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The Use of the Transfinite Interpolation in the
Method of Moments Applied to

Electromagnetic Scattering by Dielectric
Cylinders
Philippe De Doncker

Abstract—The method of moments (MoM) solution of electro-
magnetic scattering presents two major numerical difficulties:
the number of unknowns and the computation time necessary to
calculate the matrix elements. To circumvent these problems, a
MoM using the transfinite interpolation and a reduced integration
scheme is presented here. The so-calledand versions of the new
method are applied to the scattering of an electromagnetic wave
by an infinite dielectric cylinder (TM case) in the Richmond’s
formulation. The transfinite and classical methods are compared
in terms of the convergence rates of the radar cross section and of
the total electric field inside the dielectric. The results confirm the
superiority of the new schemes as predicted by the theory.

Index Terms—Electromagnetic scattering, integral equations,
interpolation, moment methods, numerical analysis.

I. INTRODUCTION

M ANY electromagnetic applications require the analysis
of the scattering of a wave by a conducting or dielec-

tric cylinder. In this kind of problems, the domain of interest
is infinite and the numerical solution is often carried out using
the method of moments (MoM) [1] to solve integral equations
which automatically incorporate the Sommerfeld radiation con-
dition. However, these methods result in a full matrix represen-
tation and the large number of unknowns necessary to obtain ac-
curate results represents a major numerical difficulty. The MoM
is commonly referred as a low-frequency method since its use
is generally restricted to bodies that are not large in terms of the
wavelength.

The MoM solution of electromagnetic scattering generally in-
volves the subdivision of the scatterer in small elements called
patches or cells. In each cell the unknown field is approximated
in terms of simple interpolation functions. An approach to re-
duce the computational needs could be to improve the efficiency
of this interpolation process. Following this idea, the use of the
transfinite interpolation[2] is presented here.

The transfinite interpolation (TFI) theory is a mathematical
tool originally developed for the geometrical problems of
computer-aided design (CAD) and numerically controlled
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machining of free-form surfaces such as automobile exterior
panels. Rapidly it has been adapted and applied to the problem
of curvilinear mesh generation for finite element analysis [15]
and it is now become a standard method for surface and volume
modeling (see [17] for an introduction to this technique or
[19], [20] and references therein for its last developments).
But the use of the TFI has not been restricted to CAD. Thanks
to its special properties, it has made possible to develop
curvilinear finite difference schemes in fluid mechanics [16]
or finite-element methods, which satisfy natural boundary
conditions exactly [18]. All these applications are based on
the link between TFI and geometrical modeling. But the TFI
presents another powerful feature which is more barely known:
for the same interpolation functions degree, it leads to a much
better accuracy than the classical interpolation as it will be
shown further and it could thus be useful to decrease the huge
computational needs of the MoM.

The idea of enhancing the performances of the MoM by using
more elaborate interpolation basis is not new. In the first de-
velopments of the volume integral equations based MoM, pulse
functions were considered in both two and three dimensions [3],
[8], [10]. However, it rapidly appeared that this kind of approx-
imation is not efficient and that it leads to the presence of spu-
rious surface charge densities inside the scatterer [8]. To circum-
vent this problem, numerical techniques have been developed
using the so-called rooftop functions on cells of various shapes
[11]–[14]. More recently, to still enhance the accuracy of the
MoM, the use of isoparametric elements has been proposed [4].
All of those methods are efficient but none of the authors insists
on the crucial role played by the interpolation process, which is
never studied separately from the geometrical modeling which
is also become more and more elaborate. Moreover, in applica-
tions such as in biomedical engineering the use of simple dis-
cretization grids could be preferable on one hand to simplify the
very difficult mesh generation task and on the other hand to be
easily compatible with the algebraic systems solvers optimized
by the fast Fourier transform (FFT) algorithm. The TFI theory
fills in this gap by presenting a general formalism to study and
to enhance the performances of the interpolation process.

