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An FDTD Algorithm with Perfectly Matched Layers
for General Dispersive Media

Guo-Xin Fan, Member, IEEE,and Qing Huo Liu, Senior Member, IEEE

Abstract—A three-dimensional (3-D) finite-difference time-do-
main (FDTD) algorithm with perfectly matched layer (PML)
absorbing boundary condition (ABC) is presented for general
inhomogeneous, dispersive, conductive media. The modified
time-domain Maxwell's equations for dispersive media are ex-
pressed in terms of coordinate-stretching variables. We extend
the recursive convolution (RC) and piecewise linear recursive
convolution (PLRC) approaches to arbitrary dispersive media in
a more general form. The algorithm is tested for homogeneous
and inhomogeneous media with three typical kinds of dispersive
media, i.e., Lorentz medium, unmagnetized plasma, and Debye
medium. Excellent agreement between the FDTD results and
analytical solutions is obtained for all testing cases with both RC
and PLRC approaches. We demonstrate the applications of the
algorithm with several examples in subsurface radar detection of
mine-like objects, cylinders, and spheres buried in a dispersive
half-space and the mapping of a curved interface. Because of their
generality, the algorithm and computer program can be used to
model biological materials, artificial dielectrics, optical materials,
and other dispersive media.

Index Terms—Dispersive medium, finite-difference time-do-
main (FDTD) method, ground-penetrating radar (GPR), perfectly
matched layer (PML), plasma, transient wave scattering.

I. INTRODUCTION

F INITE-DIFFERENCE time-domain (FDTD) method,
as one of most powerful computational methods in

electromagnetics, has been widely used to model the wave
propagation, scattering, and radiation since it was first in-
troduced by Yee [1] in 1966. In the early development and
application of FDTD, the parameters of media are constants
independent of frequency. When the media are frequency
dependent, especially for those encountered in the applications
involving earth, biological materials, artificial dielectrics,
optical materials, this frequency dispersive property will sig-
nificantly change the electromagnetic response in the media. In
these cases, the original FDTD algorithm needs to be modified
to account for the frequency dispersion of the media.

For media dispersive only electrically (i.e., magnetically
nondispersive), an important issue in the frequency-dependent
FDTD methods is how to calculate efficiently the temporal
convolution of the electric field with causal susceptibility
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TABLE I
PARAMETERS FOR LORENTZ

MEDIA.

in an explicit or implicit form. Up until now, three major
frequency-dependent FDTD methods have been proposed:
recursive convolution (RC) [2]–[8], auxiliary differential
equation (ADE) [9]–[13], and -transform (ZT) [14], [15].

In the RC approach, the convolution integral is discretized
into convolution summation which is then evaluated recursively.
This approach has been used to model various dispersive media
such as Debye media [2], [7], [8], unmagnetized plasma [3],

th-order Lorentz media [4], and general media [5]. Recently,
a modified version of RC, the piecewise linear recursive convo-
lution (PLRC) was presented by introducing a piecewise linear
approximation (in contrast to the piecewise constant approxima-
tion in RC approach) to the electric field in the convolution inte-
grals and was applied to lower order Lorentz and Debye media
[6].

In the ADE method, either the frequency-domain constitu-
tive relation between the electric flux density and electric field
or the time-domain convolution integral is first expressed by
ordinary differential equations, which are then discretized into
difference equations [10], [13]. The ADE approach was used
to model Debye media [9]–[11], Lorentz media [9], [10], and

th-order Lorentz media [13].
In the ZT approach, the time-domain convolution integral is

reduced to a multiplication using the-transform, and a recur-
sive relation between electric flux density and electric field is
derived. The ZT approach was applied to Debye, unmagnetized
plasma, and Lorentz media [14], [15].

It is reported that among all the above frequency-dependent
FDTD methods, the RC and PLRC methods require least
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Fig. 1. Complex permittivity of (a) Lorentz media I and (b) Lorentz media II.

computer storage, and the PLRC, ADE, and ZT approaches
have better accuracy than the RC approach [6]. In addition,
the RC and PLRC approaches allow a unified treatment of
a wide variety of dispersive media, while the ADE and ZT
approaches require the different formulations for different
types of dispersive media. A recent advance in the ADE
approach reduces its storage requirement to the same amount
as in the RC approach by using the state equation description
[12]. The formulations are given for the th-order Lorentz
media and th-order Debye media in different forms. More
recently, a general FDTD algorithm for dispersive media was
proposed in two forms using Padé approximation of either
the complex frequency-dependent permittivity or conductivity
in the -transform space. Because of the flexibility of Padé
approximation, this algorithm can model arbitrary dispersive
media [16]. However, it needs slightly more storage than the
PC and PLRC approaches.

