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Regularization of the Moment Matrix Solution by a
Nonguadratic Conjugate Gradient Method

Luc Knockaert Member, IEEEand Daniél De ZutterSenior Member, IEEE

Abstract—inspired by Tikhonov regularization, a nonlinear The main difficulties in nonquadratic CG reside with exact line
conjugate gradient method is proposed with the purpose of simul- searches [11] and restart [13] procedures. It is shown that the
taneously regularizing and solving the moment matrix equation. - |iye_search, restart, and rescale procedures can be implemented

The procedure is based on a nonquadratic conjugate gradient . fficient and simpl ith th tati |
algorithm with exact line search, restart, and rescale. Applied to In-an eimcient and simple way, wi € same computationa

the problem of TM scattering by perfectly conducting rectangular  COmplexity, i.e., two matrix—vector products per step, as normal
cylinders, the method is shown to exhibit a fast convergence rate. equations CG. This results in two algorithms, the first based

on the Polak—Ribiére accelerator [11] with restart-rescale
cycling and the second on a accelerator resulting from total
rescaling. Finally, the algorithms are tested on the problem
. INTRODUCTION of TM scattering by rectangular perfectly conducting (PEC)

T is widely known that the solution of the electric field inte-Cylinders.
gral equation (EFIE) [1] and, more generally speaking, the
solution of Fredholm integral equations of the first kind [2] are Il. REGULARIZATION
ill-posed problems [3]. The main reason fc_>rthis is that the kernel consider the moment matrix equation
or Green’s function of the integral equation represents a com-
pact operator [4] for which the eigenvalues always cluster in the Zr —y=0. (2)
vicinity of the origin. _ o ' N _ .

As a consequence, when simple subsectional basis and tesBiftfeZ is in general ill conditioned but nonsingular, a Tikhonov
functions such as pulses are utilized or when the geometryrggularization scheme [9] can be proposed with the purpose of
the scatterer is nonsmooth, the resulting moment matrix is oftérnimizing the functional
very ill conditioned. This implies that the convergence rate of ) )
the conjugate gradient (CG) method as applied to the normal Jr =12z — yl|” + [[L(z — )] (2)
equations [5], [6] will, in general, be too lO.W [7]and, theremre\7vhere|| -|l is the Euclidian norm. The reason for the second term
CG in general performs not as well as direct methods such.as, ! . .

L in"J; is that in some cases we do not want to obtain a solution
LU decomposition. T . oo
which is too far away from a certain target solution filtered

As stated by Nashed [3], the philosophy of resolution of il By an appropriate matrik. The minimum of (2) is obtained

Index Terms—Conjugate gradient method, method of moments.

posed problems involves one or more of the following intuitiv\e,zvhen

ideas.
» Change the spaces and/or topologies. ZH(ZQ; —u)+ LHL(Q; —z)=0 (3)
« Modify the equation or the problem itself.
« Change the notion of what is meant by a solution. wherez is the Hermitian transpose @f

An instance of the first idea, change the topology, i.e., the Itis obvious that Tikhonov regularization means that we com-
norm, has been proposed in [8]. The second idea correspopligely abandon the original moment matrix formulation for a
with the use of various matrix preconditioners [1] and the thindew one. This makes sense in problems such as deconvolution
idea corresponds with the theory of Tikhonov regularization [91 the presence of noise, where the matrits strongly related

Our approach is a mixture of the first and third ideas. It iwith the noise covariance matrix [14], but it seems less appro-
based on Tikhonov regularization, but unlike Tikhonov regwriate in electromagnetic problems, where the moment matrix
larization, where a nearby linear system is solved, it solves tisemostly noise free with a high information content. Also, the
exact problem. Unlike the Euclidean norm minimization whickntroduction of the parametetsandxz; supposes that we have
always leads to normal equations [6], we minimize a mor®mea priori information on how to select these items, which in
general nonquadratic and bounded functional. The key pojimactice we do not have. Nevertheless, we can learn a lot from
is that it is possible to apply the CG method successfully totlae regularized equation. The solution to (3) obeys the easily
large class of nonquadratic minimization problems [10]-[12jproved norm inequality

. o 12z — y|| < |27 7L J2||L(z — )] 4)
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Inequality (4) can be written as value forz. In terms of conditioning, we can interpret the initial
z 9 value z;,; = Zy as the exact solution iZ were perfectly
J, = ”LU”Q < ||lz7HLH 3. (5) conditioned, i.e., proportional to a unitary matrix. In the above
Lz — ) context it is important to note that the equality

The functionalJ, in (5) represents a quotient of two positive Blx)=£<1 (13)

definite inhomogeneous quadratic forms and, hence, a logical =

eXtenSion Of TikhOI’lOV’S method iS to Consider the minimizatquhere(I) is Considered as a function mf can be rewritten as

of J,, instead of the minimization of ... It is important to note

that the minimum ofJ,, is zero, obtained whem = =, the (1= &Zz —yl| = lyllv1 - (1 - &) (14)

exact solution ofx = ¥, whereas the minimum of- does not,

in general, correspond with the exact solution.
Unfortunately, /, cannot be considered as a “good” func- (1 — £)zz — ¢|2 = (1 — €)2||z||2 + ||Jy||? + (1 — &)

tional. The reason for this is tha, = co whenz = z, and, Aze = yll? - |1zl - o]?)

