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Abstract—A special higher order finite-element method is pre- cavities having an arbitrary cross section whose waveguide
sented for the analysis of electromagnetic scattering from a large, modes are calculated using the FEM [26]). In addition to the

deep, and arbitrarily shaped open cavity. This method exploits the aforementioned techniques, a variety of hybrid techniques
unique features of the finite-element equations and, more impor- ’

tantly, the unique features of the problem of scattering by a large combining a high frequency and a ”‘,Jme“ca' method have
and deep cavity. Itis designed in such a manner thatit uses minimal &/So been proposed to solve the cavity scattering problems
memory, which is proportional to the maximum cross section ofthe [27]-[30]. These hybrid techniques are intended to reduce the
cavity and independent of the depth of the cavity, and its computa- sjze of the computational domain for the numerical method and

tion time increases only linearly with the depth of the cavity. Fur- ;5 jncrease the efficiency and capability of their solutions.
thermore, it computes the scattered fields for all angles of incidence

without requiring significant additional time. The technique is im- HOWEVer, the size of a cavity is still limited by the memory and
plemented with higher order tetrahedral and mixed-order prism CPU time required by the numerical method.

elements, both having curved sides to allow for accurate modeling  Recently, a very efficient numerical technique is developed
of arbitrary geometries. Numerical results show that higher order  for the analysis of electromagnetic scattering from a large,

elements yield a remarkably more accurate and efficient solution Hrar ; ; ; ;
for scattering by three-dimensional (3-D) cavities. Of the two kinds deep, and arbitrarily shaped cavity [31]. This technique is

of element, the mixed-order prism is optimal for the proposed spe- based on the FEM that is known for its capability to handle

cial solver. arbitrary geometries and complex material composition. The
"y ) . - FEM mesh at the cavity aperture is terminated in an exact

Index Terms—Cavities, electromagnetic scattering, finite-ele- . .
ment method. manner by the boundary-integral (BlI) method. The technique

exploits the unique features of the FE-BI equations and, more
importantly, the unique features of the problem of scattering
|. INTRODUCTION by a large and deep cavity. It is designed in such a manner

UMERICAL computation of the radar cross sectiothat it uses minimal memory, which is proportional to the
N (RCS) of a deep open cavity is considered a grand chglaximum cross section of the cavity and independent of the
lenge in computational electromagnetics (CEM). When a cavfgPth of the cavity, and its computation time increases only
is very large compared to the wavelength and its interior geofifi€arly with the depth of the cavity. Furthermore, it computes
etry is simple, high-frequency asymptotic techniques based ¥ Scattered fields for all angles of incidence without requiring
ray tracing and edge diffraction can be employed to evaluat@nificant additional time. The technique has been applied
its RCS [1]-[9]. These include the shooting-and-bouncing-rdg Poth two-dimensional (2-D) and simple three-dimensional
(SBR) method, the Gaussian beam shooting method, D) cavities whose interior surfaces may be coated with radar
generalized ray expansion (GRE) method, and the iterat@@sorbing materials (RAM). Excellent results are obtained for
physical optics (IPO) method. When a cavity is small, nig-D cavities and those for 3-D cavities are also promising. The
merical techniques such as the method of moments (MoM};P implementation used the zeroth-order rectangular brick
the finite-element method (FEM), and their combination Caﬁz{e_ments [31] and later the zeroth-order tetrahedral elements,
be applied for the calculation of the RCS [10]-[20]. Theswhich are commonly known as edge eI_ements. It was.obser.ved
methods can accurately model arbitrarily shaped cavities &t the solution accuracy was mostly limited by the dispersion
well as the complex structures inside cavities. However, ti§éror of the zeroth-order elements. This error increases with
computational costs (memory and CPU time) to model a Iar%@e size of the FEM region and can be devastating when the
cavity can exceed even the most powerful supercomputeEM region is large [32]. Hence, the size of a 3-D cavity to be
When a cavity has a special cross section (rectangular @talyzed by the proposed method is mainly limited by the use
circular) with a planar termination, the waveguide moddf the zeroth-order elements. N N
approach is an efficient method over a broad range of frequendn this paper, we enhance the efficiency and capability of the
cies [21]-[25] (The modal approach can also be applied special technique using higher order curvilinear elements. The
use of these higher order elements significantly reduces the dis-
. . , 1;ﬂersion error and also permits more accurate modeling of the
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Fig. 1. lllustration of a large, deep, and arbitrarily shaped open cavity.

