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A Special Higher Order Finite-Element Method for
Scattering by Deep Cavities

Jian Liu and Jian-Ming Jin, Senior Member, IEEE

Abstract—A special higher order finite-element method is pre-
sented for the analysis of electromagnetic scattering from a large,
deep, and arbitrarily shaped open cavity. This method exploits the
unique features of the finite-element equations and, more impor-
tantly, the unique features of the problem of scattering by a large
and deep cavity. It is designed in such a manner that it uses minimal
memory, which is proportional to the maximum cross section of the
cavity and independent of the depth of the cavity, and its computa-
tion time increases only linearly with the depth of the cavity. Fur-
thermore, it computes the scattered fields for all angles of incidence
without requiring significant additional time. The technique is im-
plemented with higher order tetrahedral and mixed-order prism
elements, both having curved sides to allow for accurate modeling
of arbitrary geometries. Numerical results show that higher order
elements yield a remarkably more accurate and efficient solution
for scattering by three-dimensional (3-D) cavities. Of the two kinds
of element, the mixed-order prism is optimal for the proposed spe-
cial solver.

Index Terms—Cavities, electromagnetic scattering, finite-ele-
ment method.

I. INTRODUCTION

NUMERICAL computation of the radar cross section
(RCS) of a deep open cavity is considered a grand chal-

lenge in computational electromagnetics (CEM). When a cavity
is very large compared to the wavelength and its interior geom-
etry is simple, high-frequency asymptotic techniques based on
ray tracing and edge diffraction can be employed to evaluate
its RCS [1]–[9]. These include the shooting-and-bouncing-ray
(SBR) method, the Gaussian beam shooting method, the
generalized ray expansion (GRE) method, and the iterative
physical optics (IPO) method. When a cavity is small, nu-
merical techniques such as the method of moments (MoM),
the finite-element method (FEM), and their combination can
be applied for the calculation of the RCS [10]–[20]. These
methods can accurately model arbitrarily shaped cavities as
well as the complex structures inside cavities. However, the
computational costs (memory and CPU time) to model a large
cavity can exceed even the most powerful supercomputer.
When a cavity has a special cross section (rectangular or
circular) with a planar termination, the waveguide modal
approach is an efficient method over a broad range of frequen-
cies [21]–[25] (The modal approach can also be applied to
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cavities having an arbitrary cross section whose waveguide
modes are calculated using the FEM [26]). In addition to the
aforementioned techniques, a variety of hybrid techniques
combining a high frequency and a numerical method have
also been proposed to solve the cavity scattering problems
[27]–[30]. These hybrid techniques are intended to reduce the
size of the computational domain for the numerical method and
thus increase the efficiency and capability of their solutions.
However, the size of a cavity is still limited by the memory and
CPU time required by the numerical method.

Recently, a very efficient numerical technique is developed
for the analysis of electromagnetic scattering from a large,
deep, and arbitrarily shaped cavity [31]. This technique is
based on the FEM that is known for its capability to handle
arbitrary geometries and complex material composition. The
FEM mesh at the cavity aperture is terminated in an exact
manner by the boundary-integral (BI) method. The technique
exploits the unique features of the FE-BI equations and, more
importantly, the unique features of the problem of scattering
by a large and deep cavity. It is designed in such a manner
that it uses minimal memory, which is proportional to the
maximum cross section of the cavity and independent of the
depth of the cavity, and its computation time increases only
linearly with the depth of the cavity. Furthermore, it computes
the scattered fields for all angles of incidence without requiring
significant additional time. The technique has been applied
to both two-dimensional (2-D) and simple three-dimensional
(3-D) cavities whose interior surfaces may be coated with radar
absorbing materials (RAM). Excellent results are obtained for
2-D cavities and those for 3-D cavities are also promising. The
3-D implementation used the zeroth-order rectangular brick
elements [31] and later the zeroth-order tetrahedral elements,
which are commonly known as edge elements. It was observed
that the solution accuracy was mostly limited by the dispersion
error of the zeroth-order elements. This error increases with
the size of the FEM region and can be devastating when the
FEM region is large [32]. Hence, the size of a 3-D cavity to be
analyzed by the proposed method is mainly limited by the use
of the zeroth-order elements.

