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High-Frequency EM Scattering by Edges in
Artificially Hard and Soft Surfaces llluminated at
Oblique Incidence
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Abstract—Uniform high-frequency expressions describing viable alternative to numerical approaches. Specifically, in the
the field scattered by edges in anisotropic impedance surfacesframework of a standard ray technique, the geometry of the ac-
illuminated at oblique incidence are provided. The specific tual scattering object can be locally approximated by resorting

anisotropic impedance boundary condition considered here ex- ¢ ical fi fi d th it terial
hibits a vanishing surface impedance along a principal anisotropy '© c@nonical configurations and the scatterer material proper-

axis and an arbitrary one in the orthogonal direction. In certain  ti€S can be included in calculations by adopting approximate
circumstances, this tensor surface impedance may representimpedance boundary conditions (IBC's) [9].

an accurate model for describing the scattering properties of  |n this context, suitable anisotropic IBC’'s have been
artificially hard and soft surfaces. In order to simplify the analysis proposed for modeling artificially hard and soft surfaces,

but without losing pertinence with real problems, in all canonical h th iod of th truct . h ler th
configurations we consider a face of the wedge to be perfectIyW en the perod o € structure 1s much smailler than

conducting. The anisotropic impedance face is characterized by the free-space wavelength (the latter condition is usually
a tensor surface impedance with the principal anisotropy axes met in practical applications). The corresponding surface

parallel and perpendicular to the edge. impedance tensor exhibits a vanishing impedance value
Index Terms—Anisotropic materials, artificial materials, elec- N the direction of corrugations or strips and a nonzero
tromagnetic edge diffraction, geometrical theory of diffraction. value (very high at those frequencies at which the artificial

surface has been designed) in the orthogonal direction [9],
[10]. Such a model has been applied for estimating the field
reflected from radar polarimetric reflectors [11] and from
RTIFICIALLY hard and soft surfaces [1] are widely useda chiral slab backed by an artificially hard or soft surface
in microwave technology as, for instance, in the design ¢f2]; also, it has been applied in conjunction with either
hybrid-mode feed horns [2], radar calibrated targets [3], [4], argh integral equation method or the UTD for evaluating the
struts for minimum blockage width [5]. They are usually impleperformance of elemental antennas on finite ground planes
mented either by suitably corrugating a metallic plane and thi&]. However, it is worth noting that the above anisotropic
filling the corrugations with a dielectric material or by resortingBC model represents an accurate approximation only under
to grounded dielectric slabs loaded by metallic strip gratings [@pecific conditions related to the direction of propagation
[7]. of the incident plane wave [5]. IBC's depending on the
The scattering properties of an infinite artificially hard or softlirection of incidence [13] or of higher order [9] could
surface of the above kind can be analyzed by means of numsievide a more realistic model, however rendering the
ical techniques, taking advantage of the periodicity of the strugttainment of the solution to the scattering problem much
ture. However, from an engineering point of view, a problem @fiore cumbersome or even impossible. Nevertheless, we
remarkable importance for the simulation of actual configurabserve that the above uniform first-order IBC approxima-
tions is to account for the effects due to the finite extension @én exhibits a gradual loss of accuracy, eventually failing
such surfaces. A rigorous solution for the scattering from finitdose to grazing incidence [6]. In the following, we adopt
artificially hard and soft surfaces can be obtained by applyinge above first-order anisotropic IBC model and apply it to
the moment method (MM) to solve the integral equation for thenalyze the scattering from truncations in artificially hard
currents on all material interfaces [6]. However, when the dand soft surfaces.
mensions of the surface become much larger than the free-spacenhe canonical problem relevant to the scattering of arbitrarily
wavelength, high-frequency techniques as for instance the uplarized plane waves obliquely incident on the edge of an
form geometrical theory of diffraction (UTD) [8] represent anisotropic impedance wedge has not yet been analytically
solved for the most general configurations. Several approxi-
mate analytical solutions and numerical techniques have been
proposed in the literature (see [14] for a recent review on this
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Fig. 1. Geometry for the scattering problem.

objective of this paper is to provide uniform high-frequency exMaliuzhinets special function [17]and the UTD transition

pressions for describing electromagnetic scattering from a cldgaction [8].

of anisotropic impedance wedges. In particular, the anisotropicThe paper has been organized as follows. The problem is

faces are characterized by a tensor surface impedance withftrenulated in Section Il and uniform asymptotic expressions

principal anisotropy axes parallel and perpendicular to the edge the fields are given in Section Il in the context of UTD.

of the wedge and exhibiting a vanishing surface impedanceThen, samples of numerical results are presented in Section IV

one of the above principal directions. Such impedance tenstwslemonstrate the effectiveness of the asymptotic expressions

allow us to simulate edge effects in artificially hard and sofiroposed, emphasizing at the same time the effects of anisotropy

surfaces, when the direction of vanishing surface impedanme the field scattered from the relevant impedance wedges. Fi-

is assumed to coincide with that of corrugations or stripeally, concluding remarks are drawn in Section V.

and a finite surface impedance value holds in the orthogonal

direction. Il. STATEMENT OF THE PROBLEM AND EXACT SPECTRAL
Recently, rigorous integral solutions have been derived [15] REPRESENTATION FOR THEFIELD

for a set of specific wedge configurations, characterized by

a perfect electric conducting (PEC) face and an anisotropi

impedance face of the kind previously defined: 1) an arbitrargference frame and the observation point i at (p, ¢, ). In

exterior angle wedge with a surface impedance tensor on aﬂFthe configurations considered, the fate= 0 is character-

loaded face exhibiting a vanishing value in the direction parallleZ d by a tensor surface impedance with the principal anisotropy

to the edge and 2) a half-plane, a full-plane, or a right-angle, ; .

