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Abstract—Uniform high-frequency expressions describing
the field scattered by edges in anisotropic impedance surfaces
illuminated at oblique incidence are provided. The specific
anisotropic impedance boundary condition considered here ex-
hibits a vanishing surface impedance along a principal anisotropy
axis and an arbitrary one in the orthogonal direction. In certain
circumstances, this tensor surface impedance may represent
an accurate model for describing the scattering properties of
artificially hard and soft surfaces. In order to simplify the analysis
but without losing pertinence with real problems, in all canonical
configurations we consider a face of the wedge to be perfectly
conducting. The anisotropic impedance face is characterized by
a tensor surface impedance with the principal anisotropy axes
parallel and perpendicular to the edge.

Index Terms—Anisotropic materials, artificial materials, elec-
tromagnetic edge diffraction, geometrical theory of diffraction.

I. INTRODUCTION

A RTIFICIALLY hard and soft surfaces [1] are widely used
in microwave technology as, for instance, in the design of

hybrid-mode feed horns [2], radar calibrated targets [3], [4], and
struts for minimum blockage width [5]. They are usually imple-
mented either by suitably corrugating a metallic plane and then
filling the corrugations with a dielectric material or by resorting
to grounded dielectric slabs loaded by metallic strip gratings [6],
[7].

The scattering properties of an infinite artificially hard or soft
surface of the above kind can be analyzed by means of numer-
ical techniques, taking advantage of the periodicity of the struc-
ture. However, from an engineering point of view, a problem of
remarkable importance for the simulation of actual configura-
tions is to account for the effects due to the finite extension of
such surfaces. A rigorous solution for the scattering from finite
artificially hard and soft surfaces can be obtained by applying
the moment method (MM) to solve the integral equation for the
currents on all material interfaces [6]. However, when the di-
mensions of the surface become much larger than the free-space
wavelength, high-frequency techniques as for instance the uni-
form geometrical theory of diffraction (UTD) [8] represent a
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viable alternative to numerical approaches. Specifically, in the
framework of a standard ray technique, the geometry of the ac-
tual scattering object can be locally approximated by resorting
to canonical configurations and the scatterer material proper-
ties can be included in calculations by adopting approximate
impedance boundary conditions (IBC’s) [9].

In this context, suitable anisotropic IBC’s have been
proposed for modeling artificially hard and soft surfaces,
when the period of the structure is much smaller than
the free-space wavelength (the latter condition is usually
met in practical applications). The corresponding surface
impedance tensor exhibits a vanishing impedance value
in the direction of corrugations or strips and a nonzero
value (very high at those frequencies at which the artificial
surface has been designed) in the orthogonal direction [9],
[10]. Such a model has been applied for estimating the field
reflected from radar polarimetric reflectors [11] and from
a chiral slab backed by an artificially hard or soft surface
[12]; also, it has been applied in conjunction with either
an integral equation method or the UTD for evaluating the
performance of elemental antennas on finite ground planes
[6]. However, it is worth noting that the above anisotropic
IBC model represents an accurate approximation only under
specific conditions related to the direction of propagation
of the incident plane wave [5]. IBC’s depending on the
direction of incidence [13] or of higher order [9] could
provide a more realistic model, however rendering the
attainment of the solution to the scattering problem much
more cumbersome or even impossible. Nevertheless, we
observe that the above uniform first-order IBC approxima-
tion exhibits a gradual loss of accuracy, eventually failing
close to grazing incidence [6]. In the following, we adopt
the above first-order anisotropic IBC model and apply it to
analyze the scattering from truncations in artificially hard
and soft surfaces.

The canonical problem relevant to the scattering of arbitrarily
polarized plane waves obliquely incident on the edge of an
anisotropic impedance wedge has not yet been analytically
solved for the most general configurations. Several approxi-
mate analytical solutions and numerical techniques have been
proposed in the literature (see [14] for a recent review on this
subject). The difficulties encountered in analytical solution
procedures are due to the fact that the IBC’s holding on the
wedge faces couple the longitudinal components of the electric
and magnetic field, which are commonly used as potential
functions to express all the other field components. The main
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Fig. 1. Geometry for the scattering problem.

objective of this paper is to provide uniform high-frequency ex-
pressions for describing electromagnetic scattering from a class
of anisotropic impedance wedges. In particular, the anisotropic
faces are characterized by a tensor surface impedance with the
principal anisotropy axes parallel and perpendicular to the edge
of the wedge and exhibiting a vanishing surface impedance in
one of the above principal directions. Such impedance tensors
allow us to simulate edge effects in artificially hard and soft
surfaces, when the direction of vanishing surface impedance
is assumed to coincide with that of corrugations or strips,
and a finite surface impedance value holds in the orthogonal
direction.