To the author’s knowledge, it is the first time the transfinite in-
terpolation is explicitly used in the MoM. However, a particular
case of the version presented here leads to the interpolation
basis used in the isoparametric elements yet studied in [4]. The
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theory presented here is more general than the isoparametric el-
ements interpolation theory and it emphasizes the leading part
of the interpolation scheme itself in the MoM solution of inte-
gral equations.

II. OPERATORFORMULATION OF THE METHOD OFMOMENTS

Let us consider the canonical problem

(1)

where is an integro-differential operator defined on a volume
is the unknown function (which could eventually

represents a component of a vectorial field) and is the
source term.

In the MoM, the first step to convert this problem into an al-
gebraic system is to divide the volumein small cells (the case
of entire domain basis functions is not considered here). In each
cell an approximation of the unknown
is defined in terms of simple interpolation functions and of the
value of at the interpolation nodes of the cell

(2)

where and are basis functions spanning finite
dimensional linear spaces and are nonzero only over the volume
of the cell .

Substituting (2) into (1), and summing over the cells dividing
we obtain thediscretized equation:

(3)

where is the total number of cells.
In order to write this equation in an operator formulation, let

and be the one dimensional interpolation operators
defined for any function by

(4)

For instance, the operator associated with the linear interpo-
lation in on a segment is defined by

(5)

Readily, the operators , , and are commutative
and if the basis functions satisfy the

cardinality condition

(6)

they are projectors, i.e., linear idempotent operators
and . Substituting (4) into (2) the approx-

imation of in each cell can thus be viewed
in this case as a projection called thetensor-productprojection
of

(7)

and the discretized problem (3) takes the form

(8)

Clearly, the projection process (7) of on a finite-dimen-
sional space is a crucial step for the global accuracy of the nu-
merical solution. Generally, pulse functions or piecewise linear
(rooftop) functions are chosen to span this projection space. By
enhancing the precision of the projection we could expect a
better efficiency of the numerical process, i.e., to use less un-
knowns with the same global accuracy.

III. T RANSFINITE METHOD OFMOMENTS

The transfinite interpolation will be very concisely presented
in this section without proofs. All the details of this theory can
be found, e.g., in [2] and [5].

From (6) and (7) it can be easily shown that the accuracy set
of the projection (defined as the set of points where the inter-
polant equals the original function is formed by the nodes

(9)

On the other hand, we can consider another approximation
of obtained by application of theboolean

sumprojection

(10)

where the boolean sum of two commutative operators is
defined as

(11)

The accuracy set of is formed by thesurfaces
. This accuracy set thus, con-

sists of an infinite number of points, whence the name of
transfinite interpolation(TFI). This property is the starting
point of the application of the TFI in volume or surface
modeling. With (11), (10) can be explicitly written as

(12)

Of course, to obtain an algebraic system, only point values
of can appear in the interpolant and asecond level
interpolation is necessary for the terms of (12), which does not
contain the three projections in, , and . This results in a new
interpolant of

(13)
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where and are the second level interpolation pro-
jectors. The discretized version (3) of the original problem now
takes the formulation

(14)

It is the so-calledtransfinite MoMformulation of the original
problem.

Let , , and correspond to Lagrange interpolation
with polynomials of degree on cells of sides The superi-
ority of the transfinite scheme comes from the fact that asymp-
totically when , the interpolation errors associated with
the transfinite projection (10) and with the classical projection
(7) are given, respectively, by [5]

(15)

The accuracy order of the first-level transfinite scheme is thus
three times that of the classical scheme using interpolation func-
tions of the same degree.