. g . s N irections parallel and perpendicular to the edge. Furthermore,
wedge with the anisotropic face exhibiting a vanishing surface ;
| . o . we assume the facg = nw to be perfectly conducting. The
impedance in the direction perpendicular to the edge. We ob—rres onding IBC’s can be expressed as
serve that the solution procedure presented in [15] is only vaﬁg P 9 P
when the direction of vanishing surface impedance is either E -7 H. E.——-7H b=0 (1a)
parallel or perpendicular to the edge. However, these specific A e
configurations assume remarkable interest for applications.

Moreover, work is in progress to extend the solution procedure

to more general configurations, e.g., when the vanishing surface E,=E.=0, ¢ =nm (1b)
impedance direction is arbitrarily oriented with respect to the

diffracting edge [16]. Uniform, high-frequency asymptotiavith eitherZ. = 0 or Z, = 0. As noted in Section |, conditions
expressions for the field components parallel to the edge die) are suitable to simulate the behavior of artificially hard and
provided here for the above canonical anisotropic impedanseft surfaces, when the direction of corrugations or strips is ei-
wedge configurations, starting from the corresponding exéber parallel Z, = 0) or perpendiculafZ, = 0) to the edge.

plane wave representations [15]; they include the standaktso, because of energy considerationd Bg .} > 0.

The geometry for the scattering problem is depicted in Fig. 1.
fe wedge has its edge on thexis of a standard cylindrical
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An arbitrarily polarized plane wave impinges on the edg
from a direction determined by the two anglé'sand¢’ (Fig.
1). The angle®’ measures the incidence direction skewness wi
respect to the same ed¢g®8 = = /2 in the normal incidence
case). The unit vectors of the standard Ugdye-fixeccoordi-
nate system (Fig. 1) are defined by the following relationship
e=2¢ =(xe)/|5xé),¢=—(5x8)/)5xe|,F =¢ x5
andB = </3><§. The longitudinal components of the incident fielc , & _Tf/z 0 , U
can be expressed as

4 Imla}

E. =c_ exp[—jkz cos ] explikp cos(¢p — ¢')]

CHY = h, exp[—jkzcos ' exp[kipcos(¢p — ¢')]  (2)
wherek and ¢ are the wave number and intrinsic impedanc
of free-space, respectively, aid = ksin 3’ represents the
transverse component of the wave vector. We note dhat
EY sind andh, = —FEi, sin/, whereE%, and £, are the
electric field complex amplitude of a TMand a TE polarized
incident plane wave, respectively, in the UEdge-fixeccoor-

. . . A
dinate system. Aaxp(jwt) time dependence has been assuméd
and suppressed. In this case, the loaded face of the wedge= 0) is charac-

Since the wedge structure is uniform along thaxis, the terized by an impedance tensor exhibiting a vanishing surface
scattered field exhibits the samep(—jkz cos 3') dependence impedance in the direction parallel to edge. = 0). An arbi-
on z as the incident field in (2) that will be understood in thérary value is assumed fdf,,. By defining

following. According to the Maliuzhinets method [17], [18], the
g g 7L IABL N o 0) =t alcr 49 — 1/ Dol — D+ 7/2)  (4)

total field in the presence of the wedge is written as
where,, . /2(«) is the Maliuzhinets special function [17], the

Fig. 2. Contours of integration on the complex plane.

Z.. = 0: Arbitrary Exterior Angle Wedge

1
2= se(ae+ ¢ —nw/2)explkipcosa] da (3a) spectral solution for the longitudinal field components can be
T Iy expressed as
se(ar) = e op(a) (5a)
1
CH, = 37 / spla+ ¢ —nr/2) explhipcos o] da (3b)
) Jy
(o — nw [2,9) cos(a/2n + 7 /4)
wherey = v+ + v~ is the two-fold Sommerfeld integration 5%.(cx) = (@ —nm, 9) cos( /2n) h.oo(a)  (5b)
path shown in Fig. 2. In order to satisfy the radiation condition, ’
the functions where
1 sin(¢’ /n)
_ s oola) = — —= 6
) = T ) o) =5 S(a/n) + cos(@/m) ©)
and andsiny = sinf3’Z,/¢. In the above expressions, is the
Brewster angle for the TEpolarization, with0 < Re(#) <
h. 7/2 for lossy surfaces. We note th@{«, 9) is free of poles
su(@) — —— (¢ —nr/2) and zeros in the stripRe(a)| < nx. Moreover, i), 9) =

