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The Use of the Transfinite Interpolation in the
Method of Moments Applied to
Electromagnetic Scattering by Dielectric

Cylinders

Philippe De Doncker

Abstract—The method of moments (MoM) solution of electro- machining of free-form surfaces such as automobile exterior
magnetic scattering presents two major n_umepcal difficulties: panels. Rapidly it has been adapted and applied to the problem
the number of unknowns and the computation time necessary 10 ¢ ¢ yryilinear mesh generation for finite element analysis [15]

calculate the matrix elements. To circumvent these problems, a diti b tandard thod f f dvol
MoM using the transfinite interpolation and a reduced integration anditis NOWRECOMe a Standard MetnoaiorsUface andvoilme

scheme is presented here. The so-callédand p versions of the new Modeling (see [17] for an introduction to this technique or

method are applied to the scattering of an electromagnetic wave [19], [20] and references therein for its last developments).
by an infinite dielectric cylinder (TM case) in the Richmond's Byt the use of the TFI has not been restricted to CAD. Thanks
formulatlon. The transfinite and classical methods are c_ompared to its special properties, it has made possible to develop
in terms of the convergence rates of the radar cross section and of . g h . . .

the total electric field inside the dielectric. The results confirm the Curv_lll_near finite difference schgmes |n_ fluid mechanics [16]

Superiority of the new schemes as predicted by the theory_ or f|n|te'e|ement methOdS, Wh|Ch Sat|Sfy natural boundary
conditions exactly [18]. All these applications are based on
the link between TFI and geometrical modeling. But the TFI

presents another powerful feature which is more barely known:
for the same interpolation functions degree, it leads to a much

. INTRODUCTION better accuracy than the classical interpolation as it will be

ANY electromagnetic applications require the analys@hOW” fur_ther and it could thus be useful to decrease the huge
I\/I of the scattering of a wave by a conducting or diele©&@mputational needs of the MoM.
tric cylinder. In this kind of problems, the domain of interest The idea of enhancing the performances of the MoM by using
is infinite and the numerical solution is often carried out using'ore elaborate interpolation basis is not new. In the first de-
the method of moments (MoM) [1] to solve integral equation\éelopments of the volume integral equations based MoM, pulse
which automatically incorporate the Sommerfeld radiation cofdnctions were considered in both two and three dimensions [3],
dition. However, these methods result in a full matrix represel@l [10]. However, it rapidly appeared that this kind of approx-
tation and the large number of unknowns necessary to obtain §gation is not efficient and that it leads to the presence of spu-
curate results represents a major numerical difficulty. The MoRPUS surface charge densities inside the scatterer [8]. To circum-
is commonly referred as a low-frequency method since its u4@nt this problem, numerical techniques have been developed
is generally restricted to bodies that are not large in terms of tH&ing the so-called rooftop functions on cells of various shapes
wavelength. [11]-{14]. More recently, to still enhance the accuracy of the
The MoM solution of electromagnetic scattering generally iflOM, the use of isoparametric elements has been proposed [4].
volves the subdivision of the scatterer in small elements call8dl of those methods are efficient but none of the authors insists
patches or cells. In each cell the unknown field is approximat&# the crucial role played by the interpolation process, which is
in terms of simple interpolation functions. An approach to ré1ever studied separately from the geometrical modeling which
duce the computational needs could be to improve the efficier§2IS0 become more and more elaborate. Moreover, in applica-
of this interpolation process. Following this idea, the use of ti{ions such as in biomedical engineering the use of simple dis-
transfinite interpolation{2] is presented here. cretization grids could be preferable on one hand to simplify the
The transfinite interpolation (TFI) theory is a mathematicaféry difficult mesh generation task and on the other hand to be
tool originally developed for the geometrical problems ofasily compatible with the algebraic systems solvers optimized

computer-aided design (CAD) and numerically controlleBY the fast Fourier transform (FFT) algorithm. The TFI theory
fills in this gap by presenting a general formalism to study and
to enhance the performances of the interpolation process.
Manuscript received May 4, 1998; revised September 3, 1999. To the author’s knowledge, itis the first time the transfinite in-
The author is with the Département d’Electricité Générale, Faculté df@rpolation is explicitly used in the MoM. However, a particular
Sciences Appliquées, Université Libre de Bruxelles, CP165/51 Elecgen, 1050 . T .
Bruxelles, Belgium. Case of thep version presented here leads to the interpolation
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theory presented here is more general than the isoparametridtety are projectors, i.e., linear idempotent operatBré = P¢,
ements interpolation theory and it emphasizes the leading prtz = P;, andP;2 = P¢). Substituting (4) into (2) the approx-
of the interpolation scheme itself in the MoM solution of inteimation¢.(z, v, z) of ¢(x, y, z) in each cell can thus be viewed

