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Analysis of the Performance and Sensitivity of an
Eigenspace-Based Interference Canceler

Ju-Hong Lee and Cheng-Chou Lee

Abstract—Eigenspace-based interference cancelers (EIC's) by the EIC is then eliminated by adding the matrix to the cor-
possess the advantages of providing maximal suppression ofrelation matrix of the blocked data vector. This results in that
interference with fast convergence over conventional adaptive the IS required for computing the optimal weight vector of an
beamformers. However, the performance and sensitivity to EIC be obtained b f . ti | EVD instead
steering angle error of EIC’s have not been analyzed due to the can be 9 ainea by performing Cpnven lona Ins e?
use of a signal blocking matrix. We first present a technique to Of any complicated GEVD. Moreover, itis shown that the EIC’s
construct a positive definite matrix based on the signal blocking performance and sensitivity to steering angle error can be ana-
matrix and then use this matrix to compensate the effect of the |yzed based on the proposed technique. We present the analysis
signal blocking matrix on the sensor noise received by an EIC. of the performance of the EIC in terms of the expectation of

Therefore, the interference subspace required for finding the op- . . . .
timal weight vector can be obtained using conventional eigenvalue the output signal-to-interference plus noise ratio (SINR). As to

decomposition (EVD). Moreover, the performance and sensitivity the analysis of sensitivity to steering angle error, the theoretical
to the steering angle error of the EIC can be analyzed. Simulation results show that the EIC’s performance is considerably dete-

examples are provided for confirming the theoretical results. riorated even if there is a small steering angle error. Increasing
Index Terms—Adaptive antennas, electromagnetic interference. the order of the signal blocking matrix can alleviate this perfor-
mance degradation. Moreover, the breakdown thresholds for the
EIC’s performance in the presence of two interferers with two
extreme correlation cases are derived, respectively.
ECHNIQUES for achieving the purpose of maximizing This paperis organized as follows. Section Il briefly describes
the rejection of interference regardless of the interfethe principle of a conventional EIC. In Section IIl, we present
ence-to-noise ratio (INR) when processing array data by usitfig technigque for constructing a positive definite matrix to elim-
adaptive interference cancelers have been reported in [1]-[BRte the effect of the signal blocking matrix on the received
Notable among them is the one of [4] where an eigenanalysigta vector. Based on the proposed technique, the analysis of
interference canceler (EIC) with fast convergence speed usinif@ EIC’s statistical performance is presented in Section IV. We
uniform linear array (ULA) was presented. The optimal weigrgvaluate the EIC’s sensitivity to steering angle error in Sec-
vector is computed by maximizing the output signal-to-backion V. The performance breakdown thresholds are also derived
ground noise ratio subject to a constraint of orthogonality for the cases of two interferers with two extreme correlation sit-
the interference subspace (IS). The IS is obtained through tkaions. Simulation examples for illustration and confirmation
generalized eigenvalue decomposition (GEVD) of the correlare included in Section VI. Finally, Section VII concludes the
tion matrix of the data vector at the output of an appropriategaper.
designed blocking processor which blocks the desired signal
from the received data vector.
Due to the use of a signal blocking matrix, the noise com-

ponent contained in the blocked data vector is no longer spaconsider an\/-sensor linear array with interelement spacing
tially white. Therefore, finding the IS for computing the opequal todilluminated by narrow-band signal sources from the
timal weight vector generally requires a complicated GEVDQyjstinct direction angle§;, i = 1, 2, -- -, P. Let the response
Moreover, itis not an easy task to analyze the performance astdheth sensor to a signal with unit amplitude and a direction
sensitivity to steering angle error of an EIC. Thus, in the litetyngles, be given byexp(j(m — 1)u;), wherej = /=1, u; =
ature, there are practically no papers considering the analysig; sin(4;), and\ is the wavelength of the signal sources. The

of the performance and sensitivity of an EIC. In this paper, W@ceived signal at thesth sensor can be expressed as
present a technique to construct a positive definite matrix from

the signal blocking matrix of an EIC. The effect of the signal
blocking matrix on the spatially white noise component received

|I. INTRODUCTION

Il. PRINCIPLE OF ACONVENTIONAL EIC

T (t) = Z Si(t)ej(nl—l)ui + N () (1)
=1
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and zero-mean stationary Gaussian random processes. Inveetdr) s3(¢) --- sp(#)]¥. It follows from (8)
form, the received data vector is given by that the ensemble correlation matrixaf(¢) is given by

r R = E{x,()z ()} = Ar¥AY + 7, BB (9)

2(t) =) alu)si(t) +n(t) = As(t) +n(t) (D) where®, = E{D;s;(t)s1()1DY} = D;®, DY with &, —