O(exp(|Im()|/2n)) for |Im()] — oo, provided? is finite,
must be regular in the strifRe(«t)| < nw/2. Furthermore, the so that the edge condition is satisfied. As apparent from (5) the
edge condition requires that(«) = O(1) andsy () = O(1), longitudinal components of the electric and magnetic fields are
when|Im(a)| — oo. decoupled. We observe that.., in (5a) coincides with the elec-

Suitable expressions for the spectral functions will be giveric field spectral function for a perfectly conducting wedge; this
in this Section for all the configurations of interest previouslis also true for the magnetic field spectral function in (5b) when
described. The analytical procedure used to derive these spectial= 0. It is worth emphasizing that the spectral solutions in
functions has been described in [15], where other anisotroi§f) are valid for arbitrary exterior wedge angles. We also note
canonical problems have also been solved. We note that, sitltat an integral solution for the same problem but limited to the
the spectral rigorous solutions provided here are defined aldind plane configuration has been given in [20] by resorting to
the Sommerfeld integration path, they are suitable for derivirlge Wiener—Hopf technique.
incremental length diffraction coefficients (ILDC’s) [19] or to We finally observe that, in most cases, artificially hard and
develop accurate series representations for the description ofsbé surfaces are modeled with a tensor surface impedance ex-
field in the vicinity of the edge. hibiting a vanishing surface impedance in the direction of corru-



MANARA et al.: HIGH-FREQUENCY EM SCATTERING ILLUMINATED AT OBLIQUE INCIDENCE 793

TABLE |
SOLVING SYSTEMS OF LINEAR EQUATIONS FOR DETERMINING THE CONSTANTS APPEARING IN THE RIGOROUS SPECTRAL SOLUTIONS FOR THE
CONFIGURATIONS IN SECTION |I-B

Configuration| constants Solving system of linear equations
n=1 C.C, t (o Fr/2)=Fjt,(toyFr/2)
n=2 ¢, o Co ey to (X0 F 1) = Fjty (Y0 F 1) Lo (o) =Fjt,(£)
n=1/2 ¢, t,(0g—m/4)=~jt,(0tg—7/4)
n=3/2 € CorCy t(toy =37m/4) =Fjt,(*o, —-37/4)

gations or strips and a very high surface impedance in the transd
verse direction [1], [6], [L0]-[12]. The corresponding magnetic

field spectral solution for the limit casgZ. = 0, Z, — oc) v (Oc - %,194”) v (a - %,197)
c.anﬁbe easilydobtainﬁed from (5b) by taking into account that tn(a) = U(¢ — nm, 0H)U(¢ — nr,9-)
A - (hao(@) + 1) (100)

B. Z, = 0: Full-Plane (n = 1); Half-Plane(n = 2); Interior
(n = 1/2) and Exterior(n = 3/2) Right-Angled Wedges

In all the cases analyzed here the loaded face of the wedge o CNZox \/(C/ZZ)Q —4cos? ¥

(¢ = 0) is characterized byz, = 0. An arbitrary value is sin g™ = 2sin 7' (11)

assumed foZ. . The spectral solutions for the longitudinal field

components can be expressed as with 0 < Re(9F) < 7/2. We note that. («) andt,(«) are the
spectral functions for the integral representation of the trans-

se(a) = A(a){cos B’ cos(a + nm/2)t(a) verse field components,, and¢ H.,, respectively, and the con-
—sin{a + nw/2)tn ()} (7ra) stants,, h, represent the complex amplitudes of theompo-

nents of the incident field [15]

whered. = ¢;, = 0if n = 1/2. In (9b) and (10b)

— (i /\—1 / ! - /
sn(e) = Aa){cos 7 cos(a + nm/2)b(a) ey = (sin 8 )" {cos ¢’ cos F'e, +sing’h.} (12a)

+ sin(a + nw/2)t. ()} (7b) and

where h, = (sin ') *{cos ¢/ cos F'h. —sin¢’ec.}. (12b)
o -2 2 —1
Ae) = sinfF'(1 —sin” ' cos™ (@ +n7/2))7". (8) e also observe that for the configurations analyzed here,
the IBC’'s expressed in terms of the-components of the
&Jectric and magnetic field are decoupled on both wedge faces;
moreover* denote the Brewster angles for a JFgolarized
incident plane wave. The specific forms chosen for (9) and
te(ar) = epo0(@) + ce + desin(a/n) + c, sin®(a/n) (9a) (10) guarantee the proper b_ehavior of the spectral functions
for |Im(«)] — oo. It is also important to note that the con-
stants appearing in (9), (10) can be evaluated by solving
nr nr a suitable system of linear equations (see Table I), where
v (a -5 19+)‘If(a -5 19_) cos(a/2n+7/4) oy = jIn(tan(B’/2)). This system is obtained by imposing the