In this paper, we enhance the efficiency and capability of the
special technique using higher order curvilinear elements. The
use of these higher order elements significantly reduces the dis-
persion error and also permits more accurate modeling of the
problem geometry. We first implement the special technique
using higher order vector isoparametric tetrahedral elements. It
is shown that these elements yield a remarkably more accurate
and efficient solution. However, the improvement of the effi-
ciency is limited by the nature of the special technique. We then
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Fig. 1. Illustration of a large, deep, and arbitrarily shaped open cavity.

develop mixed-order prism elements, which are proven to be
optimal for the special solver. Numerical examples show that
the proposed special FEM is a very promising technique for the
simulation of scattering by a large, deep, and arbitrarily shaped
open cavity.

II. M ETHOD

Consider the problem of plane wave scattering by a large,
deep, and arbitrarily-shaped open cavity (Fig. 1). In accordance
with the finite-element and boundary-integral (FE-BI) method
[33], the electric field inside the cavity and at the aperture of
the cavity can be obtained by seeking the stationary point of the
functional

(1)

where denotes the volume of the cavity anddenotes its
aperture, is the equivalent magnetic current over
the aperture, denotes the incident magnetic field,is the
free-space wavenumber, is the free-space wave impedance,
and denotes the free-space Green’s function.

This functional can be discretized by first subdividing the
volume of the cavity into small tetrahedral or triangular prism
elements and then representing the field as

(2)

where denotes the vector basis function, denotes the ex-
pansion coefficient, and denotes the total number of expan-
sion terms. In this work, we employ higher order interpolatory
vector basis functions discussed in Sections IV and V.

Substituting (2) into (1) and applying the Rayleigh–Ritz pro-
cedure, we obtain the matrix equation

(3)

(a) (b)

Fig. 2. (a) The structure of the finite-element matrix, whose nonzero elements
are contained within a narrow band. (b) The structure of the right-hand side
vector, which contains a very few nonzero elements at the bottom of the vector.

where is a symmetric matrix, is a vector storing the
discrete unknowns, and is a known vector determined from
the incident field. The matrix is contributed by the first three
integrals in (1) and can be decomposed into two parts: the part
contributed by the volume integral is sparse and the other part
contributed by the two surface integrals is fully populated. The
problem is to solve (3) for from which the electric field can
be calculated using (2).

Although the formulation of the FEM matrix equation is
straightforward, its solution is difficult because of a large
number of unknowns for a large and deep cavity. To illustrate
this difficulty, consider a circular cavity with a diameter of
five wavelengths and a depth of 50 wavelengths. If we use 20
zeroth-order elements per wavelength, we would have about
1000 layers along the depth of the cavity with about 24 000
unknowns per layer, resulting in 24 million unknowns. Clearly,
for a problem of this size, the most important factor for its
numerical solution is the memory requirement.

The most memory-efficient method to solve (3) is an itera-
tive method such as the conjugate gradient (CG), the biconju-
gate gradient (BCG), and the quasiminimum residual (QMR)
methods. Using such a method, the memory requirement is pro-
portional to . For the cavity considered here, the memory
required is estimated to be about 7.68 Gb. However, an iterative
method for this problem has two major problems. The most se-
rious problem is its slow or nonconvergence. Since the finite-el-
ement matrix has a relatively poor condition, when its dimen-
sion is large the convergence of an iterative solution is very slow
and, in most cases that we have tested, the solution even fails
to converge. Although the slow convergence can be improved
using a preconditioning technique, its implementation requires
a large amount of memory, usually exceeding that for the storage
of . The less serious, but also important, problem is that an it-
erative method must repeat the entire solution process for a new
right-hand side. Since we are interested in the RCS calculation,
the number of right-hand sides can be very large.

