood
torable polynomial is zerbthis could appear a slight drawbackevent), which implies very strong constraints on the maffix
although not serious. However, as will be discussed later on, th@ highlight this point, let us consider, for example, the case
existence of measurement errors makes this kind of ambiguiy— 2. A7 = 3. Denoting a general+3 matrix as|% ? |, the

. de f|?
quite relevant. _ _ surface ambiguity equation is [8]

In fact, due to measurem(Qant error, any matrix belonging to the
setA = {B: ||F(B)|* — M| < €%} is a possible solution of (af — cd)? — (ae — bd)(bf — ce) = 0. (3)
the problem at hand, but it is acceptable only if it is also close
to A. When a single fault occurs, for instance,= 0, the fault

Now, let us assume that a matrix, sdy, corresponding to excitation coefﬁcier_lts matrix belongs to the ambiguity surface if
a reducible polynomial, belongs td so thatR matrices, say and only if the matrixC' belongs to the surfaded)? —bd(bf —
Ap,n =1, - R, such thal FA)]? = |F[A]]* = - = ce) = 0.( \;Vhen two faults are present, e.g..= 0 = b, the
| F[ARg]|? do exist. According to the previous considerations, dpatrix " never ?e'ongs to the amb|guou§ su'rface.
these matrices are possible solutions. However, if at least one oMoreover, even iC(? belongs to the ambiguity surface, the
such matrices is not close to the true solutibran ambiguous Problem may prove unambiguous. In fact, it is also necessary
solution occurs and cannot be univocally (within the measurehat at least one of the ambiguous counterpar&(étis a faulty
ment error) determined from the measured data. array, i.e., it can be put in the factorized foth- g(b). Again
This ambiguity, which can be present everPif¢, n) is not  this is a very unlikely occurrence.
factorable, will be referred to later as a “practical” ambiguity. Let us now turn to the problem of practical ambiguities.
Furthermore, the probability of its occurrence, which is strictly Since the presence of practical ambiguities is related to the
related to the existence of ambiguities in the ideal case of exagistence of ambiguities in the ideal case of zero measurement
measurements, has a finite value that can be significantly déror, it is evident from the above discussion that the practical

ferent from zero [8]. ambiguity problem is certainly less relevant in the on—off fault
array diagnosis problem. In other words, the probability of am-
B. Discrete On—-Off Case biguous solutions should be drastically reduced to very small

vzglues so that the diagnosis problem becomes unambiguous in

The on-off faults case will now be discussed by showing th .
practical sense.

the ambiguity problem is more favorable even in the case In order to show that this is indeed the case, an extensive nu-

exact measurements. merical analysis was performed in a way similar to that followed
Let us note that the matrix involved in the ambiguity problem y P y

discussion is now the faulty excitation coefficient matgls?) = In [8] in the case of continuous values of the excitation coeffi-
O o ® = cients. From this analysis, the probability of the ambiguous so-
® .

= _=. . lutions was inferred as discussed in Section II-C.
Obviously, the two-level quantized nature of the unknown

C® drastically reduces the solution space frofi** toaset ¢ Numerical Investigation of the Ambiguity Problem
with 2V*M cardinality.

First of all, let us consider the case of trivial ambiguities.

The trivial ambiguities o) can correspond to faulty ar-

. . /(b) /(b) . g: {F(TLW/N, m7r/M)} n=0,+,2N—1

rays, only if they can be put in the for@i- C’*" whereC”"" is m=0, -, 2M—1

a mask matrix, and this can be done if and only if the matfix

has certain symmetry properties whose occurrence in practi@g2/V *2M matrix of samples of'(u, v) at twice the Nyquist
is not very likely. rate, and withC' the complex matrix of the array excitation co-