The corresponding expressions fof«) and#;,(«) depend on
the specific geometrical wedge configuration. In particular, f
the full- and the half-planén = 1, 2)

t(a) = (¢ — nar, 91U (@ — nr, 9 ) cos(¢/ /2n) cancellation of the nonphysical poles introduced in (7) by the
- (hyoo(a) + C’h) ’ (9p) Presence ofA(«) which is singular atv = g — nw/2+mm,
with m = 0,£1,£2,--- [15].
wherec2primes, = ¢, = 0if n = 1. In the limit case corresponding to the simplest model of an
Conversely, for the right-angled configuratiois = artificially hard or soft surface, i.eZ, = 0 andZ, — oo,
1/2,3/2) the Brewster angles defined in (11) become purely imaginary
(9% = Fay); the superscriptst” and “—” denote the Brewster
to(a) = cos(cr/2n + m/4) angles with a positive or negative imaginary part, respectively.
cos(¢’/2n) In this case, the expressions fof«) and;, («) strongly sim-

- (ezoo(a) + e + ¢ e sin(a/n)) (10a) plify since the term containing the Maliuzhinets special function
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TABLE I
SOLVING SYSTEMS OF LINEAR EQUATIONS FORDETERMINING THE CONSTANTS APPEARING IN THE RIGOROUS SPECTRAL SOLUTIONS FOR THE
CONFIGURATIONS IN SECTION II-B IN THE LIMIT CASEZ, = 0 AND Z. — oo

Configuration| constants Solving system of linear equations
n=1 ¢, L(—0y+7/2)=jt, (-0, +7/2)
n=2 C,,C,.Cy L(=0y + ) = jt, (-0 + 1), t,(X0) =Fjt, (o)
n=3/2 C,.Ch (o +m/4)=Fjt,(Fag+n/4)

reduces to a trigonometric factor [15]. In particular, for the fulland
and the half-planén = 1, 2) we obtain

t(a) = cos(ao/n) + sin(a/n) CH, = EZ: Res{sy(a),a = a;}

~ cos{ao/n) — cos(¢ /n) - expljkep cos(c; — ¢+ nw/2)]
- (ezoola) + c. +  sin(a/n)) (13a) 1
_ % — spla+ ¢ —nm/2)

: - explikep cos o] de. (15b)
th(a) = (cos(ag/n) + sin(a/n)) cos(a/2n + 7 /4)
' (cos(ao/n) — cos(¢ /n)) cos(¢'/2n) Explicit closed-form expressions for any term appearing in (15)
 (heoo(a) +cn) (13b)  will be given in the following.

wherec’c = ¢, = 0if n = 1. Conversely, whem = 1/2,3/2 A Geometrical Optics Field

(cos(ag/n) + sin(ce/n)) cos(ae/2n + 7 /4) The geometrical optics (GO) pole singularities are contained
te(a) = (cos(ag/n) — cos(¢/ /n)) cos(¢’ /2n) in the functionoo(«), appearing in the expressions far(«)
(exoo(a) + c2) (14a) and s;,(«) proposed for the different configurations. The

residues ofs.(«) and sy () at ey = ¢’ — nw/2 provide the
contributions of the incident field in (2); they must be included
. in the solution if¢’ — 7 < ¢ < ¢ + «. Moreover, the
th(a) = (cos(ao/n) + Sm(a/n)) pole atas = —¢’ — n7 /2 accounts for the field reflected from
(cos(ao/n) — cos(¢’/n)) the anisotropic facép = 0). The expressions for the residue
+ (haoo(a) +cn) (14b)  contributions associated with the latter pole include both a
)copolar and a cross-polar component

wherec, = ¢, = 0if n = 1/2. The constants appearing in (13

and (14) can be determined by resorting to the corresponding -

equations reported in Table II. (E2)o = (Hee(Zp, Zz)ez + Ren(Zp; Z2)h2)
~explikipcos(p+ ¢ )U(r —¢' —¢)  (16a)

Ill. ASYMPTOTIC SOLUTION

By means of (3), the longitudinal field componets and
CH. can_be expre_ssed i_n a form suitable for their ur_liform (CH.Y, = (R (Zp, Z2) bz + Roe(Z,. Z2)e.)
asymptotic evaluation with standard procedures [8] in the . , ,
framework of UTD. In particular, by applying the residue ~explikpcos(dp + @U(T — ¢" —¢)  (16b)
theorem, the original integral representation for the total field _ . . . .
along the Sommerfeld integration contouiis reduced to the whereU(-) is the HgaV|5|de unlj[ step function. In particular,
contribution of: two integrals defined along the steepest desct‘-ﬁ\men thep = 0 face is characterized b, = 0
pathsSDP., through the saddle points &t (see Fig. 2);

the residue of the poles which can be captured in the contour Ree(Zp, 2. =0) = -1 (17a)
deformation process. Eventually we write
E. = Z Res{sc(a), o = o} Ren(Zp, Z. = 0) = Rpe(Zp, Z. = 0) = 0 (17b)

- explikip cos(w; — ¢ + nw/2)]

1
T2 Joppy, T Ryp(Zy, 2. = 0) = (sing/ —sin B Z,/C))/

- exp[jkip cos o] da (15a) (sing’ +sinp'Z,/()). (17c)
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Conversely, when the¢ = 0 face is characterized by, = 0 whenZ, = 0. The expressions for the residue contributions
can be cast in the following form:
R..(Z,=0,Z.)