As in the FDTD method for nondispersive media, when
applied to unbounded media, the frequency-dependent FDTD
algorithm calls for absorbing boundary conditions (ABC’s) in
order to truncate the computational domain. The conventional
ABC’s fall into two categories: differential-based ABC’s
[17]–[22] and material-based ABC’s [23]–[26]. The former
is not well suited for parallel computation, while the latter
provides zero reflection at the absorbing boundary only at
normal incidence and is angle and frequency dependent. Other
new ABC’s such as superabsorption [27], measured equation
of invariance (MEI) [28], numerical ABC’s [29], and comple-
mentary operator [30] can be used to truncate the computation
region more effectively, but are mainly used for scattering
problems in free-space. The previous FDTD algorithms on

Fig. 2. Comparison of FDTD results (theE component at the fourth receiver)
with analytical solutions for homogeneous Lorentz medium I.

dispersive media employed the differential-based ABC’s such
as Mur’s ABC and Liao’s ABC. Recently, Berenger introduced
a highly effective ABC, the perfectly matched layer (PML),
which gives zero reflection at the absorbing boundary for all
frequencies and all angles of incidence [31]. As a material
ABC, the PML is ideal for parallel computation. In addition,
the PML ABC can be applied to the domain where a curved
interface exists. All these properties of PML are without rivals
of all previous ABC’s. As a nonphysical absorbing medium,
the PML has been given different interpretations with various
different formulations [32]–[35]. So far, most PML ABC’s are
applied to lossless and nondispersive media.

Recently, the PML ABC has been extended to nondispersive
lossy media (i.e., and are independent of frequency) with
different formulations [36], [37], and a FDTD algorithm and
application examples are given in [37]. A uniaxial PML method
combined with the ADE approach in the FDTD algorithm is ex-
tended to lossy and dispersive media and the formulation for
Lorentz media is given [38]. An ABC based on PML is pre-
sented for the spatially uniform Debye and Lorentz dispersive
media in [39] and for inhomogeneous Debye and Lorentz media
using stretched coordinates in [40].

In this paper, a three-dimensional (3-D) FDTD algorithm is
presented for general inhomogeneous, dispersive, conductive
media using the coordinate stretching approach and the RC and
PLRC approaches are extended to general dispersive media in a
more unified form. Three types of dispersive media, i.e., Lorentz
media, Debye media, and unmagnetized plasma, are treated as
special cases of our general formulas. Section II develops the
formulation of the algorithm. Section III shows several exam-
ples for validation and applications.

II. FORMULATION

A. Modified Maxwell's Equations for Dispersive Media

Consider an isotropic, conductive, inhomogeneous, linear
permittivity dispersive medium. Using the coordinate stretching
approach [32], the modified Maxwell's curl equations in the
frequency domain can be written as

(1)

(2)
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Fig. 3. Relative reflection error from the PML boundary(n = 1000).

where a time dependence of is implied. The operator
expressed in terms of the complex coordinate-stretching vari-
ables is

(3)

For a general medium, the complex coordinate-stretching vari-
able is chosen as [37]

(4)

where and are frequency independent within the fre-
quency band of interest.

Following [32], all the fields and sources and
are split in the following forms:

(5)

Equations (1) and (2) can then be converted into time domain
for the split fields

(6)

(7)

Equations (6) and (7) consist of a total of 12 scalar equations
since both and have two scalar components perpen-
dicular to and also has the two corresponding compo-
nents due to the constitutive relations of the media. These equa-
tions are insufficient to solve the total 18 field components. The
remaining equations will be given by the constitutive relations
as discussed in the next subsection.

In passing, note that with the introduction of PML, there is
an additional term involving the time-integrated electric field in
(7). As pointed out by [37], this term represents the coupling of
the loss in PML with the regular conduction loss.

Fig. 4. Comparison of FDTD results with analytical solutions for a Lorentz
sphere (medium I) in a homogeneous Lorentz medium I.