. . . @ (b)
develop mixed-order prism elements, which are proven to be - .
Fig. 2. (@) The structure of the finite-element matrix, whose nonzero elements

optlmal for the spe;mal So"_/er' Numerlca! gxamples' show thé‘ﬁ contained within a narrow band. (b) The structure of the right-hand side
the proposed special FEM is a very promising technique for thector, which contains a very few nonzero elements at the bottom of the vector.

simulation of scattering by a large, deep, and arbitrarily shaped

open cavity. where[4] is a symmetric matrix{ £} is a vector storing the

discrete unknowns, and} is a known vector determined from
the incident field. The matrikd] is contributed by the first three
Consider the problem of plane wave scattering by a largategrals in (1) and can be decomposed into two parts: the part
deep, and arbitrarily-shaped open cavity (Fig. 1). In accordanaentributed by the volume integral is sparse and the other part
with the finite-element and boundary-integral (FE-BI) methodontributed by the two surface integrals is fully populated. The
[33], the electric field inside the cavity and at the aperture @roblem is to solve (3) fof £} from which the electric field can
the cavity can be obtained by seeking the stationary point of the calculated using (2).
functional Although the formulation of the FEM matrix equation is
1 1 straightforward, its solution is difficult because of a large
=3 /// [—(V X E)-(VxXE)—k*E- E} dv number of unknowns for a large and deep cavity. To illustrate
v Lhr this difficulty, consider a circular cavity with a diameter of
— k2 // M(r) - [// M(r')G(r,r') ds’} ds five wavelengths and a depth of 50 wavelengths. If we use 20
S S zeroth-order elements per wavelength, we would have about

n // v M(r) U/ G, vV - M(r/)dS/:| S 1000 layers along the depth of the cavity with about 24 000
s s ’ unknowns per layer, resulting in 24 million unknowns. Clearly,

Il. METHOD

. inc for a problem of this size, the most important factor for its
—2kz //S M(r) - H™(r) d$ (1) numerical solution is the memory requirement.
The most memory-efficient method to solve (3) is an itera-

whereV’ denotes thf}_volume OT the cavity aﬂqdenotes its tive method such as the conjugate gradient (CG), the biconju-
aperture M = E x £ is the equivalent magnetic current over

the apertureH™ denotes the incident magnetic fiefdjs the gate gradient (BCG), and the quasiminimum residual (QMR)

free-space wavenumber, is the free-space wave impedancemethOds' Using such a methqd, the memory requirement is pro-
andG(r, r’) denotes the 1"ree—space Green’s function. portional toO(V). For the cavity considered here, the memory

. . . . ! R required is estimated to be about 7.68 Gb. However, an iterative
This functional can be discretized by first subdividing the : .
S ; .__method for this problem has two major problems. The most se-
volume of the cavity into small tetrahedral or triangular prism - . -
. : rlous problem is its slow or nonconvergence. Since the finite-el-
elements and then representing the field as . . o o
ement matrix has a relatively poor condition, when its dimen-
N sion is large the convergence of an iterative solution is very slow
E = E E,N; (2) and, in most cases that we have tested, the solution even fails
=1

to converge. Although the slow convergence can be improved

whereN, denotes the vector basis functids, denotes the ex- using a preconditioning technique, its implementation requires
pansion coefficient, and/ denotes the total number of expan? arge amountof memory, usually exceeding that for the storage
sion terms. In this work, we employ higher order interpolato&f [A]. The less serious, but also important, problem is that an it-
vector basis functions discussed in Sections IV and V. erative method must repeat the entire solution process for a new
Substituting (2) into (1) and applying the Rayleigh—Ritz pror_ight—hand side. Since we are interested in the RCS calculation,
cedure, we obtain the matrix equation the number of right-hand sides can be very large.
It is well known that a direct method can find the solution of
[AHE} = {b} (3) amatrix equation with a fixed number of operations and, more-
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Fig.4. MonostaticRCSofalXb x 1.5A x 0.6A rectangular cavity modeled