B (Sin d)’(sin ¢/ _ smﬁ’/(Zz/C)) _ C082 /3/ C082 d)/) (Ez)gw = Ce exp[—jktp COS((/) + Q?o)]U((/)SLU - (/)) (203.)
 (sin¢’sin® B (sin ¢/ + 1/(sin /' Z.. /C)) + cos? 3)
(18a)
(CH.)5" = O expl—jkipcos(p + Do)]U(¢sw — ¢) (20b)
with ¢, = gd(Im(do)) — Re(y), where gd(z) =
Ren(Z,=0,2.) = —Rpe(Z,=0,2.) sgn(z)cos(1/coshr) denotes the Gudermann function.
—sin(2¢) cos 5/ It is apparent that the excitation condition requifes, > 0.

(sin ¢ sin? ' (sin ¢/ + 1/(sin ' Z./C)) +cos? )  When the facep = 0 is characterized b/, = 0, ¥y = 9%,
(18b) but for lossy surface$Re{Z.} > 0), the two corresponding
surface waves cannot satisfy the excitation condition simul-
taneously: just one of them can be supported by the loaded
anisotropic face. The complex amplitudes of the surface wave
Ru(Z,=0,2.) contributions depend on the specific configuration analyzed. In

 (sing/(sin g/ +sin B J(Z./C)) — cos? 3 cos? ) particular, whenz. = 0, with arbitrary values fotZ, andx,

= — — - - . we obtain
(sin ¢’ sin” B (sin¢’ + 1/(sin 3 Z. /() + cos? )
(18¢) C. =0,

. . _ _ Co(¥) cos((w +7)/(2n))
It is worth noting that the previous expressions exactly recover Cn = P(¢' — nmr, ¥) cos(¢’ /(2n))
those obtained by considering plane wave reflection from an 'h»/O'()(—ﬂ'7— 9 — nr/2) 1)
infinite planar anisotropic impedance surface, as expected. .

The pole atvz = —¢'+3n7 /2 accounts for the field reflected | hare
from the perfectly conducting fage= n=. The expressions for

the corresponding residue contributions are - _ (T~ —
Co (o) 2n sin (271) Ynms2(nm —7/2)
(Ez): = —e, exp[iktp COS(d) —+ (7)’ — 2717()] ) z/}n,ﬁ/Q(n’]r + 71'/2 + 200) (22)
U@ +¢—(2n—1)m) (198) |n the limit case K. =0,7Z, — oo) surface waves do not exist

on both wedge faces.
When the corrugations are perpendicular to the edge of the
wedge, the surface wave amplitudes can be expressed as
(CH.)E =h. explikupcos(+ ¢ — 2nm)]
U + ¢ — (2n— D). (19b) C* = —A(—7 — 9% — nr /2) sin9FCF (23a)

Finally, we note that for geometrical configurations with< 1
multiple reflections must also be accounted for [21]; moreover,

the expressions in (17) and (18) can be easily extended to the Ci
limit casesZ, — oo andZ. — oo, respectively.

= —A(—7 — 9T — nx/2) cos f cos¥ECE  (23b)

whereCE are given in (24), shown at the bottom of the page,

B. Surface Waves for the full-plane ¢, = 0 if » = 1) and the half-plane, and

Surface waves can be supported only by the anisotropic n Co(9%) (hpoo(—m —nm /2 — 9F) +¢3)

impedance face. For those cases in which the nonvanishing ~= = U(¢ — nm, 07 U(¢ — nr, 9 (25)
surface impedance of the impedance tensor assumes a finite

value, the poles associated with the surface wave contributimn the acute right-angled wedge configuratien= 3/2).

are introduced by the function defined in (4), which contains It is worth noting that for any electrical configuration ana-
the Maliuzhinets special function. In particular, the spedyzed here(. = C;, = 0if n = 1/2, as expected [21]; indeed,
tral functionss.(«) and sp(«) exhibit a pole singularity at the Maliuzhinets special function does not contain pole singu-

ay = —m—P9—n7/2, withdy = I whenZ, = 0ordy = 9F larities in the latter specific case.

e Colt%)cos((n £ 9%)/(20) (hyoo(—m = /2= %) + 1)
“ V(¢ — nm, 9E)U (P —nmw,9~) cos(¢ /2n)

(24)
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C. Diffracted Field

The integrals along th8 D P provide the contributions of
the edge diffracted fields. Their accurate asymptotic evaluation
[22] yields a uniform solution for the total field which is smooth
and continuous at the shadow boundaries of the GO fields as
anisotropic well as at those of the surface waves. Indeed, all terms of order
'f“:;epeda“ce K12 (whereK = k,pis the large parameter) must be retained
[22] to obtain a uniform behavior of the field when the poles
cross the integration path away from the saddle point; the latter
situation verifies at the shadow boundaries of the surface waves
propagating along the loaded face and excited at the edge by the
diffraction phenomenon. The following uniform expressions for
the longitudinal components of the diffracted fields are obtained