It is well known that a direct method can find the solution of
a matrix equation with a fixed number of operations and, more-
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(a)

(b)

Fig. 3. A second-order tetrahedral element. (a) Curved element. (b) Rectilinear
element.

over, it can find the solution for many right-hand sides with a
negligible amount of extra computing time. Therefore, it seems
that a direct method is preferred for this problem. However, the
major problem for a direct method is its huge memory require-
ment. For the cavity considered here, with a proper numbering
of the unknowns, the matrix can be stored in a banded ma-
trix whose half bandwidth is about 24 000. This would require
4608 Gb, which far exceeds the capability of most available
computing facilities.

From the above analysis, it is clear that one must reduce the
memory requirement to render a direct method useful for a large
problem. In general, this is impossible; however, the problem
considered here possesses several unique features that make this
reduction possible. If we number the unknowns starting from
the bottom of the cavity, we obtain the matrix with two very
unique features (Fig. 2). First, is a symmetric and banded
matrix, which is mostly sparse except for the right-bottom part
that is a full matrix generated from the first two surface integrals
in (1). The half bandwidth is approximately equal to the number
of unknowns for one layer. For the cavity considered here, it is
about 24 000. Second, is a vector whose elements are zeros
except for a small part at the bottom, which is contributed by the
last surface integral in (1). For the cavity considered here, out
of 24 million elements in , only 24 000 of them are nonzeros
and they are at the bottom of . Recognizing these two unique
features, we can design a special method to solve (3) efficiently.

This special method is based on the band solver. As pointed
out above, a band solver for a general problem would require

Fig. 4. Monostatic RCS of a 1.5� � 1.5� � 0.6� rectangular cavity modeled
with tetrahedral elements.

Fig. 5. Monostatic RCS of a circular cavity having a diameter of0:61� and
depth of2:1� modeled with tetrahedral elements.� = 40 .

the storage of the banded matrix, which requires about 4608 Gb
for the cavity considered here. However, a careful examination
of the Gaussian elimination process reveals that for a symmetric
banded matrix having a half bandwidth of , the elimination
of an equation only involves the previous equations. Other
equations preceding these equations are never needed in
the elimination process; they are needed only in the back-sub-
stitution process. Since again is nonzero only at its bottom
and the calculation of RCS requires only the electric field at
the aperture of the cavity, these equations are actually never
needed after the elimination process. Recognizing this fact, we
can modify the band algorithm in such a manner that only a ma-
trix of is needed for its implementation. For the cavity
considered here, the memory required is about 4.6 Gb. In this
modified band algorithm, we begin with the first equation and
generate the equations one by one. Once an equation is gener-
ated, we immediately apply Gaussian elimination to this equa-
tion and keep the reduced equation in the memory. This process
continues until we encounter the th equation. Since the
first equation is not needed in the Gaussian elimination of this
equation, we place this equation in the memory occupied by the
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(a)

(b)

Fig. 6. (a) RMS error versus the number of unknowns for the monostatic
RCS of a 1.0� � 1.0� � 4.0� rectangular cavity modeled with tetrahedral
elements. (b) Corresponding CPU time.

first equation. This process continues until all the equations have
been processed. The information remaining in the core memory
is all that is needed to find the solution of the unknowns at the
aperture of the cavity via the back substitution process.

III. COMPUTATIONAL COMPLEXITY

In order to design an efficient method, it is important to un-
derstand the computational complexity of the proposed special
algorithm. A straightforward analysis shows that this algorithm
has the computing time proportional to and memory
requirement proportional to , where is the total number
of unknowns. Since is determined by the maximum cross
section of a cavity and is linearly proportional to the depth of
a cavity, it follows that the memory requirement of the algorithm
is proportional to the maximum cross section of the cavity and
independent of the depth of the cavity and its computing time
increases only linearly with the depth of the cavity.