In the transfinite case, the second-level interpolations have to
be chosen so that they do not degrade the accuracy order of the
first-level interpolation. This can be achieved in two different
ways. In the so-called version, the second-level interpolation
is chosen of the same degree as the first level, but on a finer
grid. In the so-called version, the second-level interpolation
is of a higher degree on the same grid. Let, , and
be the second-level projectors corresponding to Lagrange inter-
polation of degree on segments of width In the version

the second-level grid is to be chosen so that asymptoti-
cally [5]

(16)

And in the version the second-level interpolation
degree must satisfy [5]

(17)

It is important to note that the only constraint the interpola-
tion operators have to satisfy is to be commutative projectors.
The transfinite scheme is thus very general and can be used with
a lot of interpolation methods. We will restrict ourselves here to
the study of the transfinite MoM using Lagrange basis functions,
but it is obvious that in other electromagnetic applications it can
be generalized for instance to trigonometric or spline interpola-
tions.

In the two-dimensional (2-D) case, the transfinite interpolant
is given by

(18)

and the interpolation errors are

(19)

The second-level interpolant can now be written as

(20)

where the second-level interpolation must satisfy

(21)

in the version and

(22)

in the version.

IV. A PPLICATION TO THESCATTERING BY A DIELECTRIC

CYLINDER

Thanks to the theory outlined in the previous section, it is
possible to apply the TFI on volume integrals representations of
three-dimensional (3-D) scatttering problems. However, to vali-
date our approach it is much easier from the computational com-
plexity point of view to first solve the 2-D problem of the scat-
tering by a inhomogeneous lossy dielectric cylinder. The TFI
has been applied with success for both the TM and TE cases in
combination with the volume-surface integral equation (VSIE)
developed by Jinet al. [21], [22]. But here, for conciseness
without losing the key features of the TFI, only TM results will
be presented. The original formulation developed by Richmond
[3] to solve this problem will be used to solve for the scattered
field and the induced field inside the dielectric. In the following
sections of this paper, the time dependence is understood.

Let the incident electric field be where the axis
is taken parallel with the axis of the cylinder. The cylinder mate-
rial is assumed to be linear, isotropic, to have a constant perme-
ability and an inhomogeneous complex relative permittivity

Let be the total field and the
scattered field. From the fact that

(23)

Richmond has shown that the integral equation for the total field
is

(24)

where is the cross section of the cylinder, is the free-space
wave number and is defined as

(25)

In the original work of Richmond, the cylinder cross section was
divided in square cells and the total electric fieldwas sup-
posed to be constant in each cell. In the operator formulation,
it is, in fact, the 2-D equivalent of the tensor-product projection
(7) with and the projectors on constant basis functions.
Fig. 1(a) shows the interpolation node associated with this inter-
polation. Let be the interpolation error of this method. Since

is in this case a zero-order polynomial approximation,
for a cell of size the order of is thus given asymptotically
when by (see (19)):

(26)

Finally, to obtain an algebraic system, the point-matching pro-
cedure at the interpolation nodes was used.
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Fig. 1. Interpolation cells and nodes corresponding to the classical (a) pulse;
(b) linear; (c) quadratic; and (d) cubic interpolations.

A. The Transfinite Version

In this version, pulse functions are used for both the first- and
second-level interpolations in (20). Let and be the pro-
jectors on constant basis functions of widthLet and be
the second-level interpolation projectors on constant basis func-
tions of width . To keep the first-level interpolation accuracy,
asymptotically, when , (21) must hold and, in this case,
the order of the interpolation error called is given by (19)

(27)

Using only pulse functions, the interpolation accuracy order is
twice the Richmond’s one. Fig. 2 shows the interpolation nodes
and cells corresponding to the three terms of (20) and to the
global transfinite interpolant . In the transfinite case,
eachmacro-cellof size is divided in horizontal and vertical
micro-cellsof width , the number of micro-cells depending
on the macro-cell size following (21). The term cor-
responds to the classical piecewise constant approximation on
cells of size . The terms and correspond to the
classical approximation on one axis and to the finer approxima-
tion on cells of width on the other one. As shown by Fig. 2(d),
the transfinite version uses in each macro-cell a piecewise
constant approximation of the unknown function on micro-cells
of size , which is obtained thanks to only a few interpolation
nodes. Of course, there are much more unknowns per macro-cell
in the transfinite scheme than in the Richmond’s one. However,
substituting (21) into (27) gives

(28)

Fig. 2. Nodes, cells, and interpolation functions shapes corresponding to each
term of the transfiniteh version. (a) Term~P P . (b) TermP ~P . (c)P P .
(d) Global transfinite interpolant.