As a matter of fact, with reference to trivial ambiguities of th&TICients, zero padded tozaV «2M matrix. The spaces of such

second kind (it is easy to verify that trivial ambiguities of firsfnatrices will be called image space and object spaces, respec-

kind never occur), let us remember that we have assumed tiily- Following [8], we define the distances; andé,in the

the matrixC’ has no zero elements. object and image space, respectively, as (it can be proved that

— . 6 <6, <V2[8
The matrixQ(g) is a solution of the on—off array diagnosis D

problem if and only ifC,, ., = Cx_, r/_,, for thosen, m

Let us denote by

(c.cn ¢

[ enlliedl ez

60 (Cl C//) —

(42)

1in fact, the set of all factorable polynomials with a given degree is a surface
in the space of all polynomials (with the same degree [9]) and, thus, has a zer8Strictly speaking a metric in the quotient space of the matrices normalized
Lebesque measure. to their norm.
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Fig. 2. Percentage of cases for whith< ¢’ andé, < ké;.
and IV. DIAGNOSTIC ALGORITHM AND NUMERICAL RESULTS
! 1/
5, (F’ F//) _ |£| _ |F:| (4b) For closed-bounded sets, finding a point of the@et Y is
L, 2 12 equivalent to finding a matrig® minimizing the functional
where N (C(b))
—2
o [T N (O S | A
[,2 [,2
(5)
IN, 2M aN, 2M 1/2

wherePy is the metric projectéronto)’ and|| «|| -, represents
the norm in the space of square integrable functions Qyseay
L5(Q). Any array factor whose squared amplitude differs from
and(z/|~|) is defined equal to one for = 0. HQ(u, v) for less thare?(u, v), V (u, v) € Q, is an absolute

The diagnosis algorithm should find a set of excitation coeffftinimum (zero) of the functional (5).
cients whose distandg from the true one is as close as possible AS pointed out in Section |, we used a genetic algorithm,
to &;, say less thaks;, wherek is a factor close to one. Ac- Which, generally speaking, successfully obtained the solution
COI‘ding]y, among all points an Y, 0n|y those Corresponding of difficult minimization prOblemS with a weak dependence on
to excitations whose distance from the true one (in the objdb€ complexity of the problem, i.e., the dimensions of the array
space) is greater that®; give rise to an ambiguity in the prac-Peing tested and with reasonable computing time.
tical sense. Since the defining space of the functionalis the space of

A numerical analysis was performed on a set of 20 matricespary matrices, a binary coded genetic algorithm was consid-
3+3 randomly chosen complex coefficients. For each matrix, £&€d Where each chromosome of the population represents one
possible faulty arrays with two, three, and four faults were cof?@Sk matrix. In order to improve the convergence properties of
sidered. For each fault array, its distance from any other possiBlé @lgorithm, a modified version of a canonical genetic algo-
faulty array, irrespective of the number of faults, was computéfin™ [10] was adopted. _
both in the object and image space. For space-saving purposeEirst of all, an elitist strategy was considered [11], [12]. In
only the results referring to three faults are reported. Fig. 2(%51({'.“0”’ a “2-D” crossover was introduced and a quasilinear
and (b) shows the mean value and the standard deviation, $e2ling of the fitness function was applied [10].
spectively, (over the whole set of 20 considered arrays) of theln Particular, given the mating m‘atrlcezﬁ andA” and two
percentage number, s@y%, of cases for whicl; is less than randomly chosen indexes, sayand;o, the two “2-D” crossed
a given value, say’, ands, is less tharks; for several values matrices are defined as

€. )= 3 ccy,
146

| =

> CuCy

14e6

of & versuse'. o Al;, for (4, j) such that > 4o, j > jo
As can be seen, the probability thHgtis significantly greater ) ori < i, § < jo
than§; is very close to zero for small values &f (as in any By = A%, for (i, j)js‘,uc_h‘thatz > oy § < jo (6)

practical instance is). The results of the numerical analysis for
two and four faults confirm this behavior, especially when the
number of faults is not a major fraction of the total number of e metric projector ontg’ associates the point 9f nearest tar to any
the array elements. point .