with tetrahedral elements.
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Fig.3. Asecond-ordertetrahedral element. (a) Curved element. (b) Rectilinear
element.
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over, it can find the solution for many right-hand sides witha | e
negligible amount of extra computing time. Therefore, it seems  _» ‘ \ \ ‘
0 20 40 60 80

that a direct method is preferred for this problem. However, the
major problem for a direct method is its huge memory require-
ment. For the cavity considered here, with a proper numbering. 5. Monostatic RCS of a circular cavity having a diametef.6fA and
of the unknowns, the matrijd] can be stored in a banded madepth of2.1A modeled with tetrahedral elemens= 40°.
trix whose half bandwidth is about 24 000. This would require
4608 Gb, which far exceeds the capability of most availabjge storage of the banded matrix, which requires about 4608 Gb
computing facilities. for the cavity considered here. However, a careful examination
From the above analysis, it is clear that one must reduce thfghe Gaussian elimination process reveals that for a symmetric
memory requirement to render a direct method useful for a larganded matrix having a half bandwidthfb, the elimination
problem. In general, this is impossible; however, the probleaf an equation only involves the previotigsb equations. Other
considered here possesses several unique features that makecthiations preceding theseb equations are never needed in
reduction possible. If we number the unknowns starting frothe elimination process; they are needed only in the back-sub-
the bottom of the cavity, we obtain the matfik] with two very  stitution process. Since agajh} is nonzero only at its bottom
unique features (Fig. 2). Firstd] is a symmetric and bandedand the calculation of RCS requires only the electric field at
matrix, which is mostly sparse except for the right-bottom patthie aperture of the cavity, these equations are actually never
that is a full matrix generated from the first two surface integrateeeded after the elimination process. Recognizing this fact, we
in (1). The half bandwidth is approximately equal to the numbean modify the band algorithm in such a manner that only a ma-
of unknowns for one layer. For the cavity considered here, ittsx of iwb x iwb is needed for its implementation. For the cavity
about 24 000. Secondp} is a vector whose elements are zerosonsidered here, the memory required is about 4.6 Gb. In this
except for a small part at the bottom, which is contributed by tlmeodified band algorithm, we begin with the first equation and
last surface integral in (1). For the cavity considered here, aqggnerate the equations one by one. Once an equation is gener-
of 24 million elements i{ b}, only 24 000 of them are nonzerosated, we immediately apply Gaussian elimination to this equa-
and they are at the bottom §4}. Recognizing these two uniquetion and keep the reduced equation in the memory. This process
features, we can design a special method to solve (3) efficienttgntinues until we encounter tivavb+1)th equation. Since the
This special method is based on the band solver. As pointigdt equation is not needed in the Gaussian elimination of this
out above, a band solver for a general problem would requigquation, we place this equation in the memory occupied by the

¢ (degrees)
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(b) (b)

Fig. 6. (a) RMS error versus the number of unknowns for the monostafféd- 7. Monostatic RCS of a circular cavity having a diamete2.6f\ and
RCS of a 1.0 x 1.0\ x 4.0 rectangular cavity modeled with tetrahedraldepth of10.0A modeled with tetrahedral elements. ¢&)polarization. (b)b¢

elements. (b) Corresponding CPU time. polarization.

first equation. This process continues until all the equations ha@all cavities, we found that its capability for large 3-D cavities
been processed. The information remaining in the core memdﬁs)}lmlted. This limitation is malnly due to the dlsperspn error
is all that is needed to find the solution of the unknowns at @ the zeroth-order elements, which accumulates during wave

aperture of the cavity via the back substitution process. propagation. As a result, the total error increases with the size
of the FEM region [32]. A simple approach to reducing the

dispersion error is to decrease the element size or increase the
mesh density. However, the computational complexity indicates

In order to design an efficient method, it is important to urthat for a fixed-size cavity using the zeroth-order elements,
derstand the computational complexity of the proposed spediaé memory requirement scales 2% and the computing time
algorithm. A straightforward analysis shows that this algorithiscales as€D?, where D denotes the mesh density (number of
has the computing time proportional t2vsb)2N and memory unknowns per wavelength). Therefore, an increase of the mesh
requirement proportional t@wb)?, whereN is the total number density by a factor of two can increase the memory requirement
of unknowns. Sincéwd is determined by the maximum crossy a factor of 16 and the computing time by a factor of 128 and
section of a cavity and/ is linearly proportional to the depth of an increase of the mesh density by a factor of three can increase
a cavity, it follows that the memory requirement of the algorithrthe memory requirement by a factor of 81 and the computing
is proportional to the maximum cross section of the cavity anine by a factor of 2187. Our numerical experiments indicated
independent of the depth of the cavity and its computing timibat for a large and deep cavity, it typically requires the mesh
increases only linearly with the depth of the cavity. density above 40 points per wavelength for the zeroth-order

