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An FDTD Algorithm with Perfectly Matched Layers
for General Dispersive Media
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Abstract—A three-dimensional (3-D) finite-difference time-do- TABLE |
main (FDTD) algorithm with perfectly matched layer (PML) PARAMETERS FOR LORENTZ
absorbing boundary condition (ABC) is presented for general MEDIA.
inhomogeneous, dispersive, conductive media. The modified
time-domain Maxwell's equations for dispersive media are ex- Medi .

. X . h edium I Medium II

pressed in terms of coordinate-stretching variables. We extend
the recursive convolution (RC) and piecewise linear recursive —4 =15
convolution (PLRC) approaches to arbitrary dispersive media in €oo = foo = L.
a more general form. The algorithm is tested for homogeneous ¢, =8 € =3.5
and inhomogeneous media with three typical kinds of dispersive . 7
media, i.e., Lorentz medium, unmagnetized plasma, and Debye @1 = 27 x 107 rad/s w = 1.2 x 27 x 107 rad/s
medium. Excellent agreement between the FDTD results and ;) = 2.5 x 27 x 107 rad/s wy = 2.8 x 21 x 107 rad/s
analytical solutions is obtained for all testing cases with both RC
and PLRC approaches. We demonstrate the applications of the 61 =0.1w; 6, =0.1wy
algorithm with several examples in subsurface radar detection of 8y = 0.1w, 8y = 0.1w,
mine-like objects, cylinders, and spheres buried in a dispersive
half-space and the mapping of a curved interface. Because of their ~G; = 0.4 G, =05
generality, the algorithm and computer program can be used to G, =06 Gy =05

model biological materials, artificial dielectrics, optical materials,
and other dispersive media. c=2x10"*S/m 0=5x10"%S/m

Index Terms—Dispersive medium, finite-difference time-do-
main (FDTD) method, ground-penetrating radar (GPR), perfectly

matched layer (PML), plasma, transient wave scattering. in an explicit or implicit form. Up until now, three major
frequency-dependent FDTD methods have been proposed:
I. INTRODUCTION recursive convolution (RC) [2]-[8], auxiliary differential

_ . equation (ADE) [9]-[13], andZ-transform (ZT) [14], [15].

INITE-DIFFERENCE  time-domain (FDTD) method, | the RC approach, the convolution integral is discretized

as one of most powerful computational methods ifyq convolution summation which is then evaluated recursively.
electromagnetics, has been widely used to model the wapgis approach has been used to model various dispersive media
propagation, scattering, and radiation since it was first igych as Debye media [2], [7], [8], unmagnetized plasma [3],
troduced by Yee [1] in 1966. In the early development ang_order Lorentz media [4], and general media [5]. Recently,
application of FDTD, the parameters of media are constanis,ified version of RC, the piecewise linear recursive convo-
independent of frequency. When the media are frequengyion (PLRC) was presented by introducing a piecewise linear
dependent, especially for those encountered in the applicatigpgroximation (in contrast to the piecewise constant approxima-
involving earth, biological materials, artificial dielectricsio in RC approach) to the electric field in the convolution inte-

optical materials, this frequency dispersive property will Sigy 4|5 and was applied to lower order Lorentz and Debye media
nificantly change the electromagnetic response in the media ég]

these cases, the original FDTD algorithm needs to be modifie I.n the ADE method, either the frequency-domain constitu-

to account for the frequency dispersion of the media. iy relation between the electric flux density and electric field

For media dispersive only electrically (i.e., magnetically; ihe time-domain convolution integral is first expressed by
nondispersive), an important issue in the frequency-dependgpfinary differential equations, which are then discretized into
FDTD methods is how to calculate efficiently the temporgifterence equations [10], [13]. The ADE approach was used
convolution of the electric field with causal susceptibilityy model Debye media [9]-[11], Lorentz media [9], [10], and

Nth-order Lorentz media [13].
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Fig.2. Comparison of FDTD results (t#&. component at the fourth receiver)
with analytical solutions for homogeneous Lorentz medium I.

dispersive media employed the differential-based ABC’s such
as Mur's ABC and Liao’s ABC. Recently, Berenger introduced
a highly effective ABC, the perfectly matched layer (PML),
which gives zero reflection at the absorbing boundary for all
frequencies and all angles of incidence [31]. As a material
ABC, the PML is ideal for parallel computation. In addition,

Relative Permittivety

-2 ' ' ' ' the PML ABC can be applied to the domain where a curved
0 10 20 30 40 50 . . . . .