Fig. 3. Basis functions of the transfiniteh version for (a) the lateral node and
(b) the central node.

Hence, considering (26), to obtain the same global accuracy
with the Richmond’s formulation, it would be necessary to use
cells of size . As shown by Fig. 2(d), the transfinite ver-
sion yields thus an important gain in the number of unknowns
keeping the same kind of basis functions. Using (20) it is easy to
write the basis functions associated with each node of Fig. 2(d).
These functions are given on Fig. 3 in the case of a macro-cell
divided in 7 7 micro-cells (case of Fig. 2). Since they are es-
sentially pulse functions, the practical implementation of the
version does not present any special difficulty compared to the
Richmond’s formulation.
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B. Transfinite Versions

Let and be the projectors on the one-dimensional (1-D)
Lagrange linear interpolation functions, i.e., for a cell

(29)

In the classical formulation, the use of rooftop functions can be
considered as a tensor-product projection with the asso-
ciated error given by On the other hand, the first-level
transfinite interpolant is given by (18)

(30)

To obtain only point values of the terms ,
, , and need a second-level interpo-

lation. Thanks to the first equation of (19), with the
order of accuracy of the first-level interpolation is The
second-level projectors have to be chosen to not degrade this
accuracy.

In a first step, let and be interpolation projectors on the
1-D quadratic Lagrange interpolation functions on a segment

(31)

The order of accuracy of each of these second level interpola-
tions is , smaller than the first-level one, and determines
thus the order of the global 2-D interpolation error

(32)

Using (20), (30), and (31), it is easy to compute the basis
functions belonging to each node of the transfinite interpola-
tion cell. Their analytical expressions are given in Appendix
A. Fig. 4 shows the interpolation nodes corresponding to each
term of (20) and to the global interpolant and Fig. 1(c)
those of the classical quadratic interpolation (which is in fact
the tensor-product projection and has the same
interpolation error . It appears that only eight interpola-

Fig. 4. Interpolation nodes and interpolation functions shapes corresponding
to each term of the quadratic transfinitep version. (a) Term~P P . (b) Term
P ~P . (c)P P . (d) Global interpolant.

tion nodes belong to each cell. The term corresponds
to the classical piecewise linear approximation on cells of size

The terms and correspond to the linear ap-
proximation on one axis and to the quadratic approximation on
the other one. On an average, in the transfinite quadratic scheme
there are three nodes per cell (taking into account the fact that
the nodes are common to adjacent cells) and in the classical
quadratic scheme four nodes per cell. The gain in unknowns
is thus 25%. Furthermore, the reduced integration scheme pre-
sented in the next section is only applicable to the transfinite
basis. The second-level quadratic interpolation scheme is not
the optimal choice, but is a good tradeoff between complexity
and accuracy.

The elements shown in Fig. 4 are the same as the isopara-
metric elements used in [4]. However, the approach presented
here is quite different, it can be generalized to other kinds of
interpolations and it also shows that the choice of quadratic el-
ements is not the optimal one from the interpolation point of
view.

In fact, after (22), the maximal accuracy would be obtained
with second-level Lagrange cubic interpolation and in this case
the order of the interpolation error is

(33)

Fig. 5 shows the interpolation nodes corresponding to this
scheme and Fig. 1(d) those corresponding to the classical cubic
interpolation scheme which has the same accuracy order. For
conciseness, the analytical expressions of the basis functions
are not reproduced here. Each term of (20) has the same
structure as in the transfinite quadratic case. On an average, in
the transfinite cubic method there are five nodes per cell and
in the classical cubic method nine nodes per cell. The gain in
unknowns is thus about 45%.