We first implemented this method using the zeroth-order
vector tetrahedral elements, which are commonly known as
the edge elements. Although we obtained excellent results for

(a)

(b)

Fig. 7. Monostatic RCS of a circular cavity having a diameter of2:0� and
depth of10:0� modeled with tetrahedral elements. (a)�� polarization. (b)��
polarization.

small cavities, we found that its capability for large 3-D cavities
is limited. This limitation is mainly due to the dispersion error
of the zeroth-order elements, which accumulates during wave
propagation. As a result, the total error increases with the size
of the FEM region [32]. A simple approach to reducing the
dispersion error is to decrease the element size or increase the
mesh density. However, the computational complexity indicates
that for a fixed-size cavity using the zeroth-order elements,
the memory requirement scales as and the computing time
scales as , where denotes the mesh density (number of
unknowns per wavelength). Therefore, an increase of the mesh
density by a factor of two can increase the memory requirement
by a factor of 16 and the computing time by a factor of 128 and
an increase of the mesh density by a factor of three can increase
the memory requirement by a factor of 81 and the computing
time by a factor of 2187. Our numerical experiments indicated
that for a large and deep cavity, it typically requires the mesh
density above 40 points per wavelength for the zeroth-order
elements. Hence, the quick increase in the memory requirement
and computing time is devastating for the analysis of large and
deep cavities.
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TABLE I
INFORMATION ABOUT RCS CALCULATION OF A CIRCULAR CAVITY

The simple analysis performed above reveals the limitation of
the zeroth-order elements and leads us to the use of higher order
elements. It is well known that the higher order elements can sig-
nificantly reduce the dispersion error and permit a lower mesh
density. When higher order tetrahedral elements are used, for a
fixed-size cavity the memory requirement scales as
and the computing time scales as , where denotes
the order of the elements. Although there is an additional coef-
ficient in both the memory requirement and computing
time, the higher order elements use a much lower mesh density

, which can lead to a significant saving in the memory and
computing time.

IV. HIGHER ORDER TETRAHEDRAL ELEMENTS

For the FEM analysis, the cavity volume is first subdivided
into small tetrahedral elements. These elements can have
curved sides in order to model the cavity geometry accurately.
Each curved tetrahedron is then transformed into one with
straight edges (Fig. 3). The order of transformation can be
specified independently. If this order is the same as the order
of basis function, the element is called isoparametric. If this
order is greater or smaller than the order of basis function, the
element is called superparametric or subparametric. Based on
the transformed tetrahedron, higher order vector interpolatory
basis functions are constructed using the method proposed
by Graglia et al. [34]. First, the zeroth-order vector basis
functions are constructed for the tetrahedron. Higher order
vector basis functions are then formed by multiplying the
zeroth-order ones with the shifted Silvester–Lagrange inter-
polating polynomial and a normalization factor. As a result,
there are basis functions and they are
complete to the th order.

When higher order vector basis functions are employed, the
volume integral in (1) is evaluated using Gaussian quadrature.
The number of integration points is determined adaptively to
achieve desired accuracy. The surface integrals in (1) are treated
in a similar manner whenand do not belong to the same el-
ement. When they do, the method proposed by Duffy [35] is
employed to evaluate the singular integral. To be more specific,
the first integral with respect to is carried out using Gaussian
quadrature. To carry out the second integral with respect to,
we first divide the source patch into three subtriangles based
on the point . The integration over each subtriangle is then
transformed into an integration over a square. This transforma-
tion also removes the singularity in the integrand. The integra-
tion over the square is finally evaluated using one-dimensional
Gaussian–Legendre quadrature.

(a)

(b)

Fig. 8. A mixed second/zeroth-order triangular prism element. (a) Curved
element. (b) Rectilinear element.

A computer program is written using higher order tetrahedral
elements. The program is structured in such a way that it can use
any order of elements. In most FEM applications, the bottleneck
is mesh generation, which is always very time consuming and
memory intensive. This is particularly true for large problems
such as the one treated in this work. To alleviate this difficulty,
we recognize that most large cavities such as engine inlets have
smooth transition from one section to the other. As a result, we
can generate the finite-element mesh layer by layer. If the cavity
is empty, we can actually build the entire finite-element mesh
using one layer. To be more specific, we first generate the mesh
for the bottom layer, whose thickness is only one element. The
same mesh is then used for the next layer and the only modifica-
tion is to slightly adjust the coordinates of each node to conform
the cavity geometry.