gral equations. in this case as a projection called tie®sor-producprojection
of ¢(x,y,2)
Il. OPERATORFORMULATION OF THE METHOD OF MOMENTS -
_ , P, y, 2) = Py By P; (.Y, 2) (7
Let us consider the canonical problem
and the discretized problem (3) takes the form
Lolx,y,z)=Qz,y, 2 1
Pestn2) = Qe @ £ PPP§a,y, ) = Qg ). (@)
where/ is an integro-differential operator defined on a volume <

V, ¢(x,y, #) is the unknown function (which could eventually Clearly, the projection process (7) ¢fon a finite-dimen-
represents a component of a vectorial field) &){d, v, z) isthe  sional space is a crucial step for the global accuracy of the nu-
source term. merical solution. Generally, pulse functions or piecewise linear
In the MoM, the first step to convert this problem into an alfrooftop) functions are chosen to span this projection space. By
gebraic system is to divide the voluriiein small cells (the case enhancing the precision of the projection we could expect a
of entire domain basis functions is not considered here). In edsdtter efficiency of the numerical process, i.e., to use less un-

cell c an approximatiom%}c(x, y, z) of the unknowng(z,y,2)  knowns with the same global accuracy.
is defined in terms of simple interpolation functions and of the

value of¢ at the interpolation nodegs?, vy, 2;,) of the cell 1. TRANSFINITE METHOD OF MOMENTS
} L M N The transfinite interpolation will be very concisely presented
belz,y,2) = Z Z Z in this section without proofs. All the details of this theory can
=1 m=1 n=1 be found, e.g., in [2] and [5].

C

C (T Yy 2) Wi (@), (W)wn (2)  (2) From (6) and (7) it can be easily shown that the accuracy set
of the projection (defined as the set of points where the inter-

where{u;}, {v}, } and{wy, } are basis functions spanning finitepojantg, equals the original functio) is formed by the nodes
dimensional linear spaces and are nonzero only over the VO'“(‘}?,

of the cellc. -
Substituting (2) into (1), and summing over the cells dividing P27, Yp 7)) = AT, Y Zn)- 9)
V, we obtain thaliscretized equatian

Yy 75

On the other hand, we can consider another approximation
Ne we(z,y, z) of ¢(z,y, z) obtained by application of tHeoolean

£ pelw,,2) = Qa.y,2) (3) sumprojection
e=1

mo(w,y,2) = (P ® Py & PC)p(z,y,2) (10)
whereN.. is the total number of cells.

In order to write this equation in an operator formulation, lethere the boolean sum of two commutative operatbrds is

P, P¢ and P be the one dimensional interpolation operatoréefined as
defined for any functiory (z, v, z) by (A@B)p = (B& A)p = (A+ B — AB)p. (11)
L

Pf(x,y,2) = ui(x)f(af,u,2)
=1
M

The accuracy set ofr.(x,y,z) is formed by thesurfaces
(x5, y,2), (x,95,, %), (z,y,25). This accuracy set thus, con-
sists of an infinite number of points, whence the name of

" c . transfinite interpolation(TFl). This property is the starting
P z) = 2 . o .
uf(@:y,2) T; U ()1 (@5 Y 2) point of the application of the TFI in volume or surface
N modeling. With (11), (10) can be explicitly written as
Pef(my,2) = Y wi(2)f(e,y, ). @) ri@,y2) = (P + FS 4 PS — PEPS — PEPS — POFS
n=1
+ PEPgPE) (1, 2). (12)

For instance, the operatél; associated with the linear interpo- ) ) _
lation in = on a segmenD, %] is defined by Of course, to obtain an algebraic system, only point values

of ¢(x,y,z) can appear in the interpolant andsecond level
PEf(x,y,2) = f(0,4,72) F ) ) interpolation is necessary for the terms of (12), which does not

h' contain the three projectionsin y, andz. This results in a new
Readily, the operators’;, Py, and P; are commutative interpolantr, of ¢
(P Py = PjP;,---) and if the basis functions satisfy the Folz,y) = (p;p;:p; + p;pgp; _,_p;p;p;

cardinality condition - - -
y — PEPEPE — PEPEPS — PEPCPE

U (73) = V(W) = Wi (23) = mn Ymyn (6) + PP PY)¢(x,y, 2) (13)
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where P¢, P; and P¢ are the second level interpolation prowhere the second-level interpolation must satisfy
jectors. The discretized version (3) of the original problem now