=1 E{s;(t)s;(t)}. Equation (9) reveals that to find the required
where the response vector of thgh signal a(w;) = IS from R, one must perform the GEVD aR given that the
[1 exp(ju;) - -+ exp(j(M — D)u;)]¥, the noise vecton(t) = noise component,(t) of x,(¢) is no longer spatially white and
() na(t) -+ ny(2)]f, the signal source vectorhas correlation matrix, B B. After performing the GEVD of
s(t) = [s1(t) s2(t) -+ sp(t)]F, and the response matrix(9), we have the following relationship for the resulting gener-
of the signal sourced = [a(u;) a(u2) --- a(up)]. The alized eigenvectorgyfvectors)g; and generalized eigenvalues
superscriptl’ denotes the transpose operation. (g-values)\;

Assume the direction angle of the desired signél iBased B I
on the principle of the EIC presented in [4], a blocking ma- Rg; = \:B" By, (10)
trix B is appropriately designed and used as the block Prgherer; > Ay > -+ > Ap_y > Ap = -+ = Ayy_y = .

2! .

data vector. Let the order d8 beq and a(q + 1) x 1 vector ¢, — 91, 92: +» 9p_1] ANAGr = [gp, gpy1s =+ Gyr_g)-
b=[bo b1 -+ by]" bedefined according to the following tpep it is easy to show that the mately and BY BG; span
manner: the same subspace which is orthogonal to the subspace spanned
, q , q by Gr, i.e., ranged{A;} = rangd BY BG;} L rangd Gr}.
(z— ")t =3 (17" <g> T =N " b As presented in [4], the criterion of an optimal EIC with re-
=0 r=0 duced aperture sizkl — ¢ is to maximize the output signal-to-

©) background noise ratio subject to a constraint of orthogonality

where the superscript denotes the complex conjugate. Cont—O the IS. IfA; is known, the criterion is given by

— pT T H 2
struct anM x 1 vectorb = [b*  on—,—1]", whereoys—o— Maximize 1% %a(t1)] subjectto wiA; =0 (11)
isal x (M — ¢ — 1) row vector with zero elements. Thus the ww
signal blocking matrix with ordeg can be expressed as and the optimal weight vector is given by
. . M1 . = (I — A; (AT At A 12
B=fp L L - Iy "% @ vo =W o A4 el (2
~ wherel denotes thé M — ¢) x (M — ¢) identity matrix. In
where Iy = [us us --- wy ui| represents a practice,Ay is unknown andw’ A; = 0 can be replaced by

cyclic-shifting matrix with elementw; given by theith w7 B"BG; = 0 since rangeA;} = range{B”BGI}. Ac-
column vector of anM x A identity matrix. Based on cordingly, the optimal weight vectan, becomes

a(w;)) = [ exp(ju;)) --- exp(j(M — 1)w)]* and (3), it mH o o ~
we have w, = (I ISB Bc;I)[<B BG)"(B"BG)|™!
m -(BYBGT)" )a,(w1). (13)
B a(ui) = viaq(ui) () From (9), (10), and (13), we note that to evaluate the perfor-

mance and sensitivity to steering angle of the EIC is very diffi-
cult and, hence, there are practically no papers considering this
problem.

wherea,(u;) = [1 exp(ju;) -- - exp(j(M — ¢ — 1)w;)]" and
the blocking facton,; associated with théth signal source is
given by

1 . Ill. EIC USING THE PROPOSEDTECHNIQUE
vi= 3 brem = (e e, (6) o
= In this section, we present an EIC based on a proposed tech-

nigue to alleviate the difficulty described above. From (9), it is
obvious that the difficulty is induced due to the effect of the
signal blocking matrix3 on the received sensor noise. To elim-
@o(t) = BHa(t) = AyDys(t) + BHn(t) = Aysy(t) +ny(t) inate this effect, a technique is developed as follows. For the

The data vector at the output of the signal blocking maktiis
then given by

% sake of simplicity, the notatioH 7 {c;, ca, - - -, ¢, } iS Used to
denote anm x m Hermitian and Toeplitz matrix with its first
where A, — lag(u1) ag(uz) -+ ag(up)] TOWgivenbytherow vectgt]L ¢ o+ ¢l Using (3) and
is the corresponding  response  matrix  anf). it can be shown thaB™ B is given by
D, = diag{ry, e, ---, wvp}. Sincer; = 0, (7) can a—
be rewritten as B"B=HT{eo.c1, - enr—g-1},  Withe; = b7 b,
=0
:Bb(t) = A[D[S[(t) + ny (t) (8) (14)
where A; = [ag(us) ay(us) - ay(up)l, D; = Next, we construct atM — ¢ + ¢) x 1 vector as follows:

diag{ry, vs, -+, vp}, and s(t) = fd, =01 o1 j¢ op_ga]" (15)
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wherei =1, 2, ---, M — ¢ — 1 andd is an integer. From (15), IV. ANALYSIS OF THE STATISTICAL PERFORMANCE

an(M — g +1) x (M — q) matrix is constructed as follows: Consider the output SINR of an EIC with optimal weight

vectorw,. Following the derivations presented in [7], it is easy

. N5 N a2 .
F(d, 1) = [f(d,9) Ty—qif(d,9) Tay—qyif(d, 9) to show that the output signal power is given by