We first implemented this method using the zeroth-ordetements. Hence, the quick increase in the memory requirement
vector tetrahedral elements, which are commonly known asd computing time is devastating for the analysis of large and
the edge elements. Although we obtained excellent results t@ep cavities.

I1l. COMPUTATIONAL COMPLEXITY
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TABLE |

INFORMATION ABOUT RCS QALCULATION OF A CIRCULAR CAVITY

- Order of Elements

Number of Unknowns

Memory (MB)

CPU Time (s)

First
Second

Third

14,218
42,555

94,844

6.8
21.5
77.9

381
9,985
89,435

The simple analysis performed above reveals the limitation of
the zeroth-order elements and leads us to the use of higher order
elements. Itis well known that the higher order elements can sig-
nificantly reduce the dispersion error and permit a lower mesh
density. When higher order tetrahedral elements are used, for a
fixed-size cavity the memory requirement scale§ras 1)? D*
and the computing time scales(@as+ 1)2D7, wherep denotes
the order of the elements. Although there is an additional coef-
ficient (p+1)? in both the memory requirement and computing
time, the higher order elements use a much lower mesh density
D, which can lead to a significant saving in the memory and
computing time.

IV. HIGHER ORDER TETRAHEDRAL ELEMENTS

For the FEM analysis, the cavity volume is first subdivided
into small tetrahedral elements. These elements can have
curved sides in order to model the cavity geometry accurately.
Each curved tetrahedron is then transformed into one with
straight edges (Fig. 3). The order of transformation can be
specified independently. If this order is the same as the order
of basis function, the element is called isoparametric. If this
order is greater or smaller than the order of basis function, the
element is called superparametric or subparametric. Based on
the transformed tetrahedron, higher order vector interpolatory
basis functions are constructed using the method proposed
by Graglia et al. [34]. First, the zeroth-order vector basis

12
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@
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12

4
3 ° 1

9 10

(b)

7

functions are constructed for the tetrahedron. Higher Ordﬁﬁ. 8. A mixed second/zeroth-order triangular prism element. (a) Curved
vector basis functions are then formed by multiplying theélement. (b) Rectilinear element.
zeroth-order ones with the shifted Silvester—Lagrange inter-
polating polynomial and a normalization factor. As a result, A computer program is written using higher order tetrahedral
there arelp + 1)(p + 3)(p + 4)/2 basis functions and they areelements. The program is structured in such a way that it can use
complete to theth order. any order of elements. In most FEM applications, the bottleneck
When higher order vector basis functions are employed, tleemesh generation, which is always very time consuming and
volume integral in (1) is evaluated using Gaussian quadratuneemory intensive. This is particularly true for large problems
The number of integration points is determined adaptively such as the one treated in this work. To alleviate this difficulty,
achieve desired accuracy. The surface integrals in (1) are treatedrecognize that most large cavities such as engine inlets have
in a similar manner whenandr’ do not belong to the same el-smooth transition from one section to the other. As a result, we
ement. When they do, the method proposed by Duffy [35] tan generate the finite-element mesh layer by layer. If the cavity
employed to evaluate the singular integral. To be more specifis,empty, we can actually build the entire finite-element mesh
the first integral with respect S is carried out using Gaussianusing one layer. To be more specific, we first generate the mesh
guadrature. To carry out the second integral with respetftp for the bottom layer, whose thickness is only one element. The
we first divide the source patch into three subtriangles bassaime mesh is then used for the next layer and the only modifica-
on the pointr. The integration over each subtriangle is thetion is to slightly adjust the coordinates of each node to conform
transformed into an integration over a square. This transfornthe cavity geometry.
tion also removes the singularity in the integrand. The integra-Next, we present some numerical results to demonstrate the
tion over the square is finally evaluated using one-dimensionallidity and capability of the method. As the first check, we test
Gaussian—Legendre quadrature. the self consistency of the method. The first example is a x5