Frequency (MHz) interface exists. All these properties of PML are without rivals

of all previous ABC’s. As a nonphysical absorbing medium,

(®) the PML has been given different interpretations with various

Fig. 1. Complex permittivity of (a) Lorentz media | and (b) Lorentz media ”_dlffe_rent formulations [32]_[3_5]' So_far, m0§t PML ABC'’s are
applied to lossless and nondispersive media.

Recently, the PML ABC has been extended to nondispersive
computer storage, and the PLRC, ADE, and ZT approachggsy media (i.e.c ando are independent of frequency) with
have better accuracy than the RC approach [6]. In additiafifferent formulations [36], [37], and a FDTD algorithm and
the RC and PLRC approaches allow a unified treatment ghplication examples are given in [37]. A uniaxial PML method
a wide variety of dispersive media, while the ADE and ZEombined with the ADE approach in the FDTD algorithm is ex-
approaches require the different formulations for differefgnded to lossy and dispersive media and the formulation for
types of dispersive media. A recent advance in the ADEgrentz media is given [38]. An ABC based on PML is pre-
approach reduces its storage requirement to the same ame@jted for the spatially uniform Debye and Lorentz dispersive

as in the RC approach by using the state equation descriptjBdia in [39] and for inhomogeneous Debye and Lorentz media
[12]. The formulations are given for th&th-order Lorentz ysing stretched coordinates in [40].

media and}Mth-order Debye media in different forms. More |n this paper, a three-dimensional (3-D) FDTD algorithm is

recently, a general FDTD algorithm for dispersive media Wasresented for general inhomogeneous, dispersive, conductive
proposed in two forms using Padé approximation of eith@fedia using the coordinate stretching approach and the RC and
the complex frequency-dependent permittivity or conductivitg| RC approaches are extended to general dispersive media in a
in the Z-transform space. Because of the flexibility of Padgore unified form. Three types of dispersive media, i.e., Lorentz
approximation, this algorithm can model arbitrary dispersiv@edia, Debye media, and unmagnetized plasma, are treated as
media [16]. However, it needs slightly more storage than th@ecial cases of our general formulas. Section Il develops the

PC and PLRC approaches. formulation of the algorithm. Section Il shows several exam-
As in the FDTD method for nondispersive media, whepjes for validation and applications.

applied to unbounded media, the frequency-dependent FDTD

algorithm calls for absorbing boundary conditions (ABC'’s) in II. FORMULATION

order to truncate the computational domain. The conventional . , . . . .

ABC'’s fall into two categories: differential-based ABC’SA' Modified Maxwell's Equations for Dispersive Media

[17]-[22] and material-based ABC's [23]-[26]. The former Consider an isotropic, conductive, inhomogeneous, linear

is not well suited for parallel computation, while the lattepermittivity dispersive medium. Using the coordinate stretching

provides zero reflection at the absorbing boundary only approach [32], the modified Maxwell's curl equations in the

normal incidence and is angle and frequency dependent. Otfrefuency domain can be written as

new ABC's such as superabsorption [27], measured equation

of invariance (MEI) [28], numerical ABC’s [29], and comple-

mentary operator [30] can be used to truncate the computation

region more effectively, but are mainly used for scattering

problems in free-space. The previous FDTD algorithms on VexH=—iwD+cE+J (2)

Ve X E=dwpH -M )
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Fig. 3. Relative reflection error from the PML bounddry = 1000). \/\/\"_‘
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where a time dependence ©f** is implied. The operato¥, ~~ FDTDRC) =+ FDTD(RC)
expressed in terms of the complex coordinate-stretching ve 0 01 02 03 04 o o1 o2 03 04
ablese, (n = z,y,7) is Time (us) Time (us)
.1 0 Fig. 4. Comparison of FDTD results with analytical solutions for a Lorentz
V. = Z e— 8_77 (3) sphere (medium 1) in a homogeneous Lorentz medium I.
7

n=x,4,%

For a general medium, the complex coordinate-stretching vai- Recursive Convolution Approaches

able is chosen as [37] Noting that the constitutive relation takes the same form for

Wy all split components, for simplicity we omit all the superscript
€y = an+1> (4) () in this subsection.
The relationship between the electrical flux density and the

where a,, and w,, are frequency independent within the freelectric field intensity in the frequency domain is described by
quency band of interest.