B. Recursive Convolution Approaches

Noting that the constitutive relation takes the same form for
all split components, for simplicity we omit all the superscript

in this subsection.
The relationship between the electrical flux density and the

electric field intensity in the frequency domain is described by

(8)

where is the free-space permittivity, is the relative permit-
tivity at , and is the electric susceptibility. For a linear
dispersive medium, the corresponding time-domain relation can
be obtained by Fourier transform as

(9)

Equation (9) shows a nonlocal temporal convolution relation
between and for frequency dispersive media. It is clear that
this nonlocal behavior implies a large storage for the history of

.
Introducing discrete time steps, i.e., , we obtain from

(9)

(10)

assuming for . For a linear dispersive medium,
the frequency-domain susceptibility functions, as the transfer
function of a linear system, can generally be expressed as a ratio
of two polynomials [5], [13] or as a pole-residue expansion, i.e.,

(11)
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TABLE II
PARAMETERS FORUNMAGNETIZED PLASMA.

Fig. 5. Complex permittivity of the unmagnetized plasma.

where and and are the complex poles and the
corresponding residues. Then the corresponding time-domain
susceptibility functions can be written as

(12)

where is the unit step function. In (12), ,
when all , and are real; and when
there are complex–conjugate pole pairs (such as Lorentz
media) which satisfy since is a real func-
tion. Note that when and are real, and all other derived
functions are also real.

To simplify (10), we first introduce a unified linear approxi-
mation to over the time interval as
follows,

(13)

It is noted that (13) corresponds the RC [2] when and
to the PLRC [6] when . Combining these two approxi-
mation in the form of (13) is convenient for us to compare the
numerical accuracy of RC and PLRC approaches in a consistent
way.

Using (12) and the unified approximation (13), the convolu-
tion integral in (10) is then transformed into a discrete convolu-
tion summation

(14)

where

(15)

Fig. 6. Same as Fig. 3 except for a plasma sphere in the free-space.

(16)

It can be shown that

(17)

and

for

for
(18)

for

for

(19)
Obviously, because of limited computer memory, the direct
evaluation of (14) in the FDTD implementation is impracti-
cable. Similar to [2] and [6], we introduce an auxiliary function

so that

(20)

Then (14) can be written as

(21)

From definition (20), a recursion relation for is readily
derived by using the following procedure:
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(22)

that is

(23)

Substituting (23) into (21), we find

(24)

This completes the derivation of the recursive convolution
formulation for general dispersive media. Before applying the
RC and PLRC approaches, a set ofand need to be deter-
mined for a given medium. These parameters for some common
dispersive media are listed below.

1) Debye media:

(25)

(26)

(27)

where is the relative static permittivity, is the Debye
relaxation time constant, and is the pole amplitude.

2) Unmagnetized plasma:

(28)

(29)

(30)

where is the collision frequency, and is the angular
plasma frequency.

3) Lorentz media:

(31)

TABLE III
PARAMETERS FORDEBYE MEDIA.

(a)

(b)

Fig. 7. Complex permittivity of Debye media I (a) and II (b).

(32)

(33)

where is the damping constant, is the resonant angular
frequency, and is the normalized expansion coefficient.

It is worth pointing out that for an arbitrary linear disper-
sive medium, when the discrete spectral magnitude data for
the susceptibility are available, the frequency-domain Prony
method (FDPM) can be used to find directly the poles
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and residues [39]. Therefore, for an arbitrary dispersive
medium there is no need to fit the dispersive relation with
Debye or Lorentz models.

C. Discretization

With the help of the recursive convolution equations (21),
(23), and (24), we can proceed to solve Maxwell's equations by
using the Yee's algorithm to discretize the split equations (6) and
(7). As in the standard Yee's algorithm, the central differencing
is used for both spatial and temporal derivatives. Furthermore,
the second and third terms on the left-hand side of (7) require
the averaging of their values at and
since is not evaluated at . We obtain

(34)

and

(35)

Note that (34) remains the same as that for a nondispersive
medium. Substituting (21) and (24) into (35), we have

(36)

where

(37)

(38)

and

(39)

and

(40)

Equations (34), (36)–(38), together with (23), form the FDTD
time-stepping equations.

Note that when updating field, it appears that both
and are needed in (23) and (38). The storage require-
ment of , actually, can be avoided by means of a tem-
porary variable [6]. In practice, because and are zero at

due to the causality, we can first updateusing (36) with
stored in the temporary variable, then update

and from and using (23), (37) and (38).
Hence, the algorithm requires storage for and

, each with six components in the PML formulation. While
is needed because of the nonzero conductivity, re-

sults from the frequency dispersion in the medium. Moreover,
in general, a complex array (except for Debye media and
unmagnetized plasma where it is a real array) is needed for each
, making the total storage requirement for proportional to

the number of poles in dispersive media.