LIU AND JIN: HIGHER ORDER FEM FOR SCATTERING BY DEEP CAVITIES 699

30 - whereos.,; denotes the calculated RCS angd; denotes the ref-
25/ o erifgﬁlsédra ] erence solution, both measured in decibels Alg, . is the
number of sampling points, which are the angles of incidence
20¢ here. The reference solution in this case is obtained using the
15 third-order elements with an overly dense mesh, and it does not
) change anymore when either the order of elements or the mesh
NE 10+ density is increased. Fig. 6(a) displays the RMS error in the
‘g monostatic RCS of a 1.8 x 1.0 A x 4.0 X rectangular cavity
St as a function of the number of unknowns. It is evident that, for
ot the same number of unknowns, the higher order elements pro-
duce more accurate results. For a desired accuracy, the number
-5 of unknowns required for the higher order elements is smaller
than that for lower-order elements. Fig. 6(b) displays the corre-
=10, 50 20 60 80 sponding CPU time. Although the CPU time increases with the
6 (degrees) order of elements for the same number of unknown, a careful
() comparison between Fig. 6(a) and (b) indicates that for a given
40 , , ‘ ‘ accuracy, the higher order elements consume less CPU time than
...... risms the lower-order elements. Hence, the higher order elements are
30, — tetrahedra| 1 both more accurate and efficient than the lower-order ones.

The last example considered using tetrahedral elements is a
circular cavity having a diameter 8f0\ and depth 010.0). Its
monostatic RCS is shown in Fig. 7 and the information about
the discretization, computer memory, and CPU time is given
in Table I. The calculation is carried out on a Digital personal
workstation (500-MHz Alpha 21 164 processor). Clearly, the so-
lution converges when the order of elements increases.

V. MIXED-ORDER PRISM ELEMENTS

-40 : : ‘ ' Although the use of higher order tetrahedral elements yields
0 20 40 60 80 . - _
0 (degrees) a remarkable improvement in the accuracy and efficiency of the
(b) special FEM, the coefficierfp + 1)? in the computational com-

plexity reduces the amount of savings one can achieve in the
memory and computing time. However, if we can design a spe-
cial element that has a higher order interpolation in the trans-
verse plane and a lower order (say the zeroth-order here) inter-
1.5) x 0.6 A rectangular cavity. In this case, the surface of theolation along the depth of a cavity, the computational com-
cavity is flat; hence, there is no issue about geometry modelijgexity indicates that for a fixed-size cavity, the memory re-
The RCS is given in Fig. 4 as a function of the angle of incquirement scales a3} and the computing time scalesB$ D,
dence, obtained by the first-, second-, and third-order elemeijtgere D, denotes the mesh density (number of unknowns per
using the same number of elements (90). The figure demagiavelength) in the transverse plane abigdenotes the mesh
strates clearly the convergence with respect to the order of @nsity (number of unknowns per wavelength) along the depth
ements. The second example is a circular cavity having a dfthe cavity. Since we use a higher order interpolation in the
ameter of0.61\ and depth oR.1\. In this case, the surface oftransverse plandy, can be reduced. A reduction by a factor of
the cavity is curved and it is critical to have accurate geometfyo can reduce the memory requirement by a factor of 16 and
modeling. The RCS of this cavity is shown in Fig. 5 as a funghe computing time by a factor of 64 and a reduction of mesh
tion of the azimuth angle, calculated by the first-, second-, ag@nsity by a factor of three can reduce the memory requirement
third-order elements using the same number of elements (4233).a factor of 81 and the computing time by a factor of 729. Al-
The exact RCS should be a constant because of the rotatiafalugh a lower order interpolation is used along the depth of a
symmetry of the problem. The results show clearly that this ¢gvity, an increase in the mesh density along this direction does
the case when the order of elements increases. not increase the memory requirement and increases the com-
In the third example, we examine the efficiency of highgsuting time only linearly. Clearly, such an element is optimal
order elements. The parameter used in this examination is tbe the proposed special method and can be implemented on

Fig. 9. Monostatic RCS of a2® x 2.0 X x 10.0 rectangular cavity. (a)
06 polarization. (b)»¢ polarization.