Total field amplitude

0 30 60 90 120 150 180 210 240 270
. —edT/4—ikep
Observation angle, ¢ (degrees) Bl — ¢ e

@ * V2rkp
—se(—m+¢—nm/2) = > Res{sc(a),a=a;}

<se(7r +¢—nw/2)

3 J 1 I 1 L | | [

TM, polarization \< 1= F(y/kepll + cos(ai — ¢ + n7r/2)])> (27a)

2.5

2cos[(c; — p+nw/2)/2]

2,=0,Z, >
------------ Z,=0,2,=0

anisotropic
impedance
face

=i/ Ag—ikp
\/271'I€tp
—sp(—m+ ¢ —nw/2)— Z Res{sp(a), 0 = a5}

CHg: — <sh(7r+¢—n7r/2)

Total field amplitude

: : 1 — F(\/kep[L + cos(a; — ¢ +nm/2)]) (27b)
0 PR —— 2 cos[(a; — ¢+ nw/2)/2]
0 30 60 90 120 150 180 210 240 270

Observation angle, ¢ (degrees) ) . ) )
where F'(-) is the UTD transition function [8], generalized to

(b) complex argument as in [22], and the summation is extended to
Fig. 3. Amplitude of the total field in the presence of a right-angled wedg@!l Poles included in the strifRe(«v)| < 27 [22]. For practical
illuminated by a plane wave at oblique inciderfee = 7/2, 3’ = 7/4). The applications, it is convenient to express the diffracted field in
face¢ = 3= /2 is perfectly conducting. The field is evaluated at a consta _fi ; - o
distance from the edgé:psin 8’ = 5). (a) TE. polarization case. (b) TM the e_dge _flxedsoordl_nate Sy.Stem’. since we assume JFO Obs.erve
polarization case. the field in the far-field region with respect to the diffraction

point (kp > 1), the corresponding components can be easily
) _ derived from (27)
WhenZ, = 0 andZ. — oo the Brewster angles defined in

(11) are purely imaginany®* = F«q; we note thaty, = —7 — 4 P 4 P
9+ —nw/2 = —7 +ap —nw /2 is the only pole which satisfies By =-Ei/sinf, Ey=CH/sinf. (28)
the excitation condition. This pole singularity is introduced in
se(er) and sy, (o) by the termA(c«) defined in (8). Indeed, the  Itis important to note that for the interior right-angled wedge
constants contained in the spectral expressions (13) and (14)do= 1/2) the diffracted field contributions provided by the
cancel all the nonphysical poles introduced &), buts. SD Py, integrals vanish, since the spectral representations for

The surface wave amplitudes assume the following form:  the longitudinal field components are periodic functions, with
period2r. As previously noted, the surface wave contributions

C. =tn(—ao — 1 — n/2) vanish as well. Consequently, the total field rigorously coincides
- with that predicted by the GO solution, i.e., with the superposi-
Cn = jtn(~ao —m —nm/2) (26)  tion of the incident field, the plane waves singly reflected from
each face and a doubly reflected plane wave. In conclusion, in
with ¢,(«) given by (13b) and (14b), depending on the gedhe interior right-angled wedge cage = 1/2), the asymptotic
metrical wedge configuration considered. Finally, we note thavaluation of the rigorous spectral solution given here is in per-
whenn = 1/2 the surface wave contributions vanish, sinciect agreement with the solution, which can be obtained by a
ty(—ao — 5w /4) = 0. direct application of the image principle [21].
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The first example refers to a right-angled wedge illumi-
nated by a plane wave impinging on the edge frghe= 7 /2,
B = m /4. The field is evaluated at a constant distance from
. the edge(kpsin3’ = 5). Both TE. (e, = 0,h, = 1) and
TM, (e, =1,h, = 0) polarization cases are considered in
Fig. 3(a) and (b), respectively. The fage= 37/2 is per-
fectly conducting. The continuous lines in Fig. 3(a) repre-
! - . sent the amplitude of the copol& H.) and the cross-polar
[ y ~rt : . (E.) components of the total field versus the observation
oA / angle ¢, when the facep = 0 is loaded by an impedance
! \g tensor exhibiting a vanishing surface impedance in the di-
!