Recently, rigorous integral solutions have been derived [15]
for a set of specific wedge configurations, characterized by
a perfect electric conducting (PEC) face and an anisotropic
impedance face of the kind previously defined: 1) an arbitrary
exterior angle wedge with a surface impedance tensor on the
loaded face exhibiting a vanishing value in the direction parallel
to the edge and 2) a half-plane, a full-plane, or a right-angled
wedge with the anisotropic face exhibiting a vanishing surface
impedance in the direction perpendicular to the edge. We ob-
serve that the solution procedure presented in [15] is only valid
when the direction of vanishing surface impedance is either
parallel or perpendicular to the edge. However, these specific
configurations assume remarkable interest for applications.
Moreover, work is in progress to extend the solution procedure
to more general configurations, e.g., when the vanishing surface
impedance direction is arbitrarily oriented with respect to the
diffracting edge [16]. Uniform, high-frequency asymptotic
expressions for the field components parallel to the edge are
provided here for the above canonical anisotropic impedance
wedge configurations, starting from the corresponding exact
plane wave representations [15]; they include the standard

Maliuzhinets special function [17]and the UTD transition
function [8].

The paper has been organized as follows. The problem is
formulated in Section II and uniform asymptotic expressions
for the fields are given in Section III in the context of UTD.
Then, samples of numerical results are presented in Section IV
to demonstrate the effectiveness of the asymptotic expressions
proposed, emphasizing at the same time the effects of anisotropy
on the field scattered from the relevant impedance wedges. Fi-
nally, concluding remarks are drawn in Section V.

II. STATEMENT OF THE PROBLEM AND EXACT SPECTRAL

REPRESENTATION FOR THEFIELD

The geometry for the scattering problem is depicted in Fig. 1.
The wedge has its edge on the-axis of a standard cylindrical
reference frame and the observation point is at In
all the configurations considered, the face is character-
ized by a tensor surface impedance with the principal anisotropy
directions parallel and perpendicular to the edge. Furthermore,
we assume the face to be perfectly conducting. The
corresponding IBC’s can be expressed as

(1a)

(1b)

with either or . As noted in Section I, conditions
(1a) are suitable to simulate the behavior of artificially hard and
soft surfaces, when the direction of corrugations or strips is ei-
ther parallel or perpendicular to the edge.
Also, because of energy considerations Re .
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An arbitrarily polarized plane wave impinges on the edge
from a direction determined by the two anglesand (Fig.
1). The angle measures the incidence direction skewness with
respect to the same edge in the normal incidence
case). The unit vectors of the standard UTDedge-fixedcoordi-
nate system (Fig. 1) are defined by the following relationships:

, , ,
and . The longitudinal components of the incident field
can be expressed as

(2)

where and are the wave number and intrinsic impedance
of free-space, respectively, and represents the
transverse component of the wave vector. We note that

and , where and are the
electric field complex amplitude of a TMand a TE polarized
incident plane wave, respectively, in the UTDedge-fixedcoor-
dinate system. An time dependence has been assumed
and suppressed.

Since the wedge structure is uniform along the-axis, the
scattered field exhibits the same dependence
on as the incident field in (2) that will be understood in the
following. According to the Maliuzhinets method [17], [18], the
total field in the presence of the wedge is written as

(3a)

(3b)

where is the two-fold Sommerfeld integration
path shown in Fig. 2. In order to satisfy the radiation condition,
the functions

and

must be regular in the stripRe . Furthermore, the
edge condition requires that and ,
when Im .

Suitable expressions for the spectral functions will be given
in this Section for all the configurations of interest previously
described. The analytical procedure used to derive these spectral
functions has been described in [15], where other anisotropic
canonical problems have also been solved. We note that, since
the spectral rigorous solutions provided here are defined along
the Sommerfeld integration path, they are suitable for deriving
incremental length diffraction coefficients (ILDC’s) [19] or to
develop accurate series representations for the description of the
field in the vicinity of the edge.

Fig. 2. Contours of integration on the complex plane.

A. : Arbitrary Exterior Angle Wedge

In this case, the loaded face of the wedge is charac-
terized by an impedance tensor exhibiting a vanishing surface
impedance in the direction parallel to edge . An arbi-
trary value is assumed for . By defining

(4)

where is the Maliuzhinets special function [17], the
spectral solution for the longitudinal field components can be
expressed as

(5a)

(5b)

where

(6)

and In the above expressions, is the
Brewster angle for the TEpolarization, with Re

for lossy surfaces. We note that is free of poles
and zeros in the stripRe . Moreover,

Im for Im provided is finite,
so that the edge condition is satisfied. As apparent from (5) the
longitudinal components of the electric and magnetic fields are
decoupled. We observe that in (5a) coincides with the elec-
tric field spectral function for a perfectly conducting wedge; this
is also true for the magnetic field spectral function in (5b) when

. It is worth emphasizing that the spectral solutions in
(5) are valid for arbitrary exterior wedge angles. We also note
that an integral solution for the same problem but limited to the
full plane configuration has been given in [20] by resorting to
the Wiener–Hopf technique.

