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Analysis of the Performance and Sensitivity of an
Eigenspace-Based Interference Canceler

Ju-Hong Lee and Cheng-Chou Lee

Abstract—Eigenspace-based interference cancelers (EIC’s)
possess the advantages of providing maximal suppression of
interference with fast convergence over conventional adaptive
beamformers. However, the performance and sensitivity to
steering angle error of EIC’s have not been analyzed due to the
use of a signal blocking matrix. We first present a technique to
construct a positive definite matrix based on the signal blocking
matrix and then use this matrix to compensate the effect of the
signal blocking matrix on the sensor noise received by an EIC.
Therefore, the interference subspace required for finding the op-
timal weight vector can be obtained using conventional eigenvalue
decomposition (EVD). Moreover, the performance and sensitivity
to the steering angle error of the EIC can be analyzed. Simulation
examples are provided for confirming the theoretical results.

Index Terms—Adaptive antennas, electromagnetic interference.

I. INTRODUCTION

T ECHNIQUES for achieving the purpose of maximizing
the rejection of interference regardless of the interfer-

ence-to-noise ratio (INR) when processing array data by using
adaptive interference cancelers have been reported in [1]–[6].
Notable among them is the one of [4] where an eigenanalysis
interference canceler (EIC) with fast convergence speed using a
uniform linear array (ULA) was presented. The optimal weight
vector is computed by maximizing the output signal-to-back-
ground noise ratio subject to a constraint of orthogonality to
the interference subspace (IS). The IS is obtained through the
generalized eigenvalue decomposition (GEVD) of the correla-
tion matrix of the data vector at the output of an appropriately
designed blocking processor which blocks the desired signal
from the received data vector.

Due to the use of a signal blocking matrix, the noise com-
ponent contained in the blocked data vector is no longer spa-
tially white. Therefore, finding the IS for computing the op-
timal weight vector generally requires a complicated GEVD.
Moreover, it is not an easy task to analyze the performance and
sensitivity to steering angle error of an EIC. Thus, in the liter-
ature, there are practically no papers considering the analysis
of the performance and sensitivity of an EIC. In this paper, we
present a technique to construct a positive definite matrix from
the signal blocking matrix of an EIC. The effect of the signal
blocking matrix on the spatially white noise component received
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by the EIC is then eliminated by adding the matrix to the cor-
relation matrix of the blocked data vector. This results in that
the IS required for computing the optimal weight vector of an
EIC can be obtained by performing conventional EVD instead
of any complicated GEVD. Moreover, it is shown that the EIC’s
performance and sensitivity to steering angle error can be ana-
lyzed based on the proposed technique. We present the analysis
of the performance of the EIC in terms of the expectation of
the output signal-to-interference plus noise ratio (SINR). As to
the analysis of sensitivity to steering angle error, the theoretical
results show that the EIC’s performance is considerably dete-
riorated even if there is a small steering angle error. Increasing
the order of the signal blocking matrix can alleviate this perfor-
mance degradation. Moreover, the breakdown thresholds for the
EIC’s performance in the presence of two interferers with two
extreme correlation cases are derived, respectively.

This paper is organized as follows. Section II briefly describes
the principle of a conventional EIC. In Section III, we present
the technique for constructing a positive definite matrix to elim-
inate the effect of the signal blocking matrix on the received
data vector. Based on the proposed technique, the analysis of
the EIC’s statistical performance is presented in Section IV. We
evaluate the EIC’s sensitivity to steering angle error in Sec-
tion V. The performance breakdown thresholds are also derived
for the cases of two interferers with two extreme correlation sit-
uations. Simulation examples for illustration and confirmation
are included in Section VI. Finally, Section VII concludes the
paper.