III. N UMERICAL RESULTS

Based on the above algorithm, a 3-D FDTD Fortran program
is developed. For parallel computation, the PML equations are
applied to both the interior region and the boundary region. Ten
cells of PML’s with a quadratic profile are used outside the re-
gion of interest as the ABC in all computations.

In following examples, an electric dipole oriented indirec-
tion is used as a source, and the field componentis mea-
sured at a series of receiver locations. The time function of the
source is the first derivative of the Blackman–Harris window
function [37]. The central frequency of this function is defined
as where is the duration of the source function.

A. Validation

First, we validate the algorithm for various nondispersive
media by letting the electric susceptibility or the corresponding
parameters go to zero. The results show an excellent agreement
with those of [37].

To further validate the algorithm, we consider: 1) a homoge-
neous dispersive medium and 2) a dispersive sphere embedded
in another dispersive or nondispersive background medium.
Analytical solutions are available for a dipole source in both
cases. Three types of media, i.e., Lorentz media, unmagnetized
plasma, and Debye media, are under consideration. In these
examples, the source is located at the origin and thecom-
ponent at ten locations is displayed. The field is normalized
with respect to the peak value at the fourth receiver. In the
FDTD calculation, the computation domain is divided into 64

64 64 cells. The FDTD results are compared with the
analytical solutions. However, because of limited space, only
some typical results are given below.
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(a) (b)

Fig. 8. Same as Fig. 3 except for a Debye sphere (medium I) in homogeneous
Debye medium II. (a) TheE component at the array of receivers. (b) TheE
component at the fourth receiver.

1) Lorentz Media: Table I gives the parameters of two
Lorentz media whose real and imaginary parts of the relative
complex permittivities are shown in Fig. 1. Significant dis-
persion are observed for both media. The central frequency
of the source is 10 MHz. The spatial and temporal cell sizes
are m, ns. The field
component are sampled at ten locations

m .
Fig. 2 shows the component at the fourth receiver in a

homogeneous Lorentz medium I in Table I. The FDTD (RC and
PLRC) results both agree well with the analytical solution.

To illustrate the PML performance, we compare this
case with a reference case (no reflection present within

the time window) to obtain the relative reflection error intro-
duced by the PML boundary. The source is located at the center
of the grid, and a receiver array is located at

. The typical reflection power error is below
dB as shown in Fig. 3.

Fig. 4(a) and (b) show the distribution of a Lorentz sphere
(Medium II) of radius 4 m in a homogeneous Lorentz medium
(medium I) at the same receiver array and the fourth receiver,
respectively. Again, the FDTD (RC and PLRC) results agree
well with the analytical solutions for the array in Fig. 4(a) and
for the fourth receiver in Fig. 4(b).

2) Unmagnetized Plasma:Table II gives the parameters of
an unmagnetized plasma and Fig. 5 shows its frequency domain
permittivity. The central frequency of the source is 25 GHz. The
spatial and temporal cell sizes are
mm, ps. A receiver array is located at

; mm . Fig. 6
compares the FDTD (RC and PLRC) results with the analytical
solutions for a homogeneous plasma sphere in the free-space.

3) Debye Media:Fig.7 shows the frequency-domain per-
mittivity for the two Debye media listed in Table III. The central
frequency of the source is 300 MHz. The spatial and temporal
cell sizes are cm, ps.
A receiver array is located at ;

cm . Fig. 8 shows the nu-
merical (RC and PLRC) results and analytical solutions for a
Debye medium sphere (medium I) of radius 12.5 cm in another
homogeneous Debye medium (medium II).

4) A Note on the RC and PLRC Approaches:In the above
examples, both RC and PLRC results display excellent agree-
ment with the analytical solutions. This is different from the
conclusion in literature. (Interestingly, this important obser-
vation was independently reported in two conference papers
[43] and [44] after this paper was submitted.) Comparing our
time-stepping equations in the previous section with the corre-
sponding equations in the original RC and PLRC algorithms
[2]–[6], one notes that the latter does not use the correct time
position for the field in Ampere's law. Specifically, [2]–[6]
use rather than , causing a larger
error. In fact, since the temporal discretization is always much
smaller than the spatial discretization because of the stability
requirement (i.e., ), it is not expected to improve
significantly the results by introducing a linear approximation
to replace a constant approximation within each time step,
provided that the implementation is correct.

It is worthwhile to mention that the RC approach requires less
computation time than the PLRC approach, although both have
the same storage requirement in the scheme presented above.