It is unprofitable to use higher order Lagrange interpolation
basis for the second-level interpolation. The maximal accuracy
order, which can be reached with a first level linear interpola-
tion is given by the first of (19), i.e., . The interpolations
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Fig. 5. Interpolation nodes and interpolation functions shapes corresponding
to each term of the cubic transfinite p-version. (a)~P P . (b)P ~P . (c)P P .
(d) Global interpolant.

are not to be of the Lagrange type. The same results can be ob-
tained for instance with second-level cubic splines interpolation
or first-level trigonometric or exponential interpolations.

All the theory and the applications presented in the previous
sections were developed in the case of parallelipipedic or rect-
angular cells. However, for problems where the geometrical de-
scription is a crucial parameter, all the TFI theory can be gener-
alized to the most general curvilinear cells as it is shown in the
Appendix B.

V. REDUCED INTEGRATION SCHEME

The transfinite interpolation allows a large reduction of the
number of unknowns but a second major numerical difficulty
remains: each element of the algebraic system matrix is obtained
by integration over the surface of the cell corresponding to the
element, which is very time consuming.

Papagiannakis [6] has proposed an integration scheme
which reduces in the 3-D case the 3-D volume integrals to
2-D integrals over the surface of the cells or in the 2-D
case the 2-D integrals to line integrals over the boundary
of the cells (if the permittivity is supposed to be constant
in the cell). However, this scheme is only applicable in the
case of pulse functions interpolation and it is used here in
the version of the transfinite MoM. It will be shown that
thanks to the properties of the transfinite basis, a reduced
integration scheme can also be found in the 2-D quadratic
or cubic version of the transfinite method.

In the version, the transfinite approximation of
in each interpolation cell can be written

(34)

where is the value of at the node of the cell , is
the number of nodes belonging to cell( in the quadratic
case and in the cubic case) and is the interpolation
function corresponding to the nodeand which is nonzero only
over the surface of the cell .

Considering (34) and using the point matching at the interpo-
lation nodes, the integral equation (24) becomes

(35)

where is the total number of cells, is the total number
of nodes, is the relative permittivity of cell (supposed to be
constant in the cell), and are the values of and

at the node (located on and is defined as

(36)

The problem is thus to reduce the surface integral

(37)

to an integration over the the boundary of
Since is the free-space 2-D Green’s function, it sat-

isfies

(38)

where corresponds to the primed coordinates. The integral
(37) is split into two parts

(39)

Considering (38), the first integral of the right member of (39)
is solved analytically [7]

(40)

where is the angle under which the node sees the cell
if is on a vertice of if is on a side

of and is defined as

if node cell
otherwise.

(41)
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The second integral of the right member of (39) is solved using
the Green’s theorem [7]

(42)

Where the derivatives are taken in the outward direction normal
to the cell boundary. The first term of the right member of this
equation is the last surface integral remaining. Let

. Replacing by in (42) exactly the same method
as for (37) can be applied on the first term of the right member
of this equation. A few manipulations give

(43)

Considering the structure of (20), in theversion of the trans-
finite projection, the term is linear in both and , the
term is linear in and quadratic or cubic inand the term

is linear in and quadratic or cubic in. Hence, the trans-
finite interpolation function contains only linear–linear,
linear–quadratic, or linear–cubic terms inand and conse-
quently

(44)

The surface integral in (43) is thus vanishing. Let be de-
fined as

(45)

Considering (45), (43), (42), (40) and (39)

(46)

and all the surface integrals have disappeared (the line integrals
have to be understood as Cauchy principal value integrals if nec-
essary).

This reduced scheme is only possible if the condition (44)
holds, which is not true in the case of the classical quadratic or
cubic bivariate interpolation. If are pulse functions, (46)
gives the reduced scheme described in [6]. It is worth noting
that this reduced scheme can also be used in the VSIE solution
of the TE case to remove the surface integrals. A limitation of
this reduced scheme is the fact that the permittivity is supposed
to be constant in the cell (as it is often considered in practice [3],
[6], [10]–[14]) but if the permittivity is supposed to be piecewise
constant on subregions of each cell, reduced schemes can be
applied separately for each of these subregions.