L — 2
takes the formulation h=h (21)
L Z (P;P;P; + P;p;ﬁ; + p;p;p; in the /. version and
— PSPSPS — PEPSPS — PEPLPe l=2k+1 (22)
+ PPy P, y,2) = Qz,y,2). (14) in thep version.
It is the so-calledransfinite MoMformulation of the original
problem. IV. APPLICATION TO THE SCATTERING BY A DIELECTRIC
Let P7, F;, and P2 correspond to Lagrange interpolation CYLINDER

with polynomials of degreé on cells of sidesi. The superi-  hanks to the theory outlined in the previous section, it is

ority of the transfinite scheme comes from the fact that asympassible to apply the TFI on volume integrals representations of
totically whenh — 0, the interpolation errors associated withy, e _gimensional (3-D) scatttering problems. However, to vali-
the trans_ﬂnlte prOJectl_on (10) and with the classical projectiof,te our approach itis much easier from the computational com-
(7) are given, respectively, by [5] plexity point of view to first solve the 2-D problem of the scat-
Etfi ~ O(h3F+3) tering by a inhomogeneous lossy dielectric cylinder. The TFI
el ~ O(hk+1)_ (15 has been applied with success for both the TM and TE cases in

combination with the volume-surface integral equation (VSIE)

The accuracy order of the first-level transfinite scheme is th%!%veloped by Jiret al. [21], [22]. But here, for conciseness
t_hree times that of the classical scheme using interpolation fuRginout losing the key features of the TFI, only TM results will
tions of the same degree. , . be presented. The original formulation developed by Richmond
In the transfinite case, the second-level interpolations have[g to solve this problem will be used to solve for the scattered
be chosen so that they do not degrade the accuracy order offlig| and the induced field inside the dielectric. In the following
first-level interpolation. This can be achieved in two differendgctions of this paper, the time dependeri¢é is understood.
ways. In the so-called version, the second-level interpolation | ot the incident electric field b&; = E; T. where the: axis

is chosen of the same degree as the first level, but on a fiRgfaken parallel with the axis of the cylinder. The cylinder mate-

grid. In the so-calleg version, the second-level interpolationjg| s assumed to be linear, isotropic, to have a constant perme-

is of a higher degree on the same grid. U&t, P/, andP7  gpjility 1., and an inhomogeneous complex relative permittivity
be the second-level projectors corresponding to Lagrange |nt(:e7y(-$ y). Let E = ET. be the total field and%, = E,T. the
polation of degreé on segments of widtth. In the & version scatiered field. From the fact that

(I = k) the second-level grid is to be chosen so that asymptoti-

cally [5] E=E; +E, (23)
7 = h3. (16) Richmond has shown that the integral equation for the total field
is
And in thep version(h = h) the second-level interpolation k2
degree must satisfy [5] E(z,y)+ TO / (e — 1)E(x/7y/)H(§2)(k0p) dz’ dy
S
l=3k+2. a7 = E;(z,y) (24)

It is important to note that the only constraint the interpol%heres is the cross section of the cylindéx, is the free-space
tion operators have to satisfy is to be commutative projectow

The transfinite scheme is thus very general and can be used Wlﬁ]ve number ang is defined as

a lot of interpolation methods. We will restrict ourselves here to p=(x—2)+(y—vy)2. (25)

the study of the transfinite MoM using Lagrange basis functions, . i i )

but it is obvious that in other electromagnetic applications it cam the original work of Richmond, the cylinder cross section was

be generalized for instance to trigonometric or spline interpoldivided in square cells and the total electric figldwas sup-
posed to be constant in each cell. In the operator formulation,

tions.
In the two-dimensional (2-D) case, the transfinite interpolafit'S: I fact, the 2-D equivalent of the tensor-product projection
is given by 7) with P and Py t_he prOJec_tors on constant baS|§ func_:tlc_)ns.
Fig. 1(a) shows the interpolation node associated with this inter-

w2, y) = (Py @ Py)p(z,y) (18) polation. Lets  be the interpolation error of this method. Since
. . P;P;¢ is in this case a zero-order polynomial approximation,

and the interpolation errors are for a cell of size the order of: is thus given asymptotically

erfi NO(h?’““) when/. — 0 by (see (19)):
et ~O(RMY), (19) er = O(h). (26)

The second-level interpolant can now be written as Finally, to obtain an algebraic system, the point-matching pro-

#e(w,y) = (PgPs + PiPs — PeP))¢(x,y)  (20) cedure at the interpolation nodes was used.
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(C) (d) Fig. 2. Nodes, cells, and interpolation functions shapes corresponding to each

term of the transfinité: version. (a) TermP; P¢. (b) TermP; Pr. (c) Py Pr.
(d) Global transfinite interpolant.