II. PRINCIPLE OF A CONVENTIONAL EIC

Consider an -sensor linear array with interelement spacing
equal to illuminated by narrow-band signal sources from the
distinct direction angles , . Let the response
of the th sensor to a signal with unit amplitude and a direction
angle be given by , where ,

, and is the wavelength of the signal sources. The
received signal at the th sensor can be expressed as

(1)

where denotes the complex amplitude of theth signal im-
pinging on the array with direction angle, the spatially
white sensor noise with power received by the th sensor.
Both the signal and sensor noise are assumed to be independent
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and zero-mean stationary Gaussian random processes. In vector
form, the received data vector is given by

(2)

where the response vector of theth signal
, the noise vector

, the signal source vector
, and the response matrix

of the signal sources . The
superscript denotes the transpose operation.

Assume the direction angle of the desired signal is. Based
on the principle of the EIC presented in [4], a blocking ma-
trix is appropriately designed and used as the block pro-
cessor in order to block the desired signal from the received
data vector. Let the order of be and a vector

be defined according to the following
manner:

(3)

where the superscript denotes the complex conjugate. Con-
struct an vector , where
is a row vector with zero elements. Thus the
signal blocking matrix with order can be expressed as

(4)

where represents a
cyclic-shifting matrix with element given by the th
column vector of an identity matrix. Based on

and (3),
we have

(5)

where and
the blocking factor associated with theth signal source is
given by

(6)

The data vector at the output of the signal blocking matrixis
then given by

(7)

where
is the corresponding response matrix and

diag . Since , (7) can
be rewritten as

(8)

where
diag , and

. It follows from (8)
that the ensemble correlation matrix of is given by

(9)

where with
. Equation (9) reveals that to find the required

IS from , one must perform the GEVD of given that the
noise component of is no longer spatially white and
has correlation matrix . After performing the GEVD of
(9), we have the following relationship for the resulting gener-
alized eigenvectors (-vectors) and generalized eigenvalues
( -values)

(10)

where .
Using the -vectors , we construct two matrices as follows:

and .
Then, it is easy to show that the matrix and span
the same subspace which is orthogonal to the subspace spanned
by , i.e., range range range .

As presented in [4], the criterion of an optimal EIC with re-
duced aperture size is to maximize the output signal-to-
background noise ratio subject to a constraint of orthogonality
to the IS. If is known, the criterion is given by

Maximize subject to (11)

and the optimal weight vector is given by

(12)

where denotes the identity matrix. In
practice, is unknown and can be replaced by

since range range . Ac-
cordingly, the optimal weight vector becomes

(13)

From (9), (10), and (13), we note that to evaluate the perfor-
mance and sensitivity to steering angle of the EIC is very diffi-
cult and, hence, there are practically no papers considering this
problem.

III. EIC USING THE PROPOSEDTECHNIQUE

In this section, we present an EIC based on a proposed tech-
nique to alleviate the difficulty described above. From (9), it is
obvious that the difficulty is induced due to the effect of the
signal blocking matrix on the received sensor noise. To elim-
inate this effect, a technique is developed as follows. For the
sake of simplicity, the notation is used to
denote an Hermitian and Toeplitz matrix with its first
row given by the row vector . Using (3) and
(4), it can be shown that is given by

with

(14)

Next, we construct an vector as follows:

(15)
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where and is an integer. From (15),
an matrix is constructed as follows:

(16)

where is the cyclic-shifting
matrix. Using (15) and (16), we have

(17)

From (17), it is obvious that is positive definite, Hermi-
tian, and Toeplitz. Moreover, it is easy to show that

Re sgn Re Im

sgn Im

Re Im

(18)

for , where Re and Im denote
the real and imaginary parts of, respectively. sgn if

, and , otherwise. Finally, we construct a positive
definite matrix as follows:

Re sgn Re Im

sgn Im (19)

Summing (14) and (19) thus yields a diagonal matrix as follows:

Re Im

(20)

where denotes the proportional constant.
Based on (20), the effect of the signal blocking matrix on the

received sensor noise can be eliminated by taking the following
matrix:

(21)

as a correlation matrix to replace the original correlation matrix
. Accordingly, performing the EVD on yields

(22)

where .
Let the matrices and

. Then we can easily
show that and

range range range (23)