Following [32], all the fields and sourcds, D, H,J andM

w : _ D(w) = ¢ofeso + x(w)]E(w) ®)
are split in the following forms:

> ) wheree is the free-space permittivity,, is the relative permit-
E= Z Z CE:™. (5) tivity atw — oo, andy is the electric susceptibility. For a linear
NETY,E gt dispersive medium, the corresponding time-domain relation can
be obtained by Fourier transform as
Equations (1) and (2) can then be converted into time domain
for the split fields(n = =, vy, 2) t

D(#) = coem B(E) + €0 / E()x(t—1)dr. (9

SH™ o oo
ant—g— F oy = =2 (i) X E) =M™ (6) . . |
ot an Equation (9) shows a nonlocal temporal convolution relation
betweerD andE for frequency dispersive media. It is clear that
this nonlocal behavior implies a large storage for the history of
oD (n) () "R '
=gy TwaD + ano B 4 wyo / B Introducing discrete time steps, i.e= nAt, we obtain from
_ 9 3™ 7 )
= 8_77(77 x H) — . (7)

D(t) = D(nAt) = D(n)
Equations (6) and (7) consist of a total of 12 scalar equations nit
since bothE(™ andH( have two scalar components perpen- = coeccE(n) + 60/ E(r) x(nAt — 7) dr (10)
dicular to7; and D also has the two corresponding compo- 0

nents due to the constitutive relations of the media. These €gddsumingdE(t) = 0 for ¢ < 0. For a linear dispersive medium,
tions are insufficient to solve the total 18 field components. Thee frequency-domain susceptibility functions, as the transfer
remaining equations will be given by the constitutive relatiorfginction of a linear system, can generally be expressed as a ratio

as discussed in the next subsection. of two polynomials [5], [13] or as a pole-residue expansion, i.e.,
In passing, note that with the introduction of PML, there is

an additional term involving the time-integrated electric field in EM’ 3., 51 Mo
(7). As pointed out by [37], this term represents the coupling of x(w) = 3;1—‘1 — 4 (M>M) (11)
the loss in PML with the regular conduction loss. Zqzl Ces? D157 %
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TABLE I . : ; T 1
PARAMETERS FORUNMAGNETIZED PLASMA.
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Fig. 5. Complex permittivity of the unmagnetized plasma. Fig. 6. Same as Fig. 3 except for a plasma sphere in the free-space.

wheres = —iw ands, andl’; are the complex poles and the

corresponding residues. Then the corresponding time-domain K pmDat

susceptibility functions can be written as éq(m) = K“ / (1 — mAE) R, (1) dr. (16)
t mAt

N N
x(t) = Z Re[,(1)] = Z Re[R,e'U(#)]  (12) ltcan be shown that
g=1

q=1

~

o(m) = Xq(o)esqutv éq(m) = q(O)esqut (17)

<>

wherel(¢) is the unit step function. In (12Jy = M, R, =T, and
when alls,, andl', are real; andV = M/2, R, = 2I', when

there areM /2 complex—conjugate pole pairs (such as Lorentz X R A, fors; =0
media) which satisf¥, (s,) = I';(s%) sincex(t) is a real func- x(0) = &(esqm —1), fors, £0 (18)
tion. Note that wher, andl’, are real;x, and all other derived Sq ’ !
functions are also real.
To simplify (10), we first introduce a unified linear approxi- KR At ‘ _
mation toE(¢) over the time interval € [mA¢t, (m + 1)At] as £.(0) 2 ors; =0
=93 K,R
follows, ' TR = (1 - 5, A0S, for s, £0.
S
E(t) ~ E(m + 1) _ o (19)
[E(m + 1) — E(m)] Obviously, because of limited computer memory, the direct
+ K, A [t — (m+1)At]. (13)  evaluation of (14) in the FDTD implementation is impracti-

cable. Similar to [2] and [6], we introduce an auxiliary function
It is noted that (13) corresponds the RC [2] wh€p = 0 and ¥ ,(n) so that
to the PLRC [6] whenk, = 1. Combining these two approxi-

n—1
mation in the form of (13) is convenient for us to compare the N 2
. . . v = 0) — £,(0)|E(n —
numerical accuracy of RC and PLRC approaches in a consistent (") g::o{[xq( )~ &(O)JE(n —m)
wey. 4 E(OE(n —m— 1)}esmd(20)