~M—qg—1

Il\/l—q-l—i f(da L)] (16) Py =71 |w0Ha,,1(u1)|2 (25)
wherel y;_,,; is the(M — g+1) x (M — q+1) cyclic-shifting  wherer; denotes the input power of the desired signal, the array
matrix. Using (15) and (16), we have output power due to the interference is given by

—anH H
T(d, i) = F(d, )" F(d, i) pi = w, ArdrAyw, (26)
=HT{2, 0;_1, (—5)%, OM_g_1-i}- (17) and the corresponding output noise power is given by
_ H

From (17), it is obvious thaF(d, ) is positive definite, Hermi- P = TtnWWo Wo- 27)

tian, and Toeplitz. Moreover, it is easy to show that From (25)—(27), the output SINR of the EIC is thus given by
H 2
IRe{c;}IT(2sgnRelc; }), ) + [Im{e;}|T SINR, = = — ___ Tilw,ay(u)] . (28)

(2sgr(l 1 Di +Dn wglAIQIAfIwo + mpwllw,
' grtim{e; } 0 In practice, the number of signal sourc@sthe background
= HT{2(|Re{e;}| + lIm{ci}]), 0i-1, —€i 0n—g-1-i}  pojse powerr,,, and the ensemble correlation matfxequired
(18) for implementing the EIC are not available and usually esti-
. mated from the received data snapshots. Using theHirdata
fori=1,2, T M —q— 1, where Réx}f and Im{z} denqte snapshots, we obtain the estimdtefor the number of signal
the real and imaginary pgrts mﬁ respectively. sgfr) = 1 ”,c_ sources based on the AIC or MDL criterion presented by [11].
@ > 0, and= 0, otherwise. Finally, we construct a positivéoreqver, implementing the AIC or MDL criterion requires
definite matrix as follows: performing the EVD of the corresponding data correlation ma-

M—q-1 trix. Thereforer,, can be estimated by utilizing the eigenvalue
Q= (|Ref{e; HT(2sgn(Re{¢; 1), ¢) + [Im{e; HT method of [12] during the same estimation process. Let the esti-
i=1 mated value be denoted &s. Then, the nexL dqta shapshots
-(2sgr(Im{e; }) — 1, 4)). (19) are used to compute the sample correlation madtras follows:
L
. . . : i 1
Summing (14) and (19) thus yields a diagonal matrix as follows: R K Z oy (8)as (8) (29)

M—g—1 =1
B B+ Q= <6o +2 Z (|Refe; }| + ||m{6i}|)> 1 to replaceR, wherex,(t;) is the data vector taken at the time
i=1 instantt;. The correlation matrixdg,, of (21) is then replaced by
R, =R+ #,9. (30)

wherer denotes the proportional constant. . Itis appropriate to assume that andR are independent in this
Based on (20), the effect of the signal blocking matrix on th&yse. Thus, (22) becomes

received sensor noise can be eliminated by taking the following

=rl (20)

matrix: R,& = %ié; (31)
wherey; > 42 > ..+ > dp_, are the eigenvalues com-
_ _ o : q
Ry = Bt mft = Ar¥, A7 + nmd (21)  putedbasedoR,,. &1, &, - -, ande,_, are the corresponding
as a correlation matrix to replace the original correlation matrfl9enVectors. Next, let the matricély = [e,, &, ---, ep—i]

R. Accordingly, performing the EVD oiR,, yields andEr = [ep, épy1, ---, em—g]- Then, the optimal weight
vector of the EIC under thé finite samples is given by

Ruei =viei (22) W, = (I — BB a,(w) = Exfina,(w).  (32)
wherey; > y2 2 -+ > yp_1 > yp = - = VMg = KTp. Based on the first-order perturbation technigue presented in
Let the matricesEr = [e1 e2 --- ep_i] and [8]foranalysis, it is shown in Appendix that the expectation of
Er = [ep epy1 -+ eu 4. Then we can easily the EIC’s output SINR using finite data snapshots is approxi-
show thatE; E'R]H[E[ Eg]=1TIand mately given by

HnpH
rangg E;} = rangg A;} L rangd Er}. (23) E{SINR,} ~ SINR, <1 _ %Tr{@f‘l’fl}woﬁmeO>
It follows from (22) and (23) that the optimal weight vector for o (33)
the EIC based on the criterion shown in (11) can also be written
as if the input INR is high enough. Assume that the— 1 in-
terferers are uncorrelated. Théy = diag{nz, 73, -+, 7p}

w, = (I — ErEY)a,(w1) = ErEfRa,(u1).  (24) and¥®; = diag{|i|?n2, |v3|?7s, -+ -, |vp|>7p}, wheren; =
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E{|s;(t)|?} denotes the input power of théh signal source. Further, substituting th&. of (3) into (41) yields
Hence, (33) becomes

