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Regularization of the Moment Matrix Solution by a
Nonquadratic Conjugate Gradient Method
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Abstract—Inspired by Tikhonov regularization, a nonlinear
conjugate gradient method is proposed with the purpose of simul-
taneously regularizing and solving the moment matrix equation.
The procedure is based on a nonquadratic conjugate gradient
algorithm with exact line search, restart, and rescale. Applied to
the problem of TM scattering by perfectly conducting rectangular
cylinders, the method is shown to exhibit a fast convergence rate.

Index Terms—Conjugate gradient method, method of moments.

I. INTRODUCTION

I T is widely known that the solution of the electric field inte-
gral equation (EFIE) [1] and, more generally speaking, the

solution of Fredholm integral equations of the first kind [2] are
ill-posed problems [3]. The main reason for this is that the kernel
or Green’s function of the integral equation represents a com-
pact operator [4] for which the eigenvalues always cluster in the
vicinity of the origin.

As a consequence, when simple subsectional basis and testing
functions such as pulses are utilized or when the geometry of
the scatterer is nonsmooth, the resulting moment matrix is often
very ill conditioned. This implies that the convergence rate of
the conjugate gradient (CG) method as applied to the normal
equations [5], [6] will, in general, be too low [7] and, therefore,
CG in general performs not as well as direct methods such as
LU decomposition.

As stated by Nashed [3], the philosophy of resolution of ill-
posed problems involves one or more of the following intuitive
ideas.

• Change the spaces and/or topologies.
• Modify the equation or the problem itself.
• Change the notion of what is meant by a solution.

An instance of the first idea, change the topology, i.e., the
norm, has been proposed in [8]. The second idea corresponds
with the use of various matrix preconditioners [1] and the third
idea corresponds with the theory of Tikhonov regularization [9].

Our approach is a mixture of the first and third ideas. It is
based on Tikhonov regularization, but unlike Tikhonov regu-
larization, where a nearby linear system is solved, it solves the
exact problem. Unlike the Euclidean norm minimization which
always leads to normal equations [6], we minimize a more
general nonquadratic and bounded functional. The key point
is that it is possible to apply the CG method successfully to a
large class of nonquadratic minimization problems [10]–[12].
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The main difficulties in nonquadratic CG reside with exact line
searches [11] and restart [13] procedures. It is shown that the
line-search, restart, and rescale procedures can be implemented
in an efficient and simple way, with the same computational
complexity, i.e., two matrix–vector products per step, as normal
equations CG. This results in two algorithms, the first based
on the Polak–Ribière accelerator [11] with restart–rescale
cycling and the second on a accelerator resulting from total
rescaling. Finally, the algorithms are tested on the problem
of TM scattering by rectangular perfectly conducting (PEC)
cylinders.

II. REGULARIZATION

Consider the moment matrix equation

(1)

Since is in general ill conditioned but nonsingular, a Tikhonov
regularization scheme [9] can be proposed with the purpose of
minimizing the functional

(2)

where is the Euclidian norm. The reason for the second term
in is that in some cases we do not want to obtain a solution
which is too far away from a certain target solution filtered
by an appropriate matrix. The minimum of (2) is obtained
when

(3)

where is the Hermitian transpose of.
It is obvious that Tikhonov regularization means that we com-

pletely abandon the original moment matrix formulation for a
new one. This makes sense in problems such as deconvolution
in the presence of noise, where the matrixis strongly related
with the noise covariance matrix [14], but it seems less appro-
priate in electromagnetic problems, where the moment matrix
is mostly noise free with a high information content. Also, the
introduction of the parametersand supposes that we have
somea priori information on how to select these items, which in
practice we do not have. Nevertheless, we can learn a lot from
the regularized equation. The solution to (3) obeys the easily
proved norm inequality

(4)

where is the matrix -norm with [7], i.e., in our
case, the largest singular value of.
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Inequality (4) can be written as

(5)

The functional in (5) represents a quotient of two positive
definite inhomogeneous quadratic forms and, hence, a logical
extension of Tikhonov’s method is to consider the minimization
of instead of the minimization of It is important to note
that the minimum of is zero, obtained when the
exact solution of , whereas the minimum of does not,
in general, correspond with the exact solution.

Unfortunately, cannot be considered as a “good” func-
tional. The reason for this is that when and,
hence, if the exact solution happens to be close to, the func-
tional will not be anywhere close to zero, as continuity would
require.

In other words, what we really need is a functional repre-
sented by a bounded quotient of two positive definite inhomoge-
neous quadratic forms such that the minum occurs at the exact
solution. The existence of such a functional follows easily from
a generalization of the triangle inequality which is valid for all
norms:

(6)

Taking , splitting and according to

(7)

and applying (6) yields

(8)

It is seen that the functional is appropriate, provided that
the solution sets of and do not
intersect. This is certainly the case if we take and .
Therefore, we take as our objective functional

(9)

Note that , the minimum, is attained when and
, the maximum, is attained when . It is easily

seen that can be written as

(10)

where stands for the real part of a complex number and

(11)

From (10) we see that the hyperplane divides
-space in two half-spaces where and , respec-

tively. Hence, in order to have a successful search for a min-
imum, we must require

(12)

Requirement (12) enables us to confineto the interval
. This also indicates that is a logical initial

value for . In terms of conditioning, we can interpret the initial
value as the exact solution if were perfectly
conditioned, i.e., proportional to a unitary matrix. In the above
context it is important to note that the equality

(13)

where is considered as a function of, can be rewritten as

(14)

Equation (14) follows from

This means that for , we observe a slightly biased
behavior: the residual does not approach zero directly,
but rather indirectly with scaled to .