Fig. 6. (a) Analytical results (solid lines) and numerical results (dotted lines) of
the normalized electric field along a diameter of the layered muscle-fat cylinder
(parallel to the propagation direction) and of the (b) normalized bistatic RCS
(� = 7:5� j8:64, � = 72� j162, a = 0:05� , b = 0:0263� ).

VI. NUMERICAL RESULTS

To validate the new schemes, the transfinite MoM was applied
to the scattering of a TM plane wave propagating in thedi-
rection by a dielectric cylinder. All the numerical simulations
presented in this section were obtained with the point-matching
procedure and the reduced integration scheme for the transfi-
nite solutions. The algebraic systems were solved for sake of
simplicity thanks to the LU decomposition. However, by a good
choice of the unknowns numbering (numbering close together
equivalent nodes of the different cells) due to the use of the point
matching and due to the fact that the interpolation functions are
shift invariant from one cell to another, it is possible to see that
when the interpolation cells are uniform in the scatterer, the dis-
cretization matrix can be written in a block Toeplitz form and
it is thus compatible with the iterative solvers using the FFT to
evaluate the matrix–vector products (see, e.g., [8], [13]) (In the

version, to obtain the Toeplitz structure, the integral equation
must be first written as in (35), i.e., considering nodes common
to adjacent cells as several distinct nodes).

Since among the most important applications of the study
of the interaction between a dielectric cylinder and an electro-
magnetic wave are in the biomedical domain, the first example
shows the total electric field and bistatic RCS of a layered cir-
cular cylinder of radius illuminated by
a TM plane wave and whose permittivities and conductivities
were chosen to represent a muscle-fat cylinder at 100 MHz [8].
All the and versions give results in very good agreement with
the analytical solutions and Fig. 6 shows the electric field along
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Fig. 7. Analytical result (solid line) and numerical result (dotted line) of the
normalized electric field along a diameter of the homogeneous cylinder (parallel
to the propagation direction)(� = 4, a = 0:05� ).

a diameter parallel to the axis of the cylinder obtained with
the quadratic version (with 112 cells) and the bistatic RCS
obtained with the version (with 36 macro cells). The validity
of the cubic version is shown on Fig. 7, which represents the
electric field along a diameter parallel to theaxis of an homo-
geneous cylinder of relative permittivity 4.0 and radius
(obtained with 112 cells).

The main advantage of the transfinite versions is a reduc-
tion in the number of unknowns. It is necessary to validate the
theory by convergence tests. The first test presented here shows
the convergence rates of the different methods (the Richmond’s
and rooftop methods and theand versions) concerning the
total electric field along a diameter of an homogeneous dielec-
tric circular cylinder of relative permittivity 54.0-84.0 and
of radius . Fig. 8 shows the evolution with the cell size
(the macro-cell size for the version) of the error obtained
by the root mean square (rms) norm of the difference between
the numerical and the analytical results. The error involved in
the Richmond’s formulation decreases with a slope 1.0 in the
rooftop method with a slope 1.9, in theversion with a slope
1.8, in the quadratic version with a slope 2.8 and with the
cubic version with a slope 3.5. The superiority of the trans-
finite schemes is clear and confirms the theory. Fig. 9 shows
the same test but with the error calculated with the supremum
norm (modulus of the maximal difference between the numer-
ical and analytical results). The slopes are 0.95 for the Rich-
mond’s method, 1.7 for the rooftop method, 1.6 for thever-
sion, 2.6 for the quadraticversion, and 3.5 for the cubicver-
sion, which confirms the good behavior of the transfinite MoM.