HpH -~ HpH
- 1 (L _,\ w’BYBuw, w, B” Bw, ~a,(u1) B Ba,(u1) ,
E{SINR,} ~ SINR, | 1 - Sl g=1 7 i
po wiw, = lz (—1)y <f)] @2
(34) i=0 Lr=0
Equation (33) reveals that the expectation of the output SINR is
bounded in the range of V. ANALYSIS OF SENSITIVITY TO STEERING ANGLE ERROR
{SINRO <1 1 Tr{@z‘I’fl}AmaX{BHB}> In practi_ce, the signz?\l blocki_ng matrix is de_signed according
L to a steering angld,, i.e., u; in (3) and (6) is replaced by

ug = 27d sin(fp)/A. For the case of correct steering, we have
6y = 6, andr; = 0. Now consider that there is a small mis-
match betweelly andf;. Using the first-order approximation,
the blocking factot, | is then approximately given by

SINR, <1 - %Tr{‘I)I‘I’Il})\mm{BHB}ﬂ (35)

since (w”B" Bw,)/(wlw,) is bounded by the min-
imal eigenvalue )\min{BHB} and the maximal eigen-
value \,..{BYB} of BYB. It follows from (20) that
)\maX{BHB} < . Moreover, we note from (35) that the

lower bound becomes SINRL — r(P — 1)/L) if the (P — 1) " gquation (43) reveals that, | can not be zero sinde; — wo|

interferers are uncorrelated and; — w.| are not less than i not equal to zero. Hence, there will be a leakage due to the

n/3 fori = 2,3,---, P. For example, the value of is  qegjred signal in the blocked data vector. The correlation matrix
equal to four foru; = 0 andgq = 1. Thus, the expectation (7) is then given by

of the output SINR of the EIC converges with a rate at least

1] = et — 70| & Juy — uol?. (43)

equal tol — 4(P — 1)/L when|u;| are not less than /3 for R=A%,A + 7, B"B (44)
i = 2,3, ---, P. In the following, we consider two special
cases to further simplify the result of (34) under the assumptiothere ¥, = E{s,(t)s;(t)" }. Therefore, using the proposed
of M > 2q. technique to constru@,, = R+,,€ and performing the EVD
) of this matrix as shown in (22) produces the fifdtprincipal
A. Single Interferer eigenvalues which are greater tham,. Moreover, the subspace
Here, letu; = 0 andg = 1. Define the function spanned by the eigenvectors corresponding to tiiéségen-
sin((M — 1)u/2) values is the same as that spannedipyf ¥, has full rank. _
gm—1(u) = (VM — s - (36)  When the number of interferers is overestimated, the matrix
— 1) sin(u/2)

. i i , Er will contain more thanP — 1 principal eigenvectors and,
After performlng some necessary algebraic manipulations, WEnce, rangeA,} C range E;}. From (24), the resulting op-
can obtain timal weight vectorw, is given by

wllw, =(M = 1)(1 - %1 (u2) (37) L B (o s
wl'B"Bw, =2+ g3, 1 (u2) [2 + 4(M — 2) sin? (%)} Wo = PR )8qito
) M—2 which is orthogonal to the response vectey(u:), i.e.,
— 4gpy_1 (u2) cos < U2) (38) wha,(uy) = 0 regardless of the input SNR and the value of
q. As a result, the desired signal will be completely eliminated
and X S
Ly (U 1 and, hence, the EIC will completely fail in this case.
o] = (4 sin (7)) . (39)  Next, consider the situation where the number of interferers
is exactly known and the desired signal is uncorrelated with the
B. Multiple Interferers P — 1interferers. Based on (22) and (44), we have
_In this case, we assume tgat the interferers and the desired Ry = myrag(w1)ag(u) + Ry + kmnd (46)
signal are located so tha(u1 )™ a,(u;) is approximately equal
to zero fori = 2, 3, ---, P. Then, the optimal weight vector\where m,;, = |[11|%r; denotes the power of the desired
given by (24) is approximately equaldg(v, ). Hence, we have gjgna| leakage contained in the blocked data vector Rpd
from (3) and (4) that the correlation matrix due to the interferers. Let tRe— 1
whw, ~a,(u)a,(u) =M —q (40) nhonzero _eigenvalues and the corresponding eigenvectors of
and Ry are given bya; > ap > --- > ap_3 > 0 andw;,

t =1,2,..., P — 1, respectively. Consider the situation in
which the interferers are located far away from the desired
signal so that,(u1)? a,(u;) ~ 0. The eigenvalues;, which
greater tham:,, and the corresponding eigenvecteyof R,,
in this case can thus be approximately givembye o; + K,

(41) ande; =w;,fori=1,2,---, P—1,vp = (M —q)m1 +rm,

w!’ BY Bw, ~a,(u,)" B Ba, (1)

-1

-5

=0

i 2

E bi—rc?™
r=0

2
+

@
/',’mu/
E bq—r eJTUL
r=0
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@ performance of the EIC in the presence of two interferers for
the following two cases.