It follows from (22) and (23) that the optimal weight vector for
the EIC based on the criterion shown in (11) can also be written
as

(24)

IV. A NALYSIS OF THESTATISTICAL PERFORMANCE

Consider the output SINR of an EIC with optimal weight
vector . Following the derivations presented in [7], it is easy
to show that the output signal power is given by

(25)

where denotes the input power of the desired signal, the array
output power due to the interference is given by

(26)

and the corresponding output noise power is given by

(27)

From (25)–(27), the output SINR of the EIC is thus given by

SINR (28)

In practice, the number of signal sources, the background
noise power , and the ensemble correlation matrixrequired
for implementing the EIC are not available and usually esti-
mated from the received data snapshots. Using the firstdata
snapshots, we obtain the estimatefor the number of signal
sources based on the AIC or MDL criterion presented by [11].
Moreover, implementing the AIC or MDL criterion requires
performing the EVD of the corresponding data correlation ma-
trix. Therefore, can be estimated by utilizing the eigenvalue
method of [12] during the same estimation process. Let the esti-
mated value be denoted as. Then, the next data snapshots
are used to compute the sample correlation matrixas follows:

(29)

to replace , where is the data vector taken at the time
instant . The correlation matrix of (21) is then replaced by

(30)

It is appropriate to assume that and are independent in this
case. Thus, (22) becomes

(31)

where are the eigenvalues com-
puted based on . , and are the corresponding
eigenvectors. Next, let the matrices
and . Then, the optimal weight
vector of the EIC under the finite samples is given by

(32)

Based on the first-order perturbation technique presented in
[8] for analysis, it is shown in Appendix that the expectation of
the EIC’s output SINR using finite data snapshots is approxi-
mately given by

SINR SINR Tr

(33)

if the input INR is high enough. Assume that the in-
terferers are uncorrelated. Then diag
and diag , where
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denotes the input power of theth signal source.
Hence, (33) becomes

SINR SINR

(34)

Equation (33) reveals that the expectation of the output SINR is
bounded in the range of

SINR Tr

SINR Tr (35)

since is bounded by the min-
imal eigenvalue and the maximal eigen-
value of . It follows from (20) that

. Moreover, we note from (35) that the
lower bound becomes SINR if the
interferers are uncorrelated and are not less than

for . For example, the value of is
equal to four for and . Thus, the expectation
of the output SINR of the EIC converges with a rate at least
equal to when are not less than for

. In the following, we consider two special
cases to further simplify the result of (34) under the assumption
of .

A. Single Interferer

Here, let and . Define the function

(36)

After performing some necessary algebraic manipulations, we
can obtain

(37)

(38)

and

(39)

B. Multiple Interferers

In this case, we assume that the interferers and the desired
signal are located so that is approximately equal
to zero for . Then, the optimal weight vector
given by (24) is approximately equal to . Hence, we have
from (3) and (4) that

(40)

and

(41)

Further, substituting the of (3) into (41) yields

(42)

V. ANALYSIS OF SENSITIVITY TO STEERINGANGLE ERROR

In practice, the signal blocking matrix is designed according
to a steering angle , i.e., in (3) and (6) is replaced by

. For the case of correct steering, we have
and . Now consider that there is a small mis-

match between and . Using the first-order approximation,
the blocking factor is then approximately given by

(43)

Equation (43) reveals that can not be zero since
is not equal to zero. Hence, there will be a leakage due to the
desired signal in the blocked data vector. The correlation matrix
of (7) is then given by

(44)

where . Therefore, using the proposed
technique to construct and performing the EVD
of this matrix as shown in (22) produces the firstprincipal
eigenvalues which are greater than . Moreover, the subspace
spanned by the eigenvectors corresponding to theseeigen-
values is the same as that spanned byif has full rank.

When the number of interferers is overestimated, the matrix
will contain more than principal eigenvectors and,

hence, range range . From (24), the resulting op-
timal weight vector is given by

(45)

which is orthogonal to the response vector , i.e.,
regardless of the input SNR and the value of

. As a result, the desired signal will be completely eliminated
and, hence, the EIC will completely fail in this case.