In preparation of the next sections it is useful to obtain an
expression for the gradient of . We have

(15)

If is nonsingular and then it is straightforward to
show that if and only if . This is important
because it proves that there are no local extrema. Moreover, the
gradient is bounded, as it is not too hard to show that

(16)

if we remain in the appropriate half-space . Even
more important, from (16) we deduce that

(17)

This shows that the gradient is closely bounded by.

III. A LGORITHM 1: POLAK–RIBIERE

The nonquadratic conjugate gradient algorithm as advocated
by Polak–Ribière [15] and modified by Gilbert–Nocedal [11]
consists in the following two initialization and four cycle steps.

•

(18)

•

(19)

•

(20)

•

(21)
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•

(22)

•

(23)

It is seen that the line search (20) is the most important step in
the nonquadratic conjugate gradient method.

We now show how to find an explicit formula for the real
parameter in our case. Minimization of along the line

is equivalent to the maximization problem

(24)

where

(25)

After some calculus, the solution to (24) is obtained as

(26)

Note that in the limit for , the above formula remains
valid since , corresponding with the min-
imum of the denominator of (24). Note also that, since

, the new value of the unknown vector, i.e., is
always in the appropriate half-space.

By (10), the new value of is given by

(27)

The new gradient is then given by

(28)

where

(29)

At first sight it would seem that we have to perform three
matrix–vector multiplications per cycle step, but this is incorrect
since at stage we can utilize the fact that

(30)

Hence, the computational load is approximately two ma-
trix–vector multiplications per cycle step, exactly as in the
normal equations version of the conjugate gradient method [5].

After some cycle steps the conjugate gradient algorithm is
likely to stall and, therefore, the algorithm is restarted after a
number of steps with the current value of. At restart time it is
also judicious to rescale, i.e., to find the complex parameter

such that is minimal and then to replacewith It is
easy to prove that the explicit expression foris

(31)

where

(32)

The value of after rescaling is

(33)

Since is always , (33) actually constitutes another alter-
native proof of the Cauchy–Schwartz inequality. It is important
to note that after rescaling we have , which means
that belongs to the surface of the ball with re-
spect to the norm .

IV. A LGORITHM 2: TOTAL RESCALING

The weak point of Algorithm 1 is the possible suboptimal
value of the accelerator in (23). To alleviate this, we combine
scaling, complex line search and accelerator all in one, i.e., we
modify the equations (18)–(23) to yield

•

(34)

•

(35)

•

(36)

•

(37)

•

(38)

In this manner, we do not need a formula for the accelerator
, since we can obtain the optimal complex accelerator

at the previous stage by solving the minimization problem (36).
This seemingly difficult problem has a surprisingly simple so-
lution. Defining the matrix

(39)

and the 3 1 vector

(40)

it is seen that

(41)
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Fig. 1. Convergence rate of algorithm 1 with and without restart–rescale.

Now it is easy to show that the minimization of

(42)

yields

(43)

where is the least squares solution pertaining to the minimiza-
tion of . After some calculations we obtain the min-
imum value of

(44)

implying that . Note that the complex
accelerator for the total rescaling algorithm is .

V. NUMERICAL SIMULATIONS

First, we consider the TM scattering by a plane wave of a
square PEC cylinder at diagonal incidence. The circumference
of the square is and, hence, with the conventional pulse
basis and point matching method [16] with pulse width
we obtain a symmetric moment matrix of dimension .
The condition number is . The convergence rate of
algorithm 1 without and with restart–rescale after every fifth
step is shown in Fig. 1. It is seen that restart-rescale is imperative
in order to obtain a decent convergence rate. Next we compare
algorithm 2 (total rescaling) with algorithm 1 (restart–rescale)
and normal CG [6]. The convergence rate is shown in Fig. 2. It
is seen that algorithm 2 produces the best results.

In Fig. 3 we plot the condition numberas a function of the
dimension , for a square cylinder of increasing circumference.
It is seen that is a wildly oscillating function of . Addition-
ally, we see a strong maximum of at .

The convergence rate for worst case dimension for
the three algorithms, under the same conditions as the first ex-
ample, is shown in Fig. 4. Again, algorithm 2 seems to outper-
form the other algorithms.

As a last example we again take , but with an exci-
tation due to a line source situated on the diagonal at a distance

Fig. 2. Comparison of convergence rates of algorithm 2, normal CG and
algorithm 1, forN = 200 and plane wave excitation.

Fig. 3. The condition number as a function of dimensionN .

Fig. 4. Comparison of convergence rates of algorithm 2, normal CG and
algorithm 1, forN = 412 and plane wave excitation.

from the tip of the square cylinder. The convergence rate for
the three algorithms is shown in Fig. 5.
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Fig. 5. Comparison of convergence rates of algorithm 2, normal CG and
algorithm 1, forN = 412 and line-source excitation.

It is seen that the overall performance of algorithm 2 (total
rescaling) is better than normal CG, and that algorithm 1
(Polak–Ribière with restart–rescale) is not as performant as
normal CG. Hence, we conclude from our numerical simula-
tions that the total rescaling algorithm is the better one in the
sense that its convergence rate has a very early plunge region,
leading to an acceptably small value of the objective function

at an early stage of the algorithm.

VI. CONCLUSION

The main advantage of the nonquadratic CG method is that
we minimize a bounded functional. Hence, in contradistinction
with the normal CG method, which minimizes an unbounded
functional, we know at every step of the algorithm exactly how
close we are to the minimum.

By performing exact line-searches and total rescaling proce-
dures, the algorithm keeps the functional in a tight grip on its
strictly decreasing path to the minimum. The relationship with
Tikhonov regularization ensures the numerical stability of the
method.
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