9.49

9.48¢ A. Two Highly Correlated and Widely Separated Interferers

In this case, we assume that two interferers are widely sep-
arated so that, (u2)”a,(uz) =~ 0 and highly correlated so
that the magnitude of their correlation coefficidpts| ~ 1.

As shown in [10, pp. 52-55], the eigenvaluesif are given

by

9.47

©

'S

[o2]
T

a1 = (M — g)(m2 + m3)

Qutput SINR (dB)
»
()

and
9.4
(M - Q)Wbﬂbg 2
P e UL UL 47
ot s (1—1|p2,3%) (47)
9.43}
wheremy, = |v2|*m andmz = |v3]?73 denote the powers

of the two interference components contained in the blocked
data vector. HencéM — ¢)m,1 > o results in the following
performance breakdown threshold for the EIC

9.42r

41 50 100 150 200 250
Number of Snapshots |p2,3|2 > 1— 7Tb1(7fb_21 + le%l)' (48)
9.465! B. Two Weakly Correlated and Closely Separated Interferers
Here, we assume that two interferers are closely separated
so thata,(u2)"a,(u3) ~ M — ¢ and weakly correlated so
9.46} that their correlation coefficient;, ; ~ 0. Again, following the
derivation similar to Section V-A, we obtain the eigenvalues of
ey k R; as follows:
o 9:455[ | f
= ay =(M — q)(m2 + m3)
:E:i and
S 945 (M — q)mpam
O q)Th27b3 2
ay =——"—— (1= [gn—q(uz —u2)["). (49)
2 (1 g (s — w)?)
9.4451 Hence, (M — q)m1 < ag results in the following performance
breakdown threshold for the EIC
9.44} B |g]\4_q(U,3 - U/2)|2 >1-— 7rb1(7rb_21 + WZI;)I). (50)
50 100 150 200 250  Furthermore, iflus — us| is small enough, it is also shown in
Number of Snapshots L, [10, pp. 52-55] that
Fig. 1. The results oExample 1 Solid line and dash line: The theoretical
g p (M —q¢)* -1

results. “x.” The proposed technique. “0.” The technique of [4]. (a) Output SINR |9M— (u?, _ u2)| ~1—
versus the number of snapshots for different number of interferers. (b) Output a 24
SINR versus the number of snapshots for blocking matrix with different order.

From (51), the breakdown threshold of (50) becomes

(U,3 — U/2)2. (51)

andep = aq(u1)/v/M —q, respectively. Thus, the matrix (ug — up)?

' . . L . 3 —u2)” <
E7 will contain the first P — 1 principal eigenvectors;, (M—¢g)? -1
t =1,2,---,P—1 when(M — ¢)mp;y < ap_1. Conse-
quently, rangéE;} ~ ranggdA;} and, hence, the EIC will
work normally. On the other handy; will contain the nor-
malized response vectep if (M — ¢)m1 > «ap_;1. From the In this section, several simulation examples for confirmation
optimal weight vector given by (45), we can see that the desiradd comparison are presented. The adaptive array considered
signal will be suppressed due to the fact tadt £; = 0. As for all simulations is anM-element ULA with interelement
shown by (43) and the fact thai; is proportional tdi11|?, this  spacing equal to half of the signal wavelength.
difficulty could be alleviated by increasing the ordgeof the Example 1: Here, we illustrate the statistical performance of
signal blocking matrixB if |u; — up| < 1. To look into the the EIC using an array witd/ = 10 sensor elements and a
effect of (M — ¢)mp1 > ap_1, we proceed to investigate thesignal blocking matrix3 with ¢ = 1. The desired signal with

7rg,1(7rb_21 + 7rb_31). (52)

VI. SIMULATION EXAMPLES AND COMPARISON
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(@) puted based on (34), while the dash line represents the result
‘ ' computed based on the approximations shown by (40) and (42).
In contrast, the curve with “x” represents the result using the
proposed EIC, whereas the curve with “0” represents the result
using the EIC of [4] based on the average of 100 independent
runs. Comparing the results, we observe that the proposed EIC
and the EIC of [4] have almost the same performance for this
case. Moreover, these simulations confirm the statistical anal-
ysis for the proposed EIC presented in Section IV.

Next, we investigate the effect gion the EIC’s performance.