Using (12) and the unified approximation (13), the convolu-
tion integral in (10) is then transformed into a discrete convoltrhen (14) can be written as
tion summation

N n-l D(n) = cpe E(n) + ¢g | Re[®,(n)]. (21)
D(n) = coeccE(n) + €0 Z Z Re{E(n —m)x,(m) q;

From definition (20), a recursion relation f@(n) is readily

+ [ —m = 1) = E(n —m)lg,(m)} 149 derived by using the following procedure:

where T, (n+1) = [%4(0) — &(O)]E(n + 1) + &, (0)E(n)
20l = /(m+1)m )i (15) + > A% (0) = & O)E(n + 1 —m)
mAt m=1
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+&(OB(n —m)pes B
= [iq(O) — &(O)]E(n 4 1) 4 £, (0)E(n)
+ Z{ (0)]E(n —m)
m=0
+ £,(0)E(n —m — 1)}era(mTDAL (D)
that is
Fy(n+1)=[Xq(0) - & (0)E(n +1)
+ &(0)E(n) + ¥ (n)e™ 2. (23)

Substituting (23) into (21), we find

N
D(n+1)= 60{600 + ) Rel%4(0) - éq(o)]} E(n +1)
gq=1
N
+eo Y Re[{ (0)]E(n)+eo ZRe n)e®att],
- (24)

This completes the derivation of the recursive convolution
formulation for general dispersive media. Before applying the

RC and PLRC approaches, a setfyfands, need to be deter-

641

TABLE Il

PARAMETERS FORDEBYE MEDIA.

mined for a given medium. These parameters for some common

dispersive media are listed below.
1) Debye media:

e
X() = (& = €o0) D T (25)
g=1 4
N @t/
x(t) Z (26)
R, = (e = COO)G{I’ 8¢ = 2 (27)
Tq q

wheree;, is the relative static permittivity;, is the Debye
relaxation time constant, ar@, is the pole amplitude.
2) Unmagnetized plasma:

x(w) —ﬁ (28)
w?
x(t) = 2 (1 - e U(H) (29)
2
R = _R2 ]_p §1 = 0, So = —1/p (30)

where1, is the collision frequency, and, is the angular
plasma frequency.
3) Lorentz media:

N 2
Gw

x(w) = (€5 — €oo) Z 3 (31)

2 _ 908 — w2
pr 2iwbdy — w

Medium I Medium II
€ = 3 €0 = 3.7677
€, = 4.5 €, = 20.2677
m=64x10"10g 7 =1.1614 x 107! s
Gl =1 Gl =1
o =0.005 5/m o =0.1165 S/m
6
2
2 — Peal
E 4| - ma
£ <
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a
22}
8
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(b)

Fig. 7. Complex permittivity of Debye media | (a) and Il (b).

N 2
(€5 = €o0)Gqwy _s, .
x(t) = ————— e %" gin (/w2 —62¢) U(¥)
q; w2 — 62 (Vi - ot1)
(32)
R - (es —coo)qug
q )
\J wi— 62
T
sq:—éq—z(g—w/wg—ég) (33)

wheres, is the damping constant, is the resonant angular
frequency, and~, is the normalized expansion coefficient.
It is worth pointing out that for an arbitrary linear disper-

sive medium, when the discrete spectral magnitude data for
the susceptibility are available, the frequency-domain Prony
method (FDPM) can be used to find directly the polgs
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and residuesi?, [39]. Therefore, for an arbitrary dispersiveand
medium there is no need to fit the dispersive relation with

Debye or Lorentz models.