Next, consider the situation where the number of interferers
is exactly known and the desired signal is uncorrelated with the

interferers. Based on (22) and (44), we have

(46)

where denotes the power of the desired
signal leakage contained in the blocked data vector and
the correlation matrix due to the interferers. Let the
nonzero eigenvalues and the corresponding eigenvectors of

are given by and ,
, respectively. Consider the situation in

which the interferers are located far away from the desired
signal so that . The eigenvalues , which
greater than and the corresponding eigenvectorsof
in this case can thus be approximately given by
and , for ,
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Fig. 1. The results ofExample 1. Solid line and dash line: The theoretical
results. “x.” The proposed technique. “o.” The technique of [4]. (a) Output SINR
versus the number of snapshots for different number of interferers. (b) Output
SINR versus the number of snapshots for blocking matrix with different order.

and , respectively. Thus, the matrix
will contain the first principal eigenvectors ,

, when . Conse-
quently, range range and, hence, the EIC will
work normally. On the other hand, will contain the nor-
malized response vector if . From the
optimal weight vector given by (45), we can see that the desired
signal will be suppressed due to the fact that . As
shown by (43) and the fact that is proportional to , this
difficulty could be alleviated by increasing the orderof the
signal blocking matrix if . To look into the
effect of , we proceed to investigate the

performance of the EIC in the presence of two interferers for
the following two cases.

A. Two Highly Correlated and Widely Separated Interferers

In this case, we assume that two interferers are widely sep-
arated so that and highly correlated so
that the magnitude of their correlation coefficient .
As shown in [10, pp. 52–55], the eigenvalues of are given
by

and

(47)

where and denote the powers
of the two interference components contained in the blocked
data vector. Hence, results in the following
performance breakdown threshold for the EIC

(48)

B. Two Weakly Correlated and Closely Separated Interferers

Here, we assume that two interferers are closely separated
so that and weakly correlated so
that their correlation coefficient . Again, following the
derivation similar to Section V-A, we obtain the eigenvalues of

as follows:

and

(49)

Hence, results in the following performance
breakdown threshold for the EIC

(50)

Furthermore, if is small enough, it is also shown in
[10, pp. 52–55] that

(51)

From (51), the breakdown threshold of (50) becomes

(52)

VI. SIMULATION EXAMPLES AND COMPARISON

In this section, several simulation examples for confirmation
and comparison are presented. The adaptive array considered
for all simulations is an -element ULA with interelement
spacing equal to half of the signal wavelength.

Example 1: Here, we illustrate the statistical performance of
the EIC using an array with sensor elements and a
signal blocking matrix with . The desired signal with
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Fig. 2. The results ofExample 2. (a) Output SINR versus the number of
snapshots. Solid line: The theoretical results. “x.” The proposed technique.
“o.” The technique of [4]. (b) The value ofj� j (!!! BBB BBB!!! )=(!!! !!! )
versus the angle of interference� .

input SNR dB is impinging on the array from the broad-
side, i.e., . The first data snapshots are used
to estimate the source numberand the noise power by
the procedure described in Section III. Fig. 1(a) shows the ex-
pectation of the output SINR versus the numberof snapshots
without steering angle error. Three groups of curves from top
to the bottom show the simulation results for the three cases,
namely one 20-dB interferer with direction angle , two
uncorrelated 20-dB interferers with direction angles
and , and three uncorrelated 20-dB interferers with
direction angles , , and , respec-
tively. For each case, the solid line represents the result com-

puted based on (34), while the dash line represents the result
computed based on the approximations shown by (40) and (42).
In contrast, the curve with “x” represents the result using the
proposed EIC, whereas the curve with “o” represents the result
using the EIC of [4] based on the average of 100 independent
runs. Comparing the results, we observe that the proposed EIC
and the EIC of [4] have almost the same performance for this
case. Moreover, these simulations confirm the statistical anal-
ysis for the proposed EIC presented in Section IV.