hence, if the exact solution happens to be close tehe func- Ty + 4

Equation (14) follows from

tional J,, will not be anywhere close to zero, as continuity would =1 = &?lzel” + Iyl + (1 - ©)
require. , | (€= 1)1zl + Iy
In other words, what we really need is a functional repre- =|lyl*[1 = (1 = &)?).

sented by a bounded quotient of two positive definite inhomoge-

neous quadratic forms such that the minum occurs at the exacthis means that foe — 0, we observe a slightly biased
solution. The existence of such a functional follows easily frofpehavior: the residugzz — y|| does not approach zero directly,
a generalization of the triangle inequality which is valid for albut rather indirectly with: scaled ta(1 — ¢)z.

norms: In preparation of the next sections it is useful to obtain an
. expression for the gradient &f(x). We have
[z = yll” <227 (ll[|” + llolI”)  p>0. (6) )
p— p— H —_
Takingp = 2, splitting Z andy according to 9= zal + ]2 [ —2)z7 2z —o]. (15)
Z=271+7Zo If Z is nonsingular and; # 0 then it is straightforward to
_ 7y show thatg = 0 if and only if & = 0, 2. This is important
y=u1+9y2 (7) :
because it proves that there are no local extrema. Moreover, the
and applying (6) yields gradient is bounded, as it is not too hard to show that
12z — y|I? 1272

J12

z"|2
= <2 8 <2 1-d)WVe+ @ 52” 16
e — P + 22— vl ® sl -averelsaE a9
Itis seen that the functional is appropriate, provided thatif we remain in the appropriate half-spa#és z] > 0. Even

the solution sets of;z — y1 = 0 andZzz — y» = 0 do not more important, from (16) we deduce that
intersect. Thisis certainly the case if we take= Z andy, = .

H
Therefore, we take as our objective functional lgll < 2.5 ||ﬁ ||||2 Vo. (17)
- Y
_ ||Z$ B y”2 <92 (9) . i i
T zzlE 2 = This shows that the gradient is closely bounded,f.

Note that® = 0, the minimum, is attained when= z. and

¢ = 2, the maximum, is attained when= —z.. It is easily ] ) . ]
seen thatb can be written as The nonquadratic conjugate gradient algorithm as advocated

- by Polak—Ribiere [15] and modified by Gilbert—Nocedal [11]
% (10) consists in the following two initialization and four cycle steps.
Zz||- + ||y

I1l. ALGORITHM 1: POLAK—RIBIERE

d=1-2

whereR stands for the real part of a complex humber and

v =2zy. (12)

From (10) we see that the hyperplaitpy? z] = 0 divides

z-space in two half-spaces whebe< 1 and® > 1, respec- 1=-9 (19)
tively. Hence, in order to have a successful search for a min- ,
imum, we must require
o, = arg min ®(x, + ap, (20)
Rlvfx] > 0. (12) aER ( )

Requirement (12) enables us to confifreto the interval
[0, 1]. This also indicates that = v = Z"y is a logical initial Tryl = Tp + Py (21)
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. such thatb(yz) is minimal and then to replacewith vz. It is
. ) easy to prove that the explicit expression 4ois
- = max {§R [91*-1—1(97‘-1—1 - 97‘)]/ ||97|| ) 0} (22) ||y||
—if
=e (31)
. |2z
DPr4+1 = —Gr41 + /37177 (23) where
. . , : . 0 = arg [v7z] . 32
It is seen that the line search (20) is the most important step in ae [U w] (32)
the nonquadratic conjugate gradient method. The value of® after rescaling is
We now show how to find an explicit formula for the real o
parametery in our case. Minimization ob along the line:, + d=1— [v™ | ' (33)
ap, is equivalent to the maximization problem l|Zz|[[[ ]|
A+ aB Since® is always> 0, (33) actually constitutes another alter-
O = Arg max oo s (24)  native proof of the Cauchy—Schwartz inequality. It is important
to note that after rescaling we ha§gz|| = ||y||, which means
where thatz belongs to the surface of the bilt||z = ||y|| with re-
spect to the nornflz||z = ||Zx]|.
E =|izp.|?
A=R[z]/E IV. ALGORITHM 2: TOTAL RESCALING
B=% [va,,]/E The weak point of Algorithm 1 is the possible suboptimal
C =% [(2p,)"2z,|/ E value of the acceleratgt,. in (23). To alleviate this, we combine
D= [||Z$r||2 + HyHQ]/E (25) scah_ng, complex_llne search and agcelerator allin one, i.e., we
modify the equations (18)—(23) to yield
After some calculus, the solution to (24) is obtained as .
A 1 —
=%+ VA -24BC+BD.  (26) T1 = Tini (34)
Note that in the limit forB — 0, the above formula remains
valid sincelimg_.g «,, = —C, corresponding with the min- po =0 (35)
imum of the denominator of (24). Note also that, sintet
a.B > 0, the new value of the unknown vector, i.e,1, iS *

always in the appropriate half-space. ( Brt)
By (10), the new value o® is given by Ty Gy Pr—1