Fig. 1. Interpolation cells and nodes corresponding to the classical (a) pulse;

(b) linear; (c) quadratic; and (d) cubic interpolations.

A. The Transfinitéx Version

In this version, pulse functions are used for both the first- and
second-level interpolations in (20). L&Y and P; be the pro-
jectors on constant basis functions of widitH_et P¢ andﬁ’; be
the second-level interpolation projectors on constant basis func-
tions of width. To keep the first-level interpolation accuracy,
asymptotically, wherh. — 0, (21) must hold and, in this case,
the order of the interpolation error calleg is given by (19)

01, 0

en = O(h2). (27)

Using only pulse functions, the interpolation accuracy order is
twice the Richmond’s one. Fig. 2 shows the interpolation nodes (®)

and cells corresponding to the three terms of (20) and to the

global transfinite interpolant.(x,y). In the transfinite case, _ ) ) o )

eachmacro-cellof size h is divided in horizontal and vertical (Ft;?'tr?é Dasie 2*;;:_0”5 of the transfiniteversion for (a) the lateral node and
micro-cellsof width A, the number of micro-cells depending
on the macro-cell size following (21). The terf{ P/ E cor-
responds to the classical piecewise constant approximation on

cells of sizeh. The terms”; PJ.E and P/ 1°; £ correspond to the Hence, considering (26), to obtain the same global accuracy

classical approximation on one axis and to the finer approXimgi, the Richmond’s formulation, it would be necessary to use
tion on cells of widthh on the other one. As shown by Fig. z(d)t:ells of sizeh. As shown by Fig. 2(d), the transfinite ver-

the transfiniteh version uses in each macro-cell a piecewis, on yields thus an important gain in the number of unknowns

constant approximation of the unknown function on micro-cel eping the same kind of basis functions. Using (20) it is easy to

of sizeh, which is obtained thanks to only a few interpolatiorQNri e the basis functions associated with each node of Fig. 2(d).

nodes. Of course, there are much more unknowns per macro-ggiise fnctions are given on Fig. 3 in the case of a macro-cell
in the transfinite scheme than in the Richmond'’s one. Howevgt i o4 in 7 x 7 micro-cells (case of Fig. 2). Since they are es-

substituting (21) into (27) gives

sentially pulse functions, the practical implementation ofithe
_ version does not present any special difficulty compared to the
ep, = O(h). (28) Richmond'’s formulation.
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B. Transfinitep Versions T

Let P, andP, be the projectors on the one-dimensional (1-D)
Lagrange linear interpolation functions, i.e., for a é&l[0, 2] x

[0, A]
. h—z z
(a) (b)
e h—y y

In the classical formulation, the use of rooftop functions can be
considered as a tensor-produ¢tl’; projection with the asso-
ciated error given by?(h?). On the other hand, the first-level
transfinite interpolant is given by (18)

(Fr & P))E(x,y) © @
h—=x T h—y ) ) . ) ) .
=FE0,y) — + E(h,y) — + E(z,0) —— Fig. 4. Interpolation nodes and interpolation functions shapes corresponding
h h h to e_ach term of the quadratic transfinjieversion. (a) TermP; P;. (b) Term
+ E(a:, h) L E(O, 0) h ; y h ; <X PgP;.(c) P Pg. (d) Global interpolant.
y h—x h—y x . -
— E(0,h) = — E(h,0) = tion nodes belong to each cell. The teffiF; £ corresponds
la@ y hh to the classical piecewise linear approximation on cells of size
EAGIOES (30) . The termsPg P¢E and P¢ PSE correspond to the linear ap-

proximation on one axis and to the quadratic approximation on
To obtain only point values of(z,y), the termsE(0,y), the other one. On an average, in the transfinite quadratic scheme
E(h,y), E(z,0), and E(z,h) need a second-level interpo-there are three nodes per cell (taking into account the fact that
lation. Thanks to the first equation of (19), with = 1 the the nodes are common to adjacent cells) and in the classical
order of accuracy of the first-level interpolationd¥ ~2*). The quadratic scheme four nodes per cell. The gain in unknowns
second-level projectors have to be chosen to not degrade ibithus 25%. Furthermore, the reduced integration scheme pre-

accuracy. y R sented in the next section is only applicable to the transfinite
In afirst step, let’; and P/ be interpolation projectors on thebasis. The second-level quadratic interpolation scheme is not