Fig. 1(b) shows the expectation of the output SINR versus the
numberL of snapshots. The desired signal with SNR) dB is
impinging on the array from the broadside, while two uncorre-
lated interferers with INR= 20 dB are impinging on the array
from 50° and —60°, respectively. To make the effective aper-
ture size (which is given by/ — ¢) and thus the ideal output
SINR the same for comparison, we consider three cases with
(M, q) = (12, 3), (M, q) = (11, 2), and(M, q) = (10, 1),
. . . . respectively. Three groups of curves from top to the bottom
50 100 150 200 250 show the simulation results for the three cases. For each case, the
Number of Snapshots [, - .
(b) solid line represents the result computed based on (34), while the
' ' dash line represents the result computed based on the approx-
imations shown by (40) and (42). In contrast, the curve with
“X" represents the result using the proposed EIC, whereas the
curve with “0” represents the result using the EIC of [4] based
on the average of 100 independent runs. Comparing the results,
we observe that the approximations shown by (40) and (42) are
quite appropriate. Again, the proposed EIC and the EIC of [4]
have almost the same performance for this case. Moreover, these
simulations confirm the statistical analysis for the proposed EIC
presented in Section IV.

Example 2: This example illustrates the effect of the angle
separation between the desired signal and interference on the
EIC’s performance. For simplicity, we consider only one in-
terferer with INR = 30 dB impinging on the array of ten el-
ements from direction angk®. The desired signal with input
SNR= 0 dB is impinging on the array from the broadside. The
signal blocking matrixB has order; = 1. The first K = 50
data snapshots are used to estim&tand «,,. Fig. 2(a) de-
picts the expectation of the output SINR versus the nunhlr

6, degrees shapshots. Four groups of curves from top to the bottom show
fo 2 Th s of  2.(a) Outout SINR " ) fthe simulation results fof, = 10°, 9°, 8°, and7°, respec-
srlgi.ps.hots. eS(!(IeiZulir?e?Tﬁ?enlE:oreﬁigl rltjespljjlts. “X.” ‘}'/E(resz?opoesggr;]ecirn%lﬁ%{ely' For each case, the _SOlId_ line represents the result com-
“0.” The technique of [4]. (b) The value dir|~2(wZ B¥ Bw,)/(wfw,) Puted based on the approximations shown by (37)—(39). In con-
versus the angle of interferenée. trast, the curve with “X” represents the result using the proposed

EIC, whereas the curve with “0” represents the result using the
input SNR= 0 dB is impinging on the array from the broad-EIC of [4] based on the average of 100 independent runs. We
side, i.e.,0; = 0. The first K = 50 data snapshots are usedote that the EIC’'s performance deteriorategaslecreases.
to estimate the source numbErand the noise power,, by Fig. 2(b) plots the value di»|~2(w! BY Bw,) /(w!w,) com-
the procedure described in Section lll. Fig. 1(a) shows the gxated from (37)—(39) versug&,. The curves from top to the
pectation of the output SINR versus the numbeaf snapshots bottom show the simulation results for the effective aperture
without steering angle error. Three groups of curves from tgize A — 1 varying from 10 to 17. It is clear that the value of
to the bottom show the simulation results for the three casés;|~2(w! B Bw,)/(wHw,) is a monotone decreasing func-
namely one 20-dB interferer with direction an@le= 50°,two tion of 8, and, hence, the EIC's performance degrade§,as
uncorrelated 20-dB interferers with direction angles= 50° decreases.
and6; = 55°, and three uncorrelated 20-dB interferers with Example 3: The sensitivity to steering angle error is inves-
direction angle®, = 50°, 85 = 55°, andf, = —60°, respec- tigated. We use an array with ten sensor elements and a signal
tively. For each case, the solid line represents the result cobbecking matrixB with orderg = 1. To avoid the finite sample

Output SINR (dB)

6.5
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Fig. 3. The results oExample 3 Vertical line: The theoretical breakdown
threshold. Solid line and Dash line: RI's of the proposed technidt® ) and
the technique of [4] RI,), respectively. (a)RI; and RI, versus|ps,s|. (b)
RI, andRI; versusAg.

effect, the ensemble correlation mat# = E{x;(t)z;(t)"}

is used, where, (t) = BY z(t) andB is designed based on the
steering anglé,, which is not equal t@,. To measure the sen-
sitivity of the EIC designed by using the proposed technique

the steering angle error, a robustness ind@x)(is introduced
as follows:

RI, =
Output SINR using (24) witle, (u1) replaced bya, (uo)
Output SINR using (12) witle, (u1) replaced by, (o)

(53)

whereET7 in (24) is obtained by performing the EVD as shown
by (22). In contrast, thét! is defined as

RI, =
Output SINR using (13) witla, (1) replaced by, (o)
Output SINR using (12) witla, (u1) replaced by, (o)
(54)

for measuring the corresponding sensitivity of the EIC designed
by using the technique of [4].

First, we consider the case of highly correlated interferers.
The desired signal with SNR 10 dB is impinging on the array
from 6; = 2°. There are two interferers with INR 0 dB and
direction angle#, = 43° andf; = —56°, respectively. The
steering anglé, = 0. Fig. 3(a) depicts th& versus the mag-
nitude of the correlation coefficienp, 3| of these two inter-
ferers. The vertical line shows the breakdown threshold com-
puted from (48). For comparison, the results using the EIC of
[4] are also plotted. From this figure, we can see that the pro-
posed EIC is very effective for dealing with the situation where
steering angle error is encountered.