root-mean-square (RMS) error defined as triangular prisms. Compared to the higher order tetrahedral ele-
ments, the mixed-order prism elements using the same order and
Neample same mesh density in the transverse plane and the zeroth order
RMS = 1 |0ret — Ocal]? (4) along the depth reduces the memory requirement by a factor of
Nsample =7 (p + 1)? and the computing time by a factor gf + 1)2D/D;.
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TABLE I
COMPARISON BETWEEN HIGHER ORDER TETRAHEDRAL AND MIXED-ORDER PRISM ELEMENTS

Type of Element Number of Unknowns | Half-Bandwidth | Memory (MB) | CPU Time (s)
3rd-order Tetrahedra 86,600 3,452 63 28,003
3rd/Oth-order Prisms 84,500 421 9 1,473
10" : : : mial and a normalization factor to form mixed-order vector basis
——  0th order functions. The difference here is that instead of using the same
=== 1storder order of interpolation in all directions, we use a higher order
\ o g?c?;f;r in the transverse plane and lower order along the height of the
5100 | prism. As a result, if we use thgth order in the transverse
z ey plane and the zeroth-order in the longitudinal direction, there
g A are(5p? + 21p + 18)/2 basis functions for each prism.
g \m ‘\. A computer program is written using the mixed-order trian-
E 10! o, "w,\ ___________ gular prism elements. Again, Gaussian quadrature is employed
""""""" o e ] to perform numerical integration. The surface integrals are dealt
e with in the same manner as in the case of tetrahedra. For cavi-
" """""""""""""" ties with a smooth variation along the depth, we can again gen-
""""""" . erate the finite-element mesh layer by layer. Because of using

prism elements, we actually only need to generate a 2-D trian-
gular mesh. This mesh is then extrapolated in the longitudinal
direction to form one layer of elements. As a result, the mesh
generation can be accomplished easily and this is the added ad-
vantage of using mixed-order triangular prism elements.
] To demonstrate the advantage of this type of element, we
e computed the RCS of a2 x 2 A x 10 A rectangular cavity
\ using the third-order tetrahedral elements and the mixed-order
- ] prism elements with third-order in the transverse plane and
zeroth-order in the longitudinal direction. The number of
unknowns in each case was chosen to yield a comparable
accuracy (the one using the prism elements is slightly more
accurate). The RCS is given in Fig. 9 and the information about
the discretization, computer memory, and CPU time is given
in Table Il. As can be seen, both types of element used about
the same number of unknowns. But the mixed-order prism
elements have a much smaller half-bandwidth and, hence, use
a much smaller memory and CPU time.
Unknowns (N) Next, we examine the efficiency of mixed-order prism ele-
(b) ments with respect to the order in the transverse plane while
Fig.10. (a) RMS error versus the number of unknowns for the monostatic R&iéing the one in the longitudinal direction to be zeroth order.
ofa1.5X x 1.5\ x 2.0\ rectangular cavity modeled with prism elementsThe parameter used in this examination is again the RMS error
(b) Corresponding CPU time. defined in (4). The reference solution is obtained using third-
order in the transverse with an overly dense mesh and zeroth-
Similar to the case of tetrahedral element, a curved triangutander in the longitudinal direction with a mesh density of 80
prism element is first transformed into one with straight edge@®ints per wavelength. The reference solution so obtained does
(Fig. 8). The order of transformation can be specified indepenet change anymore when either the order of elements or the
dently. Since we intend to use higher order basis functions in thiesh density is increased. For all the calculated results, the
transverse plane and lower order ones in the longitudinal direnesh density in the longitudinal direction is fixed at 40 points
tion, the prism element is usually very thin. As a result, we uger wavelength so that the accuracy of the results is determined
higher order transformation in the transverse plane and lowanly by the order in the transverse plane. Fig. 10(a) displays the
order one in the longitudinal direction. The vector basis fun&®MS error in the monostatic RCS of a 1A\5x 1.5\ x 2.0 A
tions are then constructed by following the approach proposesttangular cavity as a function of the number of unknowns. Itis
by Gragliaet al.[36] with some modifications. The zeroth-ordervident that for the same number of unknowns, the higher order
vector basis functions are first constructed. These are then malements produce more accurate results. For a desired accuracy,
tiplied by the shifted Silvester—Lagrange interpolating polyndhe number of unknowns required for the higher order elements