Next, we present some numerical results to demonstrate the
validity and capability of the method. As the first check, we test
the self consistency of the method. The first example is a 1.5
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(a)

(b)

Fig. 9. Monostatic RCS of a 2.0� � 2.0� � 10.0� rectangular cavity. (a)
�� polarization. (b)�� polarization.

1.5 0.6 rectangular cavity. In this case, the surface of the
cavity is flat; hence, there is no issue about geometry modeling.
The RCS is given in Fig. 4 as a function of the angle of inci-
dence, obtained by the first-, second-, and third-order elements
using the same number of elements (90). The figure demon-
strates clearly the convergence with respect to the order of el-
ements. The second example is a circular cavity having a di-
ameter of and depth of . In this case, the surface of
the cavity is curved and it is critical to have accurate geometry
modeling. The RCS of this cavity is shown in Fig. 5 as a func-
tion of the azimuth angle, calculated by the first-, second-, and
third-order elements using the same number of elements (427).
The exact RCS should be a constant because of the rotational
symmetry of the problem. The results show clearly that this is
the case when the order of elements increases.

In the third example, we examine the efficiency of higher
order elements. The parameter used in this examination is the
root-mean-square (RMS) error defined as

(4)

where denotes the calculated RCS and denotes the ref-
erence solution, both measured in decibels and is the
number of sampling points, which are the angles of incidence
here. The reference solution in this case is obtained using the
third-order elements with an overly dense mesh, and it does not
change anymore when either the order of elements or the mesh
density is increased. Fig. 6(a) displays the RMS error in the
monostatic RCS of a 1.0 1.0 4.0 rectangular cavity
as a function of the number of unknowns. It is evident that, for
the same number of unknowns, the higher order elements pro-
duce more accurate results. For a desired accuracy, the number
of unknowns required for the higher order elements is smaller
than that for lower-order elements. Fig. 6(b) displays the corre-
sponding CPU time. Although the CPU time increases with the
order of elements for the same number of unknown, a careful
comparison between Fig. 6(a) and (b) indicates that for a given
accuracy, the higher order elements consume less CPU time than
the lower-order elements. Hence, the higher order elements are
both more accurate and efficient than the lower-order ones.

The last example considered using tetrahedral elements is a
circular cavity having a diameter of and depth of . Its
monostatic RCS is shown in Fig. 7 and the information about
the discretization, computer memory, and CPU time is given
in Table I. The calculation is carried out on a Digital personal
workstation (500-MHz Alpha 21 164 processor). Clearly, the so-
lution converges when the order of elements increases.

V. MIXED-ORDER PRISM ELEMENTS

Although the use of higher order tetrahedral elements yields
a remarkable improvement in the accuracy and efficiency of the
special FEM, the coefficient in the computational com-
plexity reduces the amount of savings one can achieve in the
memory and computing time. However, if we can design a spe-
cial element that has a higher order interpolation in the trans-
verse plane and a lower order (say the zeroth-order here) inter-
polation along the depth of a cavity, the computational com-
plexity indicates that for a fixed-size cavity, the memory re-
quirement scales as and the computing time scales as ,
where denotes the mesh density (number of unknowns per
wavelength) in the transverse plane anddenotes the mesh
density (number of unknowns per wavelength) along the depth
of the cavity. Since we use a higher order interpolation in the
transverse plane, can be reduced. A reduction by a factor of
two can reduce the memory requirement by a factor of 16 and
the computing time by a factor of 64 and a reduction of mesh
density by a factor of three can reduce the memory requirement
by a factor of 81 and the computing time by a factor of 729. Al-
though a lower order interpolation is used along the depth of a
cavity, an increase in the mesh density along this direction does
not increase the memory requirement and increases the com-
puting time only linearly. Clearly, such an element is optimal
for the proposed special method and can be implemented on
triangular prisms. Compared to the higher order tetrahedral ele-
ments, the mixed-order prism elements using the same order and
same mesh density in the transverse plane and the zeroth order
along the depth reduces the memory requirement by a factor of

and the computing time by a factor of .
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TABLE II
COMPARISONBETWEEN HIGHER ORDER TETRAHEDRAL AND MIXED-ORDER PRISM ELEMENTS