B. Applications

To demonstrate the effectiveness of the algorithm, we
consider several applications in ground-penetrating radar. The
earth is modeled by Debye dispersive media in all examples.
For clarity, only the scattered fields obtained by subtracting
the fields in the absence of buried objects from the total fields
are shown. Except for the monostatic measurement, in these
examples the sources are located on the air–ground interface
at and the receivers are located on the same
interface along -axis. The computational region is divided
into either 200 64 64 cells or 128 64 64 cells.

1) Mine-Like Objects:As an application of the shallow sub-
surface object detection, we consider two mine-like objects: one
is a disk of 5 cm in radius and 5 cm in height and another is a
spherical cap of 5 cm in radius and 4 cm in height; both are
buried in a Debye dispersive half-space. The depths from the
top of the disk and cap to the ground surface is 3 and 5 cm, re-
spectively. The disk is dielectric with and the cap is a
perfect conductor. Both buried objects are nondispersive. The
electrical parameters of the earth are taken from the measured
data [8] using a least-square fitting procedure. The measured ef-
fective electrical parameters of the earth are shown in Fig. 9(a)
and (b). The relation between the effective electrical parameters
and the complex permittivity is given by [8], [40]

(41)

(42)

where and are the real and imaginary parts of the relative
complex permittivity, respectively. A first-order Debye model is
chosen to fit the measured data. The parameters obtained by the
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(a)

(b)

Fig. 9. Frequency-domain relative permittivity and conductivity of Debye
medium II. (a) Effective relative permittivity. (b) Effective conductivity.

least-squire fitting are given in Table III (medium II). The fitted
curves are compared with the measured data in Fig. 9, and the
corresponding frequency-domain complex relative permittivity
is shown in Fig. 7. The central frequency of the source func-
tion is MHz. Monostatic measurements are made at
181 source/receiver stations located on the ground surface. The
backscattered fields from the two disks are shown in grey-level
in Fig. 10.

2) Cylinders and a Sphere:Next, we consider two rectan-
gular cylinders and a PEC sphere buried in a half-space of Debye
medium I. The cylinders are air and Debye medium II, respec-
tively. The central frequency of the source is 80 MHz, and the
scattered waveforms at 181 receiver locations are displayed
in Fig. 11. As expected, the scattered field is dominated by that
from the PEC sphere.

3) A Curved Interface:Finally, we consider the mapping of
a curved interface by a ground-penetrating radar. The geometry
of the problem is shown in Fig. 12. The upper, middle, and lower
media are air, Debye medium I, and Debye medium II, respec-
tively. The central frequency of the source is 80 MHz, and the
scattered waveforms recorded at 109 locations are shown in
Fig. 12.

Fig. 10. The backscatteredE field distribution of two mine-like objects
buried in a Debye medium half-space.

Fig. 11. ScatteredE waveforms of two rectangular cylinders and a sphere
buried in a Debye medium half-space.

In the above application examples, the scattered fields from
the buried objects or layers are clearly displayed. For the last
problem with a curved interface, other ABC’s will become
unstable as soon as the waves propagate to the boundary.
The PML ABC provides an unparalleled advantage in this
aspect.

IV. CONCLUSION

We present a 3-D FDTD algorithm with the PML ABC
for general inhomogeneous, dispersive, conductive media.
The modified time-domain Maxwell's equations for dispersive
media are expressed in terms of coordinate-stretching variables.
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Fig. 12. The scatteredE field distribution of a three-layer medium with a
curved interface.

A unified formulation is developed to include RC and PLRC
for arbitrary dispersive media. We validated the algorithm for
both homogeneous dispersive media and a dispersive sphere
in another dispersive or nondispersive background medium
for three typical kinds of dispersive media, i.e., Lorentz
medium, unmagnetized plasma, and Debye medium. Excellent
agreement between the FDTD results and analytical solutions
is obtained for all cases. We observed that even with the RC
approach, the FDTD results are highly accurate. This can be
attributed to the fact that the temporal discretization is always
much smaller than the spatial discretization because of the
stability requirement. Several applications are demonstrated
for ground-penetrating radar detection of mine-like objects,
cylinders, and a sphere buried in a dispersive half-space.
Furthermore, a problem with a curved interface is simulated.
The algorithm is ideal for parallel computation since the same
code is shared both in the interior region and the outer matched
layers. Because of their generality, the algorithm and computer
program developed can be used to model biological materials,
artificial dielectrics, optical materials, and other dispersive
media.
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