C. Discretization

With the help of the recursive convolution equations (21),

m _° wnAt ay | Wy
¢ —2[%—1— 1 }+<At+2>

X € {em + zRe[fgq(O) - éq(o)]} . (40)

q=1

(23), and (24), we can proceed to solve Maxwell's equations by )

using the Yee's algorithm to discretize the split equations (6) aRguations (34), (36)—(38), together with (23), form the FDTD
(7). As in the standard Yee's algorithm, the central differenciftj"€-Stepping equations.

is used for both spatial and temporal derivatives. Furthermore NOte that when updating: field, it appears that botli(n)
the second and third terms on the left-hand side of (7) requfBdE(n — 1) are needed in (23) and (38). The storage require-

the averaging of their values at= nAt andt = (n + 1)At
sinceE is not evaluated at= (n + 1/2)At. We obtain

By @\ N (o Ny [, 1
<Af+2>H <”+2 A2 )BT 3

= B - MW () (34)

n
and
Iy Y\ ) . “n ) o
D@ (n + 1 D
<Af%2> m+)+<At 2) ()
+ 22 E (0 + 1) + E(n)]

(n41/2)At
+ wna/ E(")(T) dr

—_—00

:(% [ﬁxH(n—i—%)} —Jm <n+%) (35)

ment ofE(n — 1), actually, can be avoided by means of a tem-
porary variable [6]. In practice, becauBe® and¥ are zero at

t = 0 due to the causality, we can first upd@&eising (36) with
E(n — 1) stored in the temporary variable, then updBte ®,

and ¥, from E(n — 1) and E(n) using (23), (37) and (38).
Hence, the algorithm requires storageEsr), H™ E{” and
\1151’7), each with six components in the PML formulation. While
EE,") is needed because of the nonzero conducti\my,) re-
sults from the frequency dispersion in the medium. Moreover,
in general, a complex arrat}(é”) (except for Debye media and
unmagnetized plasma where it is a real array) is needed for each
¢, making the total storage requirement fbf”) proportional to
the number of poles in dispersive media.

I1l. NUMERICAL RESULTS

Based on the above algorithm, a 3-D FDTD Fortran program
is developed. For parallel computation, the PML equations are
applied to both the interior region and the boundary region. Ten

Note that (34) remains the same as that for a nondispersf@dls of PML's with a quadratic profile are used outside the re-

medium. Substituting (21) and (24) into (35), we have

(7 g ) _ 9. 1
¢ "EY (n 4+ 1) aﬁ[an<n+2>}
+ & (n) + c((f’)E(”)(n)
- awnAtEgn)(n) —Jm <n + %) (36)

where
N a w
— E n n
Q(n)(n) - q=1 Re{ |:<_At B 7)

- <% + %) e_qut} ‘I’S;’)(TL)} (37)

7 1
E(,")(n) _ E(,")(n — 1+ gE(W)(n) + gE(’7)(n —1) (38)

and

a W
c(()n) = <Knt - ?77) €0Coo

gion of interest as the ABC in all computations.

In following examples, an electric dipole orientediimirec-
tion is used as a source, and the field comporignis mea-
sured at a series of receiver locations. The time function of the
source is the first derivative of the Blackman—Harris window
function [37]. The central frequency of this function is defined
asf. = 1.55/T whereT is the duration of the source function.

A. Validation

First, we validate the algorithm for various nondispersive
media by letting the electric susceptibility or the corresponding
parameters go to zero. The results show an excellent agreement
with those of [37].

To further validate the algorithm, we consider: 1) a homoge-
neous dispersive medium and 2) a dispersive sphere embedded
in another dispersive or nondispersive background medium.
Analytical solutions are available for a dipole source in both
cases. Three types of media, i.e., Lorentz media, unmagnetized
plasma, and Debye media, are under consideration. In these
examples, the source is located at the origin andHheom-
ponent at ten locations is displayed. The field is normalized
with respect to the peak value at the fourth receiver. In the
FDTD calculation, the computation domain is divided into 64
x 64 x 64 cells. The FDTD results are compared with the
analytical solutions. However, because of limited space, only
some typical results are given below.
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(yi,7) = (0,15.625) cm(: = 1,---,10). Fig. 8 shows the nu-
merical (RC and PLRC) results and analytical solutions for a
Debye medium sphere (medium 1) of radius 12.5 cm in another
homogeneous Debye medium (medium ).