Next, we investigate the effect ofon the EIC’s performance.
Fig. 1(b) shows the expectation of the output SINR versus the
number of snapshots. The desired signal with SNR dB is
impinging on the array from the broadside, while two uncorre-
lated interferers with INR dB are impinging on the array
from and , respectively. To make the effective aper-
ture size (which is given by ) and thus the ideal output
SINR the same for comparison, we consider three cases with

, , and ,
respectively. Three groups of curves from top to the bottom
show the simulation results for the three cases. For each case, the
solid line represents the result computed based on (34), while the
dash line represents the result computed based on the approx-
imations shown by (40) and (42). In contrast, the curve with
“x” represents the result using the proposed EIC, whereas the
curve with “o” represents the result using the EIC of [4] based
on the average of 100 independent runs. Comparing the results,
we observe that the approximations shown by (40) and (42) are
quite appropriate. Again, the proposed EIC and the EIC of [4]
have almost the same performance for this case. Moreover, these
simulations confirm the statistical analysis for the proposed EIC
presented in Section IV.

Example 2: This example illustrates the effect of the angle
separation between the desired signal and interference on the
EIC’s performance. For simplicity, we consider only one in-
terferer with INR dB impinging on the array of ten el-
ements from direction angle . The desired signal with input
SNR dB is impinging on the array from the broadside. The
signal blocking matrix has order . The first
data snapshots are used to estimateand . Fig. 2(a) de-
picts the expectation of the output SINR versus the numberof
snapshots. Four groups of curves from top to the bottom show
the simulation results for , and , respec-
tively. For each case, the solid line represents the result com-
puted based on the approximations shown by (37)–(39). In con-
trast, the curve with “x” represents the result using the proposed
EIC, whereas the curve with “o” represents the result using the
EIC of [4] based on the average of 100 independent runs. We
note that the EIC’s performance deteriorates asdecreases.
Fig. 2(b) plots the value of com-
puted from (37)–(39) versus . The curves from top to the
bottom show the simulation results for the effective aperture
size varying from 10 to 17. It is clear that the value of

is a monotone decreasing func-
tion of and, hence, the EIC’s performance degrades as
decreases.

Example 3: The sensitivity to steering angle error is inves-
tigated. We use an array with ten sensor elements and a signal
blocking matrix with order . To avoid the finite sample
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Fig. 3. The results ofExample 3. Vertical line: The theoretical breakdown
threshold. Solid line and Dash line: RI’s of the proposed technique(RI ) and
the technique of [4](RI ), respectively. (a)RI andRI versusj� j. (b)
RI andRI versus��.

effect, the ensemble correlation matrix
is used, where and is designed based on the
steering angle , which is not equal to . To measure the sen-
sitivity of the EIC designed by using the proposed technique to
the steering angle error, a robustness index () is introduced
as follows:

Output SINR using (24) with replaced by
Output SINR using (12) with replaced by

(53)

where in (24) is obtained by performing the EVD as shown
by (22). In contrast, the is defined as

Output SINR using (13) with replaced by
Output SINR using (12) with replaced by

(54)

for measuring the corresponding sensitivity of the EIC designed
by using the technique of [4].

First, we consider the case of highly correlated interferers.
The desired signal with SNR dB is impinging on the array
from . There are two interferers with INR dB and
direction angles and , respectively. The
steering angle . Fig. 3(a) depicts the versus the mag-
nitude of the correlation coefficient of these two inter-
ferers. The vertical line shows the breakdown threshold com-
puted from (48). For comparison, the results using the EIC of
[4] are also plotted. From this figure, we can see that the pro-
posed EIC is very effective for dealing with the situation where
steering angle error is encountered.