2.5

Z, >
\ —=-Z/{=08
AL Z,/¢=02j

1.5

Total field amplitude, |E |

03 rection perpendicular to the eddé, = 0) and a diverging

value along the direction of the edde’. — ~0). We note
0 Vo that these values of the anisotropic surface impedances can
0 60 120 180 240 300 360 account for the presence of corrugations or strips perpen-
Observation angle, ¢ (degrees) dicular to the edge. Indeed, since the incident plane wave
has its direction of propagation in the plane containing the
(@) edge and the normal to the anisotropic face, the impedance
tensor provides an accurate model for an artificially soft sur-
L face [1]. As expected, the curve for the copolar component
of the total field closely compares with that corresponding
i — &2 | ™, polarization to the perfectly conducting right-angled wedge case (dotted
- = Z/E=03) line), except in the vicinity of the loaded facgs = 0)
0-81 e Z,/§=02j & . due to the presence of a surface wave. Also, the limit case
(Z, — o0, Z. = 0) is considered in Fig. 3(a); for the specific
. incidence direction considered, the anisotropic face provides
an accurate model for an artificially hard surface [1]. The
- dashed-dotted line describes the behavior of the amplitude

TM, polarization 3

1.2

0.6

0.4 t anisotropic

PEC i;l’_edgﬂc"'fa“ of the total field copolar component(H.); we note that
=

Total field amplitude, |CH |

the cross-polar componefE. ) exactly vanishes in the latter
case, as well as in the case of the corresponding perfectly
conducting wedge. Fig. 3(b) refers to the other polariza-
0 60 120 180 240 300 360  tion case (TM). In particular, the continuous lines describe
the amplitude of the copolar and the cross-polar longitu-
dinal components of the total field obtained by assuming
(b) Z,=0 and Z, — oo on the loaded facd$ = 0). Again,
Fig.4. Amplitude of the total field in the presence of an anisotropicimpedanthe dotted line refers to the case of a perfectly conducting

half-plane with a perfectly conducting fa¢é = 2x). The loaded faces = tight-angled wedge. We note that the curve calculated for
0) exhibits a vanishing surface impedance in the direction perpendicular to th

edge(Z, = 0). The half-plane is illuminated by a TMpolarized plane wave. the copolar component of the total field.) in the case

0.2

Observation angle, ¢ (degrees)

Geometrical parameterépsin 8’ = 5, 3’ = /6, ¢’ = =/2. (a) Copolar (Zp — o0, Z, =0) exactly overlaps with that for the per-
componen( £. ). (b) Cross-polar compone{ ). fectly conducting right-angled wedge; moreover, in both the
latter cases the cross-polar components of the field rigor-
V. NUMERICAL RESULTS ously vanish. We also point out that, when the fgce 0 of

the wedge is characterized . — o, Z, = 0), the plots

It is worth observing that extensive numerical tests were fir&ir the co-polar components of the field in both Fig. 3(a)
performed to verify that the proposed solution recovers in tleead (b) (CH. and F., respectively) exhibit a very similar
limit the solution for the corresponding perfectly conductingehavior in a wide angular sector around the normal to the
wedges, illuminated at oblique incidence [8]. Also, we numeleaded face. This sector coincides with that region of space
ically checked that at normal incidence our high-frequenayhere the contributions from the incident and reflected field
expressions provide the same results as those obtained readominant, in agreement with the reflecting properties of
direct application of the exact Maliuzhinets solution valid fothe artificial surface, which do not depend on polarization.
an isotropic impedance wedge [23]. Indeed, since the principgallarger and larger disagreement is observed between the
anisotropy directions are parallel and perpendicular to the edgerresponding curves when the observation point moves to-
at normal incidence the general vector problem reduces to thard the perfectly conducting face, where the contribution
superposition of two simpler scalar problems, whose solutioot the diffracted field becomes more and more important.
were given by Maliuzhinets in [17]. A sample of numericalndeed, this field component must satisfy either Dirichlet or
results are shown in this section to demonstrate the effectseumann conditions at the facg = 3x/2, depending on
the scattered field introduced by the loaded face anisotropy. the polarization. Similar considerations apply to the case in
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2.3 T ! T T T T T T T T 1 1.6 r | . | |
NS .
‘ A - %,=0.2,/{=] lariat .
2 i / Z, > | — =z, /t=2,/¢=] Tszo arization
S e A ST X V) 1.2
I W Z,/{=02j 2z
SH TTTZ=0 anisotropic

h
PEC  impedance face
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0.5] }i

Total field amplitude, |CH |
Scattered field amplitude

TE, polarization
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. Z,=0,2./{=j
IS S o - —— —Z/{=Z /(= CH (PEC) 1
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Fig.5. Amplitude of the total field in the presence of an anisotropic impedanggy. 6.  Amplitude of the field scattered by an anisotropic impedance full plane
half-plane with a perfectly conducting facg = 27). The loaded facép =  with a perfectly conducting facg) = ). () TM. polarization case. (b) TE

0) exhibits a vanishing surface impedance in the direction perpendicular to fhslarization case. Geometrical parametéyssin 3’ = 10; 5’ = 7/4; ¢’ =
edge(Z, = 0). The half-plane is illuminated by a TEpolarized plane wave. r/3.