1-D quadratic Lagrange interpolation functions on a segmethie optimal choice, but is a good tradeoff between complexity

[0, A] and accuracy.
The elements shown in Fig. 4 are the same as the isopara-
- (x — h/2)(x — h)

P E(x,y) = E(0,%) metric elements used in [4]. However, the approach presented
h?/2 here is quite different, it can be generalized to other kinds of
z(h —z) z(x —h/2) interpolations and it also shows that the choice of quadratic el-
———= F(h/2 —— F
+ h?/4 (h/2,9) + h2/2 (h,y) ements is not the optimal one from the interpolation point of
: _w=h/2)y-h view.
P E(z,y) = 22 E(x,0) In fact, after (22), the maximal accuracy would be obtained
y(h —y) y(y — h/2) with second-level Lagrange cubic interpolation and in this case
Y E(z,h/2) + T E(z,h).  the order of the interpolation errey,. is

5D pe = O(Y) (33)

The order of accuracy of each of these second level interpola- _ ) _ )
tions isO(1?), smaller than the first-level one, and determinesig- 5 shows the interpolation nodes corresponding to this

thus the order of the global 2-D interpolation eregy scheme and Fig. 1(d) those corresponding to the classical cubic
interpolation scheme which has the same accuracy order. For
epg = O(R®). (32) conciseness, the analytical expressions of the basis functions

are not reproduced here. Each term of (20) has the same

Using (20), (30), and (31), it is easy to compute the basssructure as in the transfinite quadratic case. On an average, in
functions belonging to each node of the transfinite interpoléhe transfinite cubic method there are five nodes per cell and
tion cell. Their analytical expressions are given in Appendix the classical cubic method nine nodes per cell. The gain in
A. Fig. 4 shows the interpolation nodes corresponding to eaghknowns is thus about 45%.
term of (20) and to the global interpolaft(z, v) and Fig. 1(c) It is unprofitable to use higher order Lagrange interpolation
those of the classical quadratic interpolation (which is in fatiasis for the second-level interpolation. The maximal accuracy
the tensor-product projectioﬁ;P;E(x,y) and has the same order, which can be reached with a first level linear interpola-
interpolation erro?(h?)). It appears that only eight interpola-tion is given by the first of (19), i.eQ(h*). The interpolations
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\/\ — wherekF. ;. is the value oft () at the nodé: of the celle, K is

the number of nodes belonging to ce(l/X = 8 in the quadratic
case and( = 12inthe cubic case) argl () is the interpolation
function corresponding to the no#teand which is nonzero only
over the surfacél,. of the cellc.

Considering (34) and using the point matching at the interpo-
lation nodes, the integral equation (24) becomes

(a) ' )

N, K
Ern + Z (Cc - 1) Z Ec,k
c= =1

1 k=
/ k2 G ) €6 (7)) dF = iy
Q.
m=1--N, (35)

where IV, is the total number of cellsy,, is the total number

of nodesg. is the relative permittivity of celt (supposed to be
: constant in the cell)F,,, and E;,,, are the values oE(#) and

© (@ E,(¥) at the noden (located on,,), andG(r, ') is defined as

Fig. 5. Interpolation nodes and interpolation functions shapes corresponding j 5
to each term of the cubic transfinite p-version. B)P: . (b) P; P;. (c) P; Py, G(7, f”) = 1 Hé )(kop)

(d) Global interpolant.
p=y(x—a)2+(y—y)> (36)

The problem is thus to reduce the surface integral
are not to be of the Lagrange type. The same results can be ob-

tained for instance with second-level cubic splines interpolation

or first-level trigonometric or exponential interpolations. / kg G(7, ) & (7)) di (37)
All the theory and the applications presented in the previous £

sections were developed in the case of parallelipipedic orre (;['an integration over the the boundas2, of €.

angular cells. However, for problems where the geometrical de-,

e : SinceG(7, ) is the free-space 2-D Green’s function, it sat-
scription is a crucial parameter, all the TFI theory can be gener: (7 7) P

alized to the most general curvilinear cells as it is shown in tr|1seﬂeS
Appendix B. (A + k) G(F,7) = 6(7 — ) (38)
V. REDUCED INTEGRATION SCHEME where A’ corresponds to the primed coordinates. The integral