4) A Note on the RC and PLRC Approachdn:the above
examples, both RC and PLRC results display excellent agree-
ment with the analytical solutions. This is different from the
conclusion in literature. (Interestingly, this important obser-
vation was independently reported in two conference papers
[43] and [44] after this paper was submitted.) Comparing our
time-stepping equations in the previous section with the corre-
sponding equations in the original RC and PLRC algorithms

10

i

or — Analytical 1 — Analytical .
o Eg;gggg‘c) -0.8} . FS%EEE?C’ [2]-[6], one notes that the latter does not use the correct time

) , » , , position for theE field in Ampere's law. Specifically, [2]—[6]

° Sime (ns) 15 0 ¥ ime (g ® use(n + 1)At rather than(n + 1/2)At, causing a larger
error. In fact, since the temporal discretization is always much
@ () smaller than the spatial discretization because of the stability

Fig. 8. Same as Fig. 3 except for a Debye sphere (medium 1) in homogenepggjuirement (i.e gAt < Ax/\/g), itis not expected to improve
Debye medium 1. (a) Thé. component at the array of receivers. (b) T sjgnificantly the results by introducing a linear approximation
component at the fourth receiver. . . L .
to replace a constant approximation within each time step,
provided that the implementation is correct.

1) Lorentz Media: Table | gives the parameters of two Itisworthwhile to mention that the RC approach requires less
Lorentz media whose real and imaginary parts of the relatigemputation time than the PLRC approach, although both have
complex permittivities are shown in Fig. 1. Significant disthe same storage requirement in the scheme presented above.
persion are observed for both media. The central frequency
of the source is 10 MHz. The spatial and temporal cell siz& Applications

areAr = Ay = Az = 0.25m, At = 0.25 ns. TheE; field  To demonstrate the effectiveness of the algorithm, we
component are sampled at ten locations= 2+0.25x (¢—1);  consider several applications in ground-penetrating radar. The
(yi,2:) = (0,5)m (i = 1,---,10). earth is modeled by Debye dispersive media in all examples.

Fig. 2 shows theF,, component at the fourth receiver in aFor clarity, only the scattered fields obtained by subtracting
homogeneous Lorentz medium | in Table I. The FDTD (RC an#le fields in the absence of buried objects from the total fields
PLRC) results both agree well with the analytical solution. are shown. Except for the monostatic measurement, in these

To illustrate the PML performance, we compare thisx examples the sources are located on the air—ground interface
64 x 64 case with a reference case (no reflection present withan (z,y) = (0,0) and the receivers are located on the same
the time window) to obtain the relative reflection error introinterface alongz-axis. The computational region is divided
duced by the PML boundary. The source is located at the cenitep either 200x 64 x 64 cells or 128x 64 x 64 cells.

of the grid, and a receiver array is located(atl6,0) (i = 1) Mine-Like Objects:As an application of the shallow sub-
10,11, ---,53). The typical reflection power error is below60  surface object detection, we consider two mine-like objects: one
dB as shown in Fig. 3. is a disk of 5 cm in radius and 5 cm in height and another is a

Fig. 4(a) and (b) show thE,, distribution of a Lorentz sphere spherical cap of 5 cm in radius and 4 cm in height; both are
(Medium 1) of radius 4 m in a homogeneous Lorentz mediufouried in a Debye dispersive half-space. The depths from the
(medium 1) at the same receiver array and the fourth receivep of the disk and cap to the ground surface is 3 and 5 cm, re-
respectively. Again, the FDTD (RC and PLRC) results agrespectively. The disk is dielectric with. = 4 and the cap is a
well with the analytical solutions for the array in Fig. 4(a) angerfect conductor. Both buried objects are nondispersive. The
for the fourth receiver in Fig. 4(b). electrical parameters of the earth are taken from the measured

2) Unmagnetized PlasmaTable Il gives the parameters ofdata [8] using a least-square fitting procedure. The measured ef-
an unmagnetized plasma and Fig. 5 shows its frequency domigictive electrical parameters of the earth are shown in Fig. 9(a)
permittivity. The central frequency of the source is 25 GHz. Thand (b). The relation between the effective electrical parameters
spatial and temporal cell sizes ater = Ay = Az = 0.3125 and the complex permittivity is given by [8], [40]

mm, A¢ = 0.125 ps. A receiver array is located af = 2.5 +

0.3125% (i—1); (i, ;) = (0,6.25)mm(i = 1,-- -, 10). Fig. 6 ce(w) = g.(w)eo (41)
compares the FDTD (RC and PLRC) results with the analytical

solutions for a homogeneous plasma sphere in the free-space.