Next, we consider the case of closely separated interferers.
Two uncorrelated interferers with INR 0 dB are impinging on
the array fromf, = 55° andf; = 55° + A6, respectively. The
desired signal with SNR= 7 dB is impinging on the array from
#, = 2°. The steering angle is stifly, = 0°. Fig. 3(b) shows
the RI versusA#. Here, the vertical line shows the breakdown
threshold computed from (52). Again, the results using the EIC
of [4] are plotted for comparison. We observe that the proposed
EIC is more effective than the EIC of [4] against steering angle
error. Moreover, it is confirmed by Fig. 3 that the breakdown
thresholds shown by (48) and (52) are appropriate theoretical
results.

VII. CONCLUSION

Conventional eigenspace-based interference cancelers
(EIC’s) like the one of [4] suffer with the lack of performance
and sensitivity analyses due to the fact that the noise at the
output of its signal blocking matrix is nonwhite. This paper has
proposed an EIC and presented the analyses of its performance
and sensitivity to steering angle error. We first present a
technique to construct a positive definite matrix based on the
signal blocking matrix and then use this matrix to compensate
the effect of the signal blocking matrix on the sensor noise
received by the EIC. Therefore, the interference subspace
required for finding the optimal weight vector can be obtained
using conventional EVD. This leads to that the performance
?gd sensitivity to steering angle error of the EIC can be
analyzed. Computer simulations have confirmed the theoretical
results. Moreover, it has been shown by simulations that the
performance of the proposed EIC is almost the same as that of
[4] in the situations without steering angle error. However, the
proposed EIC demonstrates the advantage of possessing robust
capabilities against steering angle error over the EIC of [4].
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APPENDIX

Here, we show the derivation of the result given by (33). P

forming the eigen-decomposition f@t,,, we obtain

R, = E;A;EY¥ + ERARE% (A1)
where A; = diag{yi, v2, --+, yp—1} and Apg =
diag{vp, vp+1, -+ YmM—qy = wrmpd. Similarly, for R,
we obtain

A Aooa A H A~ A H

R, =E/AN/E; + ERARE, (A.2)
where A[ = diag{”yl, Yo, e, ’A}/pfl} and AR =

diag{4p, 4p41, ---» As—q}. The deviation betweenR,,

andR,, due to finite sample effect is given by
AR, =R, - R, = AR+ AT, Q (A.3)

whereAR = R — R andArn, = #, — m,. Following the
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denote the second-order perturbation terms, respectively. It is

ez?ppropriate to neglect the output power due to the interference

when the EIC works normally. Accordingly, the output SINR of
the EIC can be written as

ps(l + (ﬁs - ps)/ps)
pn(l + (ﬁn - pn)/pn +]5i/pn) .
Itis expected that all of the deviation terfs— p,, #,, — p., and
i — p; approach zero as the number of data snapshots increases.

Using the first-order approximation when the number of data
snapshots is large enough, (A.12) can be approximated by

SINR, ~ SINR,(1 + (B, — p.)/Ps — (Br — Pn)/Pr — Di/Dn)-
(A.13)

SINR, =

(A.12)

Since the expectation for each of the first-order terms in (A.8) is
zero, the expectation of the output SINR can be approximately
given by

first-order perturbation analysis presented in [8], we can show

that

AER =Egr — Er ~ —RfAR,ER (A.4)

where

Rf = E/(A; — km,, ) 'EY. (A.5)

R possesses the following properties:
Rf = E/(ATE) ¥ (AT E) " E]
and

RY'R/R} =R} (A.6)

E{SINR,} ~ SINR,(1 + E{Ap, /ps} — E{Ap,/pn}
— E{Api/pn}) (A.14)

whereAp, = Zizl Ap, i, andAp,, = Zizl JAY S

In the following, we compute each of the expectation
terms E{Ap;/ps}, E{Ap,/pn}, and E{Ap;/p,} in (A.14).
As shown in (A.3), the deviatiod\R,, is composed of two
independent terms, i.eAw,, andAR. Based on the eigenvalue
method of [12] to estimate the noise power, it has been shown
that
7T2

E{|Am,|*} = 7K(M"_ 7 (A.15)

By substituting (A.4) into (32), the optimal weight vector

under finite samples can be approximated by

W, ~ w, + (ERAER + AERER )a,(u1). (A7)

It follows from (A.7) that the output power of the desired signal,

the background noise, and the interference are given by
4 3

Ps = mili) ag(w1)|? = ps + > Ap,, i + the first

k=1
order term
2
Pn = T iy ~ pn + Y Apn x + the first order term
k=1

\ pi = W A;®rAriv, ~ p; + Ap; + the first order term
(A.8)

if K data snapshots are used. Next, Rt = E{z(t)z(t)"}
andR, = L~ 2% | =(#)=(t;)". Then we have
R=B"R,B and AR=B"AR,B (A.16)

whereAR, = R, — R,. Using the result presented in [9], it
can be shown thah R, has the following statistical properties