The transfinite interpolation allows a large reduction of the37) is split into two parts

number of unknowns but a second major numerical difficulty

remains: ez_‘;xch element of the algebraic system matrix i; obtained / K2 G770 (7)) di

by integration over the surface of the cell corresponding to the Qe

element, which is very time consuming. _ NN 2N e g
Papagiannakis [6] has proposed an integration scheme _/QC S(TIA + ko) G, 77) i

which reduces in the 3-D case the 3-D volume integrals to , R

2-D integrals over the surface of the cells or in the 2-D +/Q &.(M) (= ANG (P, ) d. (39)

case the 2-D integrals to line integrals over the boundary °

of the cells (if the permittivity is supposed to be constantysidering (38), the first integral of the right member of (39)
in the cell). However, this scheme is only applicable in thy

el IS _ ak € solved analytically [7]
case of pulse functions interpolation and it is used here in
the /. version of the transfinite MoM. It will be shown that Q0
thanks to the properties of the transfinite basis, a reduced/ & () (A’ +k3) G(7n,7) di" = o &(Tm) 65 (40)
integration scheme can also be found in the 2-D quadratic’** "
or cubic p version of the transfinite method.
In thep version, the transfinite approximatidi.(7) of E(7)

in each interpolation celt can be written

wherefl, is the angle under which the node sees the celt
(Qo = n/2if mis on a vertice ot, Q¢ = # if m is on a side
of ¢) andé¢, is defined as

K
E(7) =Y E..&(7) (34) . _ [1, ifnodem € cellc
; B 0, otherwise. (41)
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The second integral of the right member of (39) is solved using  os— — e
the Green’s theorem [7]

/ng(f’)(—A’)G(Fm,f’)df'
_ / G, VA g i
Qe

+ jé N < —& 5 ) ar.  (42) i

Where the derivatives are taken in the outward direction norma o ————-— —_——— ——— l
to the cell boundary. The first term of the right member of this x/a

equation is the last surface integral remaining. Lgt”) =
A&, (7). ReplacingA’g,, by ¢, in (42) exactly the same method
as for (37) can be applied on the first term of the right member
of this equation. A few manipulations give

03 . : ! : . | ——

LD o yse — ]32 / (7o, ™A () di

= |
k2 2 . 1&4’
iz < GoE Y )‘”’- (43) g 5 e
o8,

2 !
kO an £ €

Considering the structure of (20), in theversion of the trans- R S T T T R T E  RT
finite projection, the termP’; P is linear in bothz andy, the
termPcPc is linear i ny and quadratlc or cubic inand the term Fig.6. (a)Analytical results (solid lines) and numerical results (dotted lines) of
P;Pc is ||near inx and quadrau(; or cubic i in. Hence, the trans- the normalized electric field along a diameter of the layered muscle-fat cylinder
e | (parallel to the propagation direction) and of the (b) normalized bistatic RCS
f_lnlte |nterp0|at_|0n fur_10t|0n£k(f)_ contamg only linear—linear, (1 = 7.5 — j8.64,erp = T2 — 7162.a = 0.050, b = 0.0263Ao).
linear—quadratic, or linear—cubic termsdnandy and conse-

(b

quently VI. NUMERICAL RESULTS

A'G = A'(Ag) = 0. (44)  Tovalidate the new schemes, the transfinite MoM was applied
to the scattering of a TM plane wave propagating in-+thedi-
i rection by a dielectric cylinder. All the numerical simulations
fined as presented in this section were obtained with the point-matching
o o , procedure and the reduced integration scheme for the transfi-
un() = () = 7 A & (7)- 45)  nite solutions. The algebraic systems were solved for sake of
L simplicity thanks to the LU decomposition. However, by a good
Considering (45), (43), (42), (40) and (39) choice of the unknowns numbering (numbering close together
equivalent nodes of the different cells) due to the use of the point
/Q R G (o, 7 )R (7) 7 matching and due to the fact that the interpolation functions are
‘ Q u PYe] shift invariant from one cell to another, it is possible to see that
0 — e k 1 . . . . .
=5 Uk (Fm )0, +7§ < U 5 ) dl’ (46) whgn the |nterpqlat|on cells are umform in the scatterer, the dis-
o0 cretization matrix can be written in a block Toeplitz form and
and all the surface integrals have disappeared (the line integitls thus compatible with the iterative solvers using the FFT to
have to be understood as Cauchy principal value integrals if newaluate the matrix—vector products (see, e.g., [8], [13]) (In the
essary). p version, to obtain the Toeplitz structure, the integral equation
This reduced scheme is only possible if the condition (44ust be first written as in (35), i.e., considering nodes common
holds, which is not true in the case of the classical quadratictoradjacent cells as several distinct nodes).
cubic bivariate interpolation. I{; } are pulse functions, (46) Since among the most important applications of the study
gives the reduced scheme described in [6]. It is worth notirg the interaction between a dielectric cylinder and an electro-
that this reduced scheme can also be used in the VSIE solutinagnetic wave are in the biomedical domain, the first example
of the TE case to remove the surface integrals. A limitation shows the total electric field and bistatic RCS of a layered cir-
this reduced scheme is the fact that the permittivity is supposadar cylinder of radiu®.05A0 (Ao = 27 /ko) illuminated by
to be constantin the cell (as it is often considered in practice [3],TM plane wave and whose permittivities and conductivities
[6], [10]—-[14]) but if the permittivity is supposed to be piecewisavere chosen to represent a muscle-fat cylinder at 100 MHz [8].
constant on subregions of each cell, reduced schemes carhlbéhe 1 andp versions give results in very good agreement with
applied separately for each of these subregions. the analytical solutions and Fig. 6 shows the electric field along