ori < g, J > Jo
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TABLE |
MEAN NUMBER OF GENERATIONS NEEDED TO GET THE SOLUTION FOR

A’i’j7 for (i7 j) such that > ig, 7 > 40 DIFFERENT ARRAY DIMENSION
"no_ or: <o, J < jo
Bi; = A, for (i, j) such that > io, j < jo () DIMENSIONS |MEAN NUMBER OF
ori <o, j > Jo,- GENERATIONS
. . .. . 5*5 6.9
In this way the algorithm explicitly takes into account the 2-D
characteristics of the unknown, and so building blocks in the 10*10 23.1
form of submatrices are allowed to grow. 15515 475
The quasi-linear scaling realizes the following correspon- ; 195G
dence between the objective functional and the fitness function, 20%20 :

say®

(8)

& — al+b, foral+06>0
10, fora¥ +6 <0

where the constantsandb are chosen in order to fix the mean
value and obtaimax(®) = h +mear{¥') and wherex > 1is a
scaling parameter. An appropriate valué.@$ able to guarantee

a constant selection pressure and so to speed up the convergenc

of the algorithm (by about ten times, in our numerical analysis)
with respect to the simple more conventional correspondence:
$ = max(V) — 0.

The minimization genetic algorithm was subjected to an ex-
tensive numerical analysis in order to choose the optimal set of
parameters and to prove its effectiveness.

In an initial investigation, the excitation coefficients have
constant amplitude and a random phase in order to avoid
the problem of detecting faults corresponding to coefficients
whose amplitude is much smaller than the maximum. The
mean number of generations (over ten runs with different initial

populations) needed to obtain the solution with a number of \2 \} S = T B N
faults equal ta).2 + IV « M is shown in Table | for four different R %f S\ ﬁ\\/
values of N and}. In the examples worked out, the population b A (N '
consists of 101 chromosomes and a uniformly distributed noise ° i._ C
—50 dB under the norm of the square amplitude of the array ,99 0
factor was assumed. Table | shows that the computing time jo Q%

required to find the solution weakly depends on the complexity

&

\O

=] \.J___) C [ ~
mfc(?m?j \K.__r'(__"//é:\g DE_..{& '\}
P . ]

L
. L=
<

—

a © )_,Q\O

N

of the problem. In fact, while the number of possible solutions AS/A e
(2N*M)y increases exponentially with the array dimension, the ) //\\‘1:&
number of generations only shows a linear increase. ' ~

The algorithm was also tested on excitation coefficients ma- 2.0\ @J\OO
trices of practical interest. The excitation coefficient matrix of Q.10 ‘;“

15 % 15 elements, shown together with the correspondent array
factor in Fig. 3, was used for this purpose. In this case, a matrix ()

with a large dynamical range of elements and with symmetry. 3. Array excitation coefficients and the corresponding array factor.
properties is involved. Ten different fault configurations with 20

faults were considered. Ten runs wi_th diffgrentinitial pqpulfatiogonﬁned to one or two coefficients whose amplitudes were
were worked out for each fault configuration. The cardinality o

h lati | ¢ 110 101 —40 dB below the maximum one.
€ population was always Set equatto o The dependence of the mean value of the objective function
In the case of zero measurement error, ambiguity proble

"B the population, its minimum value and its standard deviation
never occurred.

. at each generation (as a mean of all the ten considered cases
When a maximum error equal t650 dB was present, the 9 ( )

. ‘are shown in Fig. 4 versus the number of generations.
algorithm was able to reconstruct the correct fault matrix,

apart from the excitation coefficients whose amplitude is much
less than the maximum modulus coefficient in the array being
tested. Numerical analysis showed that the differences betweein conclusion, it can be said that the on—off diagnosis of a
the computed mask matrix and the true one were genergblanar array is an affordable task both from the point of view

V. CONCLUSIONS
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