Geometrical parameterspsin 3’ = 5, 3’ = 7/6, ¢’ = «/2. (a) Copolar

componen{¢H). (b) Cross-polar componefE. ). . . . . . .
(&) the total field is shown in Fig. 4(a). In particular, the contin-

uous line refers to the limit casgZ, — oo); the dashed and

which the loaded face is characterized by a tensor impedangg dotted lines correspond to different finite values of the
with Z, — oo, Z. = 0 (compare dashed-dotted curve in Figiongitudinal normalized surface impedane;/¢ = 50.8 and
3(a) with dotted curve in Fig. 3(b). Z./¢ = j0.2, respectively. The dashed-dotted line has been

A further example is shown in Fig. 4(a) and (b). The geylotted as a reference in the figure; it represents the case
ometry of the scattering problem is sketched in the sang¢ a perfectly conducting half-plane. As apparent, starting
figures; it consists of an anisotropic impedance half-plaggym the curve forZ. — oo, at the decreasing of the nor-
with a perfectly conducting facg) = 2x). The field is calcu- malized surface impedance along thexis the curves for
lated at a constant distance from the ed@psinf’ =5). the field amplitude smoothly reduce to that for the perfectly
The half-plane is illuminated by a TMpolarized (e. = conducting half-plane. The same consideration applies to Fig.
1, h. = 0) plane wave impinging on the edge froh=7/6, 4(b), where curves for the amplitude of the cross-polar lon-
¢’ = m/2. The loaded face of the wedde = 0) exhibits a gitudinal field componenfCH.) are plotted. We observe that
vanishing surface impedance in the direction perpendiculle amplitude of the cross-polar field component becomes
to the edge. Different plots are shown in both figures fafmaller and smaller at the decreasingbf eventually van-
different values of the normalized surface impedance in théhing in the case of the perfectly conducting half-plane,
direction of the edgeg(Z./¢). The amplitude of the longi- a5 expected. The dual case of the.Tpolarization (c. =
tudinal copolar componentk’) of 0,h. = 1) is reported in Fig. 5(a) and (b), where all the other



MANARA et al.: HIGH-FREQUENCY EM SCATTERING ILLUMINATED AT OBLIQUE INCIDENCE

geometrical and electrical parameters coincide with those in
Fig. 4(a) and (b). As far as the copolar component of the
total field is concerned [Fig. 5(a)], we observe that for the 1]
polarization under test this component is not strongly af-
fected by the value of the normalized surface impedancel2]
along the z-axis, except in the vicinity of the loaded face 3]
where the surface wave provides the dominant contribution
to the field.

The last example refers to the case of a planar junction bel4
tween an anisotropic impedance surface (face- 0) and a
perfectly conducting surface (fage = ). The full plane is
illuminated by either a TM [Fig. 6(a)] or a TE [Fig. 6(b)]
polarized plane wave, impinging on the edge fr6m= = /4,
¢’ = 7 /3. The scattered field is evaluated at a normalized dis-[6]
tancekpsin 8/ = 10. Several curves are plotted in both Fig. 6(a)
and (b) with reference to different surface impedance tensors
holding at the loaded fadg = 0). In particular, the continuous  [7]
lines in Fig. 6(a) refer to the copold¥.) and the cross-polar
(CH.) components of the scattered field obtained in the casgg;
(Z,=0, Z./¢ = j); conversely, the dashed lines in the same
figure represent the copold#.) and the cross-polaf¢H.) ]
components of the scattered field in the case of an isotropic
impedance face at = 0: Z,/¢ = Z./¢ = j. A further curve
(dotted line) is plotted as a reference; it corresponds to the fielO]
reflected by a perfectly conducting plane. It is worth observing
that in the latter case the cross-polar comporié#i. ) of the
scattered field exactly vanishes. Similar considerations apply tgl
the case reported in Fig. 6(b), where all electrical and geomet-
rical parameters remain unchanged but the polarization, which
is now TE.. Again, the continuous and the dashed lines replt?]
resent the behavior of the copolgfH.) and the cross-polar
(E.) components of the scattered field when the surface imped-
ances on the loaded fa¢¢ = 0) assume the following values:
Z,=0,2./¢ =jandZ,/¢ = Z./¢ = j, respectively. A
further curve (dashed-dotted line) has been added to show the
behavior of the copolar componegfdtH .. ) of the scattered field [14]
in the caseZ,/¢ = j, Z. = 0 (the cross-polar component ex-
actly vanishes). Again, the dotted line corresponds to the magt5]
netic field amplitude of the plane wave reflected by a (PEC)
plane.

(5]

[16]

V. CONCLUSION
[17]

A uniform high-frequency solution for the scattering by edges
in anisotropic impedance surfaces illuminated at oblique inciI18
dence has been proposed, when the principal anisotropy axes are
parallel and perpendicular to the edge. The specific anisotropic
impedance boundary condition considered here exhibits a Val[ll-gl
ishing surface impedance along a principal anisotropy axis and
an arbitrary one in the orthogonal direction. In certain circum-{20]
stances, this surface impedance tensor may represent an efficient
model for describing the scattering properties of artificially hard[21]
and soft surfaces. The uniform asymptotic expressions for the
fields are given in a closed form containing the well-known Mal- 55,
iuzhinets special function. From a computational point of view,
we observe that this solution exhibits the same numerical com:-
plexity as those previously derived for other specific impedancézs]
wedge configurations at oblique incidence.
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