Next, we consider the case of closely separated interferers.
Two uncorrelated interferers with INR dB are impinging on
the array from and , respectively. The
desired signal with SNR dB is impinging on the array from

. The steering angle is still . Fig. 3(b) shows
the versus . Here, the vertical line shows the breakdown
threshold computed from (52). Again, the results using the EIC
of [4] are plotted for comparison. We observe that the proposed
EIC is more effective than the EIC of [4] against steering angle
error. Moreover, it is confirmed by Fig. 3 that the breakdown
thresholds shown by (48) and (52) are appropriate theoretical
results.

VII. CONCLUSION

Conventional eigenspace-based interference cancelers
(EIC’s) like the one of [4] suffer with the lack of performance
and sensitivity analyses due to the fact that the noise at the
output of its signal blocking matrix is nonwhite. This paper has
proposed an EIC and presented the analyses of its performance
and sensitivity to steering angle error. We first present a
technique to construct a positive definite matrix based on the
signal blocking matrix and then use this matrix to compensate
the effect of the signal blocking matrix on the sensor noise
received by the EIC. Therefore, the interference subspace
required for finding the optimal weight vector can be obtained
using conventional EVD. This leads to that the performance
and sensitivity to steering angle error of the EIC can be
analyzed. Computer simulations have confirmed the theoretical
results. Moreover, it has been shown by simulations that the
performance of the proposed EIC is almost the same as that of
[4] in the situations without steering angle error. However, the
proposed EIC demonstrates the advantage of possessing robust
capabilities against steering angle error over the EIC of [4].
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APPENDIX

Here, we show the derivation of the result given by (33). Per-
forming the eigen-decomposition for , we obtain

(A.1)

where diag and
diag . Similarly, for ,
we obtain

(A.2)

where diag and
diag . The deviation between
and due to finite sample effect is given by

(A.3)

where and . Following the
first-order perturbation analysis presented in [8], we can show
that

(A.4)

where

(A.5)

possesses the following properties:

and

(A.6)

By substituting (A.4) into (32), the optimal weight vector
under finite samples can be approximated by

(A.7)

It follows from (A.7) that the output power of the desired signal,
the background noise, and the interference are given by

the first

order term

the first order term

the first order term
(A.8)

respectively, where , , and denote the corresponding
output powers without finite sample effect. Moreover

(A.9)

(A.10)

and

(A.11)

denote the second-order perturbation terms, respectively. It is
appropriate to neglect the output power due to the interference
when the EIC works normally. Accordingly, the output SINR of
the EIC can be written as

SINR (A.12)

It is expected that all of the deviation terms , , and
approach zero as the number of data snapshots increases.

Using the first-order approximation when the number of data
snapshots is large enough, (A.12) can be approximated by

SINR SINR

(A.13)

Since the expectation for each of the first-order terms in (A.8) is
zero, the expectation of the output SINR can be approximately
given by

SINR SINR

(A.14)

where and .
In the following, we compute each of the expectation

terms , , and in (A.14).
As shown in (A.3), the deviation is composed of two
independent terms, i.e., and . Based on the eigenvalue
method of [12] to estimate the noise power, it has been shown
that

(A.15)

if data snapshots are used. Next, let
and . Then we have

and (A.16)

where . Using the result presented in [9], it
can be shown that has the following statistical properties

and

Tr (A.17)

where are matrices with appropriate sizes.
Substituting (A.4) and (A.3) into (A.9)–(A.11), and using the
properties of (A.15) and (A.17), we can obtain the following
expectations:

Tr

Tr

(A.18)
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Tr

Tr

(A.19)

Tr

Tr

(A.20)

(A.21)

and

(A.22)

Without loss of generality, let for some positive
number and positive definite matrix . According to (A.6),

it can be seen that is proportional to . Moreover, it can
be shown from (A.18)–(A.22) that each of the following terms:

and (A.23)

is proportional to and each of the following terms:

and (A.24)

is proportional to , while only the term is
fixed and independent of. To get a further simplification, con-
sider the case thatis large enough, i.e., the input INR is high
enough such that these terms in (A.23) and (A.24) are negligible
as compared to . Accordingly, the expectation of
the output SINR given by (A.14) can be approximated by

SINR SINR Tr

(A.25)
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