The surface integral in (43) is thus vanishing. Lgt7") be de-
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Fig. 7. Analytical result (solid line) and numerical result (dotted line) of the 18
normalized electric field along a diameter of the homogeneous cylinder (parall Log (h2a)

to the propagation directiorf},. = 4, a = 0.05Xo).

Fig. 8. The rms error of the electric field inside a circular dielectric cylinder
. . . . . radiusa = 0.1, €, = 54 — j84) versus the normalized cell sizg'2a.
a diameter parallel to the axis of the cylinder obtained with 24 e 184) B2

the quadratigp version (with 112 cells) and the bistatic RCS

1.3 -1.2 -11 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

obtained with the: version (with 36 macro cells). The validity i i : o5
of the cubicp version is shown on Fig. 7, which represents the

electric field along a diameter parallel to thexis of an homo- . o7
geneous cylinder of relative permittivity 4.0 and radiugsX . ° A o9
(obtained with 112 cells). .

The main advantage of the transfinite versions is a reduc . R o
tion in the number of unknowns. It is necessary to validate th ' -
theory by convergence tests. The first test presented here shao._ . A
the convergence rates of the different methods (the Richmond'g * 8
and rooftop methods and theandp versions) concerning the ~ " . .
total electric field along a diameter of an homogeneous dielec . ¢
tric circular cylinder of relative permittivity 54.g-84.0 and " . "o Pulse P
of radius0.1). Fig. 8 shows the evolution with the cell size - x » Rooftop
(the macro-cell size for thé version) of the error obtained . Afversion ]

. | @ Quadratic p-version |
by the root mean square (rms) norm of the difference betwee x x Cubic p-version 23
the numerical and the analytical results. The error involved il .

the Richmond’s formulation decreases with a slope 1.0 in th
rooftop method with a slope 1.9, in theversion with a slope
1.8, in the quadratig version with a slope 2.8 and with therig. 9. supremum error of the electric field inside a circular dielectric
cubic p version with a slope 3.5. The superiority of the transylinder (radiuse = 0.1\, e, = 54-j84) versus the normalized cell size
finite schemes is clear and confirms the theory. Fig. 9 show&-
the same test but with the error calculated with the supremum
norm (modulus of the maximal difference between the numerross section with the number of unknowns for an homogeneous
ical and analytical results). The slopes are 0.95 for the Rickguare cylinder of side length\, (e, = 4 ande, = 2, re-
mond’s method, 1.7 for the rooftop method, 1.6 for theer- spectively) at normal incidence. In this case, no analytical so-
sion, 2.6 for the quadratjeversion, and 3.5 for the cubjcver- lution exists, but several simulations on smaller cylinders have
sion, which confirms the good behavior of the transfinite MoMshown that all the methods converge to the same backscatter
Since the unknowns number for a given accuracy is smallenoss section and that they are in good agreement with existing
in the transfinite than in the classical method, the transfiniteimerical results for square cylinders [9]. Again the superiority
scheme seems to be well suited to deal with objects that afdhe transfinite scheme is clear. For instance on Fig. 11 we see
of the same order as or larger than the wavelength. In orderthat with 800 unknowns, the transfinite versions are very close
compare the different methods concerning larger cylinder scakbm each others and have converged. On the other hand, the
tering and to isolate the effect of the interpolation scheme froRichmond’s method gives with the same number of unknowns
the others error sources as the geometrical discretization, thesinbackscatter cross section 100% larger. We could expect to
teraction between a TM plane wave and a square cylinder wasve by the new transfinite MoM problems which are almost
studied. Figs. 10 and 11 show the convergence of the backscatigactable with the classical schemes.