(a)

(b)

Fig. 10. (a) RMS error versus the number of unknowns for the monostatic RCS
of a 1.5� � 1.5� � 2.0� rectangular cavity modeled with prism elements.
(b) Corresponding CPU time.

Similar to the case of tetrahedral element, a curved triangular
prism element is first transformed into one with straight edges
(Fig. 8). The order of transformation can be specified indepen-
dently. Since we intend to use higher order basis functions in the
transverse plane and lower order ones in the longitudinal direc-
tion, the prism element is usually very thin. As a result, we use
higher order transformation in the transverse plane and lower
order one in the longitudinal direction. The vector basis func-
tions are then constructed by following the approach proposed
by Gragliaet al.[36] with some modifications. The zeroth-order
vector basis functions are first constructed. These are then mul-
tiplied by the shifted Silvester–Lagrange interpolating polyno-

mial and a normalization factor to form mixed-order vector basis
functions. The difference here is that instead of using the same
order of interpolation in all directions, we use a higher order
in the transverse plane and lower order along the height of the
prism. As a result, if we use theth order in the transverse
plane and the zeroth-order in the longitudinal direction, there
are basis functions for each prism.

A computer program is written using the mixed-order trian-
gular prism elements. Again, Gaussian quadrature is employed
to perform numerical integration. The surface integrals are dealt
with in the same manner as in the case of tetrahedra. For cavi-
ties with a smooth variation along the depth, we can again gen-
erate the finite-element mesh layer by layer. Because of using
prism elements, we actually only need to generate a 2-D trian-
gular mesh. This mesh is then extrapolated in the longitudinal
direction to form one layer of elements. As a result, the mesh
generation can be accomplished easily and this is the added ad-
vantage of using mixed-order triangular prism elements.

To demonstrate the advantage of this type of element, we
computed the RCS of a 2 2 10 rectangular cavity
using the third-order tetrahedral elements and the mixed-order
prism elements with third-order in the transverse plane and
zeroth-order in the longitudinal direction. The number of
unknowns in each case was chosen to yield a comparable
accuracy (the one using the prism elements is slightly more
accurate). The RCS is given in Fig. 9 and the information about
the discretization, computer memory, and CPU time is given
in Table II. As can be seen, both types of element used about
the same number of unknowns. But the mixed-order prism
elements have a much smaller half-bandwidth and, hence, use
a much smaller memory and CPU time.

Next, we examine the efficiency of mixed-order prism ele-
ments with respect to the order in the transverse plane while
fixing the one in the longitudinal direction to be zeroth order.
The parameter used in this examination is again the RMS error
defined in (4). The reference solution is obtained using third-
order in the transverse with an overly dense mesh and zeroth-
order in the longitudinal direction with a mesh density of 80
points per wavelength. The reference solution so obtained does
not change anymore when either the order of elements or the
mesh density is increased. For all the calculated results, the
mesh density in the longitudinal direction is fixed at 40 points
per wavelength so that the accuracy of the results is determined
only by the order in the transverse plane. Fig. 10(a) displays the
RMS error in the monostatic RCS of a 1.5 1.5 2.0
rectangular cavity as a function of the number of unknowns. It is
evident that for the same number of unknowns, the higher order
elements produce more accurate results. For a desired accuracy,
the number of unknowns required for the higher order elements
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Fig. 11. Three examples. (a) A 5� � 5 � � 10� rectangular cavity. (b) A
curved circular cavity having a diameter of5� and depth of10:8�. (c) An offset
bend cavity having a total depth of32� at 10 GHz.