3) Debye Media:Fig.7 shows the frequency-domain per- oo(w) = o + we' (e (42)
mittivity for the two Debye media listed in Table Ill. The central
frequency of the source is 300 MHz. The spatial and temposaherec,. ande¢!” are the real and imaginary parts of the relative
cell sizes aredz = Ay = Az = 0.78125 cm, At = 20 ps. complex permittivity, respectively. A first-order Debye model is
A receiver array is located at = 6.25 4+ 0.78125 x (¢ — 1); chosen to fit the measured data. The parameters obtained by the
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Fig. 9. Frequency-domain relative permittivity and conductivity of Deby:
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least-squire fitting are given in Table Il (medium II). The fittec
curves are compared with the measured data in Fig. 9, and

) . : s 25 -20 -15 -10 -05 0 05 10 15 20 25
corresponding frequency-domain complex relative permittivit Receiver Location x (m) 0 28

is shown in Fig. 7. The central frequency of the source func-
tion is f. = 500 MHz. Monostatic measurements are made &lg. 11. Scattered, waveforms of two rectangular cylinders and a sphere

181 source/receiver stations located on the ground surface. PHfd in @ Debye medium half-space.

backscattered fields from the two disks are shown in grey-level
in Fig. 10.

2) Cylinders and a SphereNext, we consider two rectan- L )
én the above application examples, the scattered fields from

gular cylinders and a PEC sphere buried in a half-space of Deb X ) )
medium I. The cylinders are air and Debye medium I, respe@{—e buried objects or layers are clearly displayed. For the last
oblem with a curved interface, other ABC's will become

tively. The central frequency of the source is 80 MHz, and tHE bl h he bound
scatteredr, waveforms at 181 receiver locations are displayelfpsta € as soon as the waves propagate 1o the boundary.

in Fig. 11. As expected, the scattered field is dominated by th-gfe PML ABC provides an unparalleled advantage in this

from the PEC sphere. aspect.
3) A Curved Interface:Finally, we consider the mapping of

a curved interface by a ground-penetrating radar. The geometry

of the problem is shown in Fig. 12. The upper, middle, and lower

media are air, Debye medium I, and Debye medium Il, respec-We present a 3-D FDTD algorithm with the PML ABC

tively. The central frequency of the source is 80 MHz, and tHer general inhomogeneous, dispersive, conductive media.

scattered®,, waveforms recorded at 109 locations are shown ifhe modified time-domain Maxwell's equations for dispersive

Fig. 12. media are expressed in terms of coordinate-stretching variables.

IV. CONCLUSION
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Fig. 12. The scattered,. field distribution of a three-layer medium with a
curved interface.

(12]
(13]

A unified formulation is developed to include RC and PLRC
for arbitrary dispersive media. We validated the algorithm for{14]
both homogeneous dispersive media and a dispersive sphere
in another dispersive or nondispersive background mediums;
for three typical kinds of dispersive media, i.e., Lorentz
medium, unmagnetized plasma, and Debye medium. Excelleftd]
agreement between the FDTD results and analytical solutions
is obtained for all cases. We observed that even with the RQ7]
approach, the FDTD results are highly accurate. This can b, g
attributed to the fact that the temporal discretization is always
much smaller than the spatial discretization because of the
stability requirement. Several applications are demonstrated®
for ground-penetrating radar detection of mine-like objects,
cylinders, and a sphere buried in a dispersive half-spacéz0]
Furthermore, a problem with a curved interface is simulated.
The algorithm is ideal for parallel computation since the samgpy)
code is shared both in the interior region and the outer matched
layers. Because of their generality, the algorithm and computé?zl
program developed can be used to model biological materials,
artificial dielectrics, optical materials, and other dispersivel23]
media.
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