-2 . ) . .
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Fig. 11. Three examples. (a) A% x 5 A x 10 X rectangular cavity. (b) A
curved circular cavity having a diameteriof and depth 010.8A. (c) An offset

bend cavity having a total depth 82\ at 10 GHz.
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Fig. 13. Monostatic RCS of the curved circular cavity modeled with prism
elements. (a) In thez plane. (b) In theyz plane.

than the lower order elements. Compared to the case of tetra-
hedra [Fig. 6(b)], here the increase in the CPU time when the
order is increased is much less significant.

Finally, we present three examples, all illustrated in Fig. 11,
to demonstrate the capability of the proposed method. The first
oneis a5\ x 5\ x 10 X rectangular cavity. The computed
RCS results are compared with a modal solution [23] in Fig. 12
and excellent agreement is observed. The second is a curved cir-
cular cavity having a diameter 6f0A. The axis of the cavity
is an arc having a radius &7.5A and subtends an angle of
22.5. The results are given in Fig. 13. The third is an offset
bend cavity having a total depth 82X at 10 GHz. The com-
puted results are compared in Fig. 14 with the measured data
and a 2-D solution based on a hybrid boundary integral method
and modal approach (BIM/MODE) [24]. For th#-polariza-

Fig. 12. Monostati@t-polarized RCS of the rectangular cavity modeled withjon . our method has a better agreement with the measured data

prism elements.

whereas for they¢-polarization, our solution is very similar to
that of the BIM/MODE. For the sake of comparison, the results

is much smaller than that for lower order elements. Fig. 10(b) Figs. 12 and 14 are calculated for the cavities without the
displays the corresponding CPU time. Clearly, for a given aground plane. All the calculations are done using the mixed
curacy, the higher order elements consume much less CPU titimied/zeroth-order prism elements. The information about the
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TABLE Il

INFORMATION ABOUT MEMORY REQUIREMENTS AND CPU TIMES FORRCS CGALCULATIONS
Problem | Number of Unknowns | Half-Bandwidth | Memory (MB) | CPU Time (hr)
Fig. 11(a) 1,354,240 2,645 98 161
Fig. 11(b) 1,014,256 3,373 180 169
Fig. 11(c) 5,365,353 2,793 109 652
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Fig. 14. Monostatic RCS of the offset bend cavity in theplane at 10 GHz
modeled with prism elements. (&)-polarization. (b)y>¢-polarization.
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constant cross section, at a cost of increasing the memory re-
qguirements by a factor of 1.5. If we utilize this property, the
CPU times for the calculation of the three examples in Fig. 11
arereducedto 7.1, 11.8, and 23.7 h, respectively, with the corre-
sponding memory requirements increased to 149, 273, and 166
Mb, respectively.

VI. CONCLUSION

A special higher order FEM was described for the analysis
of electromagnetic scattering from a large, deep, and arbitrarily
shaped open cavity. This method exploits the unique features
of the FEM equations and, more importantly, the unique fea-
tures of the problem. Itis designed in such a manner that it uses
minimal memory, which is proportional to the maximum cross
section of the cavity and independent of the depth of the cavity
and its computation time increases only linearly with the depth
of the cavity (or even less if the cavity or some of its sections
have a constant cross section). Furthermore, it computes the
scattered fields for all angles of incidence without requiring sig-
nificant additional time. The technique was implemented with
higher order tetrahedral and mixed-order prism elements, both
having curved sides to allow for accurate modeling of arbitrary
geometries. Although both types of element yield a remarkably
more accurate and efficient solution for scattering by 3-D cavi-
ties, the mixed-order prism is optimal for the proposed special
solver. This method, when combined with massively parallel
techniques, will lead us to see the light of accurate simulation of
scattering by a large and deep cavity, often considered a grand
challenge in computational electromagnetics in the RCS com-
munity.

Finally, we note that the proposed method can be applied to
any problem that is electrically much longer in one dimension
than in its other two, such as wave propagation in tunnels for
wireless communications.

number of unknowns, half-bandwidth, memory requirements,

and CPU times is given in Table Ill. The CPU times are mea-
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