Since the unknowns number for a given accuracy is smaller
in the transfinite than in the classical method, the transfinite
scheme seems to be well suited to deal with objects that are
of the same order as or larger than the wavelength. In order to
compare the different methods concerning larger cylinder scat-
tering and to isolate the effect of the interpolation scheme from
the others error sources as the geometrical discretization, the in-
teraction between a TM plane wave and a square cylinder was
studied. Figs. 10 and 11 show the convergence of the backscatter

Fig. 8. The rms error" of the electric field inside a circular dielectric cylinder
(radiusa = 0:1� , � = 54� j84) versus the normalized cell sizeh=2a.

Fig. 9. Supremum error" of the electric field inside a circular dielectric
cylinder (radiusa = 0:1� , � = 54-j84) versus the normalized cell size
h=2a.

cross section with the number of unknowns for an homogeneous
square cylinder of side length and , re-
spectively) at normal incidence. In this case, no analytical so-
lution exists, but several simulations on smaller cylinders have
shown that all the methods converge to the same backscatter
cross section and that they are in good agreement with existing
numerical results for square cylinders [9]. Again the superiority
of the transfinite scheme is clear. For instance on Fig. 11 we see
that with 800 unknowns, the transfinite versions are very close
from each others and have converged. On the other hand, the
Richmond’s method gives with the same number of unknowns
a backscatter cross section 100% larger. We could expect to
solve by the new transfinite MoM problems which are almost
intractable with the classical schemes.
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Fig. 10. Convergence of the normalized backscatter cross section with the
number of unknowns for a homogeneous square cylinder at normal incidence
(side length= 2� ; � = 2).

Fig. 11. Convergence of the normalized backscatter cross section with the
number of unknowns for a homogeneous square cylinder at normal incidence
(side length= 2� ; � = 4).

VII. CONCLUSION

In this paper, a new kind of MoM was presented based on the
use of the transfinite interpolation. After writing the classical
MoM in an operator formulation, it was shown how to intro-
duce the transfinite interpolation schemes. Following the nature
of the second-level interpolation, the so-calledand versions
of the transfinite MoM were presented and they were shown to
give higher accuracy orders with less interpolation nodes than
the classical methods. Thanks to the properties of the transfi-
nite basis, a 2-D integration scheme was developed which re-
duces the surface integrals over the interpolation cells to line
integrals over the boundary of the cells. Finally, the efficiency
of the transfinite MoM was demonstrated on numerical simula-
tions of the scattering of a TM plane wave by dielectric cylin-
ders. Although the applications of this paper are only dealing
with 2-D problems, the transfinite MoM could be generalized
in the near future to the more realistic case of 3-D scatterers.
In this case, the theory presented here could be advantageously
applied for instance in the integral formulations presented in [4]
or [13].

APPENDIX A

In the quadratic version, the expansion of the electric field
inside each interpolation cell is given by (20).
Thanks to (31) and (30), can be explicitly written as a
function of the point values of at the interpolation nodes

(A.1)

where the expansion functions are

APPENDIX B

The generalization of the TFI to curvilinear cells is straight-
forward if the theory described in [15] is used. It will be briefly
outlined here in the 2-D case.

Let be a discretization cell whose boundary is sub-
divided into four parametric curved segments. To construct a
curvilinear coordinate system in let

(B.1)

be an univalent mapping of the square in the
parameters plane onto in the plane, i.e.,

provides a unique correspondence between a point
and its image . If , , ,

are the four compatible parametric curves describing
, can be defined by

(B.2)

In the TFI formalism, is in fact the bilinear transfinite
interpolant of on and the generalization to three di-
mensions is thus obvious as for the interpolation process. Any
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function defined on corresponds to a function
defined on by the identification

(B.3)

The univalent mapping defines a curvilinear coordinate
system on (for a complete discussion about the univalency of

see [15]) and considering this curvilinear system, (18) holds,
i.e.,

(B.4)

is a transfinite interpolant of on cell , and all the consid-
erations concerning the interpolation errors can be extrapolated
to this more general case.
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