Log (h/2a)
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APPENDIX A

In the quadratigp version, the expansion of the electric field
inside each interpolation c€ll.[0, A] x [0, k] is given by (20).
Thanks to (31) and (30%i.(x, i) can be explicitly written as a
function of the point values df'(x, %) at the interpolation nodes

7~Tc(.’1', y) = fOOE(07 0) + f(h/2)0 E(h/27 0) + thE(hv 0)

+ fony2y B0, h/2) + fucnsoy E(h, h/2)
+ fonE(0, h) + fau 20 E(h/2,R)
+ fth(hv h)

where the expansion functions are

foo = — % (y— h)(x —h)(2(y — h/2)
+2(xz—h/2)+h)

(A.1)

Fig. 10. Convergence of the normalized backscatter cross section with the 4
number of unknowns for a homogeneous square cylinder at normal incidencef(h/2)0 = (a: — h)(y — h)
h

(side length= 2Xq, ¢, = 2).
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fo =25 (u = ) 2y = h/2) — 20z = h/2) + h)

4y
fo(h/2) = 13 (y—h)(z—h)

4z
fh(h/?) = - h—gy (y—h)
forn = % (z—h)(=2(y— h/2)+ 2(x — h/2)+ ]h)
4zy
Jayn = — 75 (x —h)

fun =53 (2= h/2)+2(x —h/2) = h).

APPENDIX B

The generalization of the TFI to curvilinear cells is straight-
forward if the theory described in [15] is used. It will be briefly

Fig. 11. Convergence of the normalized backscatter cross section with Fﬂétlmed here 'n_the 2_'D (_:ase- )
number of unknowns for a homogeneous square cylinder at normal incidence_et ® be a discretization cell whose bounday is sub-

(side length= 2Aq, €, = 4).

VII. CONCLUSION

In this paper, a new kind of MoM was presented based on the

divided into four parametric curved segments. To construct a
curvilinear coordinate system IR let

T@j%:(ﬁ;ﬁ) (B.1)

use of the transfinite interpolation. After writing the classicdbe an univalent mapping of the squa¥e|0, 2] x [0, A] in the
MoM in an operator formulation, it was shown how to intro{s, t) parameters plane ont#®in the(z, y) plane, ie.l: S —
duce the transfinite interpolation schemes. Following the naturgprovides a unique correspondence between a fejnt €

of the second-level interpolation, the so-calledndp versions and its imagéz(s, t), y(s,t)) € R. If F(0,), F(h,t), F(s,0),

of the transfinite MoM were presented and they were shown ﬁa(s, h) are the four compatible parametric curves describing
give higher accuracy orders with less interpolation nodes tham, f(s,t) can be defined by

the classical methods. Thanks to the properties of the transfi-
nite basis, a 2-D integration scheme was developed which re- T'(s,t) =
duces the surface integrals over the interpolation cells to line

integrals over the boundary of the cells. Finally, the efficiency

of the transfinite MoM was demonstrated on numerical simula-

tions of the scattering of a TM plane wave by dielectric cylin-

ders. Although the applications of this paper are only dealing

with 2-D problems, the transfinite MoM could be generalized —
in the near future to the more realistic case of 3-D scatterers.

- h—s

Fo.)+ 2 Foniy+ " 5,0

2
+%ﬁ@myfh_2y_”ﬁmp)

t h—1)s =
—%me—(mﬁpwm

(h= )t f0,n). (B.2)

h2

In this case, the theory presented here could be advantageouslihe TFI formalism,f(s,t) is in fact the bilinear transfinite
applied for instance in the integral formulations presented in [#iterpolant ofF (s, ¢) on & and the generalization to three di-

or [13].

mensions is thus obvious as for the interpolation process. Any
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function f(x, ) defined orik corresponds to a functioff (s, t)
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defined on by the identification

The univalent mappin@(s, t) defines a curvilinear coordinate [12]

111

Fx(s,t),y(s,t)) = ["(s,t) (s,t) € S. (B.3)

system orik (for a complete discussion about the univalency of

T see [15]) and considering this curvilinear system, (18) holds,
[13]

ie.,

me(s,t) = (P5 & FY)p(s,t) (B.4)

[14

is a transfinite interpolant @f(s, ¢) on celle, and all the consid-

erations concerning the interpolation errors can be extrapolat
to this more general case.
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