=arg min _ ®(yx,.+a(—g-+ Bpr_1)) (36)
2A 4+ 2a,.B (v, @, B)EC3

Oy =1— - 27
+ a2 + 20, C+ D (27)
The new gradieng,..1 is then given by Dr = —gr + Br_1Pr_1 (37)

g1l = Vrg1 {(1 — <I>,,+1)ZH[Za:,, + a,Zp.| — v} (28) .

where Tytl = YrZy + QpPr (38)
- 1-9,.4, (29) In this manner, we do not need a formula for the accelerator
LT AR + o.BE’ 5., since we can obtain the optimal complex accelergfarn

at the previous stage by solving the minimization problem (36).

At_ﬂrst sight it V\.IOL."d seem that we have to p.e”for_m thre his seemingly difficult problem has a surprisingly simple so-
matrix—vector multiplications per cycle step, but this is |ncorre¢]:t

. - ution. Defining theN x 3 matrix
since at stage + 1 we can utilize the fact that 9
V= |2z, 29y, Zp,— 39
ZEyy1 = 2Ty + QL. (30) [ r S S 1] ( )
) _ _ and the 3x 1 vector
Hence, the computational load is approximately two ma-

trix—vector multiplications per cycle step, exactly as in the r
normal equations version of the conjugate gradient method [5]. u=1 —% (40)
After some cycle steps the conjugate gradient algorithm is o flr—1

likely to stall and, therefore, the algorithm is restarted after;pis seen that
number of steps with the current valuexofAt restart time it is
also judicious to rescale, i.e., to find the complex parameter Ztpp1 = Vu. (42)
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Fig. 1. Convergence rate of algorithm 1 with and without restart-rescale. Fig. 2. Comparison of convergence rates of algorithm 2, normal CG and
algorithm 1, forN' = 200 and plane wave excitation.

Now it is easy to show that the minimization of

_ ||VU, _ y||2 (42) 10000 T T T T T T T
[Vl + ||l
yields
N 1000 | ]
= ——((V7'V)" 'V = i 43
u= V)TV iy = o (43) "
wheret is the least squares solution pertaining to the minimiz. =
tion of ||Vi. — y||. After some calculations we obtain the min- 100 b |
imum value of®
1— @ = v /llyl (44)
implying that||Vu|| = ||Zz,+1|| = ||y||- Note that the complex 10— : : : : : :
accelerator for the total rescaling algorithnis.; = —us /us. 100 200 300 400 500 600 700 800
V. NUMERICAL SIMULATIONS Fig. 3. The condition number as a function of dimensién

First, we consider the TM scattering by a plane wave of a
square PEC cylinder at diagonal incidence. The circumferer R — . —
of the square i20A and, hence, with the conventional pulse ‘ foa e ormal
basis and point matching method [16] with pulse widthl0 o1 b\ restartrescale
we obtain a symmetric moment matrix of dimensign= 200. A
The condition number i& = 150.8. The convergence rate of 0ol b
algorithm 1 without and with restart-rescale after every fift
stepis shownin Fig. 1. Itis seen that restart-rescale isimperat ¢ 0001 b
in order to obtain a decent convergence rate. Next we comp '
algorithm 2 (total rescaling) with algorithm 1 (restart—rescale
and normal CG [6]. The convergence rate is shown in Fig. 2. 00001 ¥
is seen that algorithm 2 produces the best results.

In Fig. 3 we plot the condition numberas a function of the 1e05 ¢
dimensionV, for a square cylinder of increasing circumference
It is seen that: is a wildly oscillating function ofV. Addition- le-06 o 1'0 2'0
ally, we see a strong maximum ef= 7863 at V = 412. n

The convergence rate for worst case dimengiba: 412 for
the three algorithms, under the same conditions as the first & 4. Comparison of convergence rates of algorithm 2, normal CG and
. . . . . algorithm 1, forN = 412 and plane wave excitation.
ample, is shown in Fig. 4. Again, algorithm 2 seems to outper-
form the other algorithms.
As a last example we again taRé = 412, but with an exci- 4\ from the tip of the square cylinder. The convergence rate for

tation due to a line source situated on the diagonal at a distatice three algorithms is shown in Fig. 5.
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It is seen that the overall performance of algorithm 2 (total
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rescaling) is better than normal CG, and that algorithm 1 g 43, pp. 802-810, Aug. 1995.
(Polak—Ribiére with restart—rescale) is not as performant as

normal CG. Hence, we conclude from our numerical simula-

tions that the total rescaling algorithm is the better one in the

sense that its convergence rate has a very early plunge region,

leading to an acceptably small value of the objective functic
d at an early stage of the algorithm.

The main advantage of the nonquadratic CG method is tt
we minimize a bounded functional. Hence, in contradistincti
with the normal CG method, which minimizes an unbound
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