E{AR,}=0
and
E{QIAR.Q,QIAR,Q,}
= L_l Tr{QgRTQQ}(Q{{RTQZL)

whereQ;, ¢ = 1, 2, 3, 4 are matrices with appropriate sizes.
Substituting (A.4) and (A.3) into (A.9)—(A.11), and using the

(A.17)

respectively, where,, p,, and p; denote the correspondingProperties of (A.15) and (A.17), we can obtain the following

output powers without finite sample effect. Moreover

Aps 1= Ap; , = 7r1(a,q(ul)HAEREga,q(ul))2

Aps 3 = 2m1(ag(u1) HERAEgaq (u1))

(ag(u1)" AERER ag(u1))
(A.9)

Apy,1 = mnag(ur)? AERAE ay(uy)

Apn,s = mnag(u)! ERAEFAERE R a,(u)
and

Ap; = ay(u)) " ERAER A1 @AY AERER ay(v) (A1)

(A.10)

expectations:
( E{Ap;}/pn = E{Ap; o}/pn + E{Api v }/pn
+E{Ap;, c}/pn
E{Ap; o}/pn = (LwHw,) "t Tr{® ' &; }w B” Bw,
E{Ap; 1}/pn = (LwHw,)Y(Tr{r, R} A;®;AY R}
-B" BY)w!' BY Bw,

E{Ap; .} /pn = (K(M — P)wfwo)_l(wnwfﬂR}"AI‘ﬁj

{ AY R Qu,)

(A.18)
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( E{Apn,1}/pn = E{Apn,1a}/Pn + E{App, 16} /P
+E{Apn 1c}/Pn

E{Apn, 10}/pn = (Lwfw,)~* TH{ERER B" B}
(Tnay (UI)HR—I'—”'(I(UI))

E{Apn,10}/pn = (Lwfw,)* TH{ERE} B" B}
(n2ay(u)" Rf BY BR} ay(u,))

E{Apy 1c}/pn = (K(M — Pywfw,) ™ (r2a,(u) Rf Q
EREZQR}a,(uy))

(A.19)

( E{Apn,2}/pn = E{Apn,2a}/Pn + E{Apn, 21} /Pn
+E{Apn,2c}/n
E{App,20}/pn = (Lwl'w,) ™ Te{m, R} Yw]
B Bw,
E{Apn, 2}/pn = (Lwl w,) ™ Tr{x R} B" BR] }w!
B Bw,
E{Apn, 2c}/pn = (K(M — Pywfw,) H (rlwl QR
\ R Qu,)

(A.20)

E{Aps, 1}/ps ~ E{Ape, 10,}/ps + E{Ape, lb}/ps
E{Aps,1a}/ps = (L(wl'w,)?) H(mywl BY BRY ay(u1))?
E{Aps, 10}/ps = (K(M — P)(wilw,)*)~*

'(anfQR—}—aq(ul))Q
(A.21)
and
( E{Aps,l%}/ps ~ E{Aps,?)a}/ps + E{Aps,3b}/ps
+E{Aps,3c}/ps
E{Ap, 30} /ps = 2(L(wfw,)?) "  (mnay (u1) " Rf ag(u1))
w! B Bw,
E{Ap, s} /ps = 2(L(wlw,)?) " (r2ay(u) T Rf B
‘BR}a,(u;))w! B" Bw,
E{Ap, 3.}/p. = 2K(M — PY(wlw,)?) " r, w2
\ Rfa,(u)].

(A.22)

Without loss of generality, le®; = <¢®, for some positive
numberc and positive definite matri,. According to (A.6),
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it can be seen thak] is proportional to=—*. Moreover, it can
be shown from (A.18)—(A.22) that each of the following terms:

E{Api,b}/pm
E{Apn, Qa}/pna

E{Api c}/pn, E{Apn,1a}/Pn,
and E{Ap; 34}/ps (A.23)

is proportional toz—* and each of the following terms:

E{Apn, lb}/pru
E{Apn, 2c}/pn7
E{Ap5,3b}/p87

E{Apn, lc}/pru E{Apn,Qb}/pna
E{Aps,la}/psa E{Aps,lb}/psa
and E{Ap, 3.}/ps (A.24)

is proportional toc=2, while only the termE{Ap; ,}/p. is
fixed and independent ef To get a further simplification, con-
sider the case thatis large enough, i.e., the input INR is high
enough such that these terms in (A.23) and (A.24) are negligible
as compared t&{Ap;, ,}/p,. Accordingly, the expectation of
the output SINR given by (A.14) can be approximated by

— 1 w B Bw
E{SINR,} ~ SIN 1= =Tr{®,; 11 2 —_—~ "7
{SINR,} SR0< L T )

(A.25)
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