Fig. 12. Monostatic��-polarized RCS of the rectangular cavity modeled with
prism elements.

is much smaller than that for lower order elements. Fig. 10(b)
displays the corresponding CPU time. Clearly, for a given ac-
curacy, the higher order elements consume much less CPU time

(a)

(b)

Fig. 13. Monostatic RCS of the curved circular cavity modeled with prism
elements. (a) In thexz plane. (b) In theyz plane.

than the lower order elements. Compared to the case of tetra-
hedra [Fig. 6(b)], here the increase in the CPU time when the
order is increased is much less significant.

Finally, we present three examples, all illustrated in Fig. 11,
to demonstrate the capability of the proposed method. The first
one is a 5 5 10 rectangular cavity. The computed
RCS results are compared with a modal solution [23] in Fig. 12
and excellent agreement is observed. The second is a curved cir-
cular cavity having a diameter of . The axis of the cavity
is an arc having a radius of and subtends an angle of
22.5 . The results are given in Fig. 13. The third is an offset
bend cavity having a total depth of at 10 GHz. The com-
puted results are compared in Fig. 14 with the measured data
and a 2-D solution based on a hybrid boundary integral method
and modal approach (BIM/MODE) [24]. For the -polariza-
tion, our method has a better agreement with the measured data,
whereas for the -polarization, our solution is very similar to
that of the BIM/MODE. For the sake of comparison, the results
in Figs. 12 and 14 are calculated for the cavities without the
ground plane. All the calculations are done using the mixed
third/zeroth-order prism elements. The information about the
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TABLE III
INFORMATION ABOUT MEMORY REQUIREMENTS ANDCPU TIMES FORRCS CALCULATIONS

(a)

(b)

Fig. 14. Monostatic RCS of the offset bend cavity in thexz plane at 10 GHz
modeled with prism elements. (a)��-polarization. (b)��-polarization.

number of unknowns, half-bandwidth, memory requirements,
and CPU times is given in Table III. The CPU times are mea-
sured on a Digital personal workstation (500-MHz Alpha 21 164
processor).

We should note that in all examples presented here, the com-
putations are done without making any assumption on the vari-
ation of the cross section of the cavity along its depth. In other
words, the computing times would remain the same even if the
cavity’s cross section varies along its depth. However, if a cavity
or some sections of a cavity have a constant cross section, our
special algorithm can be modified such that the corresponding
computing time is proportional to , instead of , where
is the length of the cavity or the length of the section with a

constant cross section, at a cost of increasing the memory re-
quirements by a factor of 1.5. If we utilize this property, the
CPU times for the calculation of the three examples in Fig. 11
are reduced to 7.1, 11.8, and 23.7 h, respectively, with the corre-
sponding memory requirements increased to 149, 273, and 166
Mb, respectively.

VI. CONCLUSION

A special higher order FEM was described for the analysis
of electromagnetic scattering from a large, deep, and arbitrarily
shaped open cavity. This method exploits the unique features
of the FEM equations and, more importantly, the unique fea-
tures of the problem. It is designed in such a manner that it uses
minimal memory, which is proportional to the maximum cross
section of the cavity and independent of the depth of the cavity
and its computation time increases only linearly with the depth
of the cavity (or even less if the cavity or some of its sections
have a constant cross section). Furthermore, it computes the
scattered fields for all angles of incidence without requiring sig-
nificant additional time. The technique was implemented with
higher order tetrahedral and mixed-order prism elements, both
having curved sides to allow for accurate modeling of arbitrary
geometries. Although both types of element yield a remarkably
more accurate and efficient solution for scattering by 3-D cavi-
ties, the mixed-order prism is optimal for the proposed special
solver. This method, when combined with massively parallel
techniques, will lead us to see the light of accurate simulation of
scattering by a large and deep cavity, often considered a grand
challenge in computational electromagnetics in the RCS com-
munity.

Finally, we note that the proposed method can be applied to
any problem that is electrically much longer in one dimension
than in its other two, such as wave propagation in tunnels for
wireless communications.
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