We finally observe that, in most cases, artificially hard and
soft surfaces are modeled with a tensor surface impedance ex-
hibiting a vanishing surface impedance in the direction of corru-
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TABLE I
SOLVING SYSTEMS OFLINEAR EQUATIONS FORDETERMINING THE CONSTANTS APPEARING IN THERIGOROUSSPECTRAL SOLUTIONS FOR THE

CONFIGURATIONS IN SECTION II-B

gations or strips and a very high surface impedance in the trans-
verse direction [1], [6], [10]–[12]. The corresponding magnetic
field spectral solution for the limit case ,
can be easily obtained from (5b) by taking into account that

and .

B. : Full-Plane Half-Plane Interior
and Exterior Right-Angled Wedges

In all the cases analyzed here the loaded face of the wedge
is characterized by . An arbitrary value is

assumed for . The spectral solutions for the longitudinal field
components can be expressed as

(7a)

(7b)

where

(8)

The corresponding expressions for and depend on
the specific geometrical wedge configuration. In particular, for
the full- and the half-plane

(9a)

(9b)

where if .
Conversely, for the right-angled configurations

(10a)

and

(10b)

where if . In (9b) and (10b)

(11)

with Re We note that and are the
spectral functions for the integral representation of the trans-
verse field components and , respectively, and the con-
stants , represent the complex amplitudes of the-compo-
nents of the incident field [15]

(12a)

and

(12b)

We also observe that for the configurations analyzed here,
the IBC’s expressed in terms of the-components of the
electric and magnetic field are decoupled on both wedge faces;
moreover, denote the Brewster angles for a TE-polarized
incident plane wave. The specific forms chosen for (9) and
(10) guarantee the proper behavior of the spectral functions
for Im . It is also important to note that the con-
stants appearing in (9), (10) can be evaluated by solving
a suitable system of linear equations (see Table I), where

. This system is obtained by imposing the
cancellation of the nonphysical poles introduced in (7) by the
presence of which is singular at
with [15].

In the limit case corresponding to the simplest model of an
artificially hard or soft surface, i.e., and ,
the Brewster angles defined in (11) become purely imaginary

the superscripts “ ” and “ ” denote the Brewster
angles with a positive or negative imaginary part, respectively.
In this case, the expressions for and strongly sim-
plify since the term containing the Maliuzhinets special function
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TABLE II
SOLVING SYSTEMS OFLINEAR EQUATIONS FORDETERMINING THE CONSTANTS APPEARING IN THERIGOROUSSPECTRAL SOLUTIONS FOR THE

CONFIGURATIONS IN SECTION II-B IN THE LIMIT CASEZ = 0 AND Z ! 1

reduces to a trigonometric factor [15]. In particular, for the full-
and the half-plane we obtain

(13a)

(13b)

where if . Conversely, when

(14a)

(14b)

where if The constants appearing in (13)
and (14) can be determined by resorting to the corresponding
equations reported in Table II.

III. A SYMPTOTIC SOLUTION

By means of (3), the longitudinal field components and
can be expressed in a form suitable for their uniform

asymptotic evaluation with standard procedures [8] in the
framework of UTD. In particular, by applying the residue
theorem, the original integral representation for the total field
along the Sommerfeld integration contouris reduced to the
contribution of: two integrals defined along the steepest descent
paths through the saddle points at (see Fig. 2);
the residue of the poles which can be captured in the contour
deformation process. Eventually we write

Re

(15a)

and

Re

(15b)

Explicit closed-form expressions for any term appearing in (15)
will be given in the following.

A. Geometrical Optics Field

The geometrical optics (GO) pole singularities are contained
in the function appearing in the expressions for
and proposed for the different configurations. The
residues of and at provide the
contributions of the incident field in (2); they must be included
in the solution if . Moreover, the
pole at accounts for the field reflected from
the anisotropic face . The expressions for the residue
contributions associated with the latter pole include both a
copolar and a cross-polar component

(16a)

(16b)

where is the Heaviside unit step function. In particular,
when the face is characterized by

(17a)

(17b)

(17c)
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Conversely, when the face is characterized by

(18a)

(18b)

(18c)

It is worth noting that the previous expressions exactly recover
those obtained by considering plane wave reflection from an
infinite planar anisotropic impedance surface, as expected.

The pole at accounts for the field reflected
from the perfectly conducting face . The expressions for
the corresponding residue contributions are

(19a)

(19b)

Finally, we note that for geometrical configurations with
multiple reflections must also be accounted for [21]; moreover,
the expressions in (17) and (18) can be easily extended to the
limit cases and , respectively.

B. Surface Waves

Surface waves can be supported only by the anisotropic
impedance face. For those cases in which the nonvanishing
surface impedance of the impedance tensor assumes a finite
value, the poles associated with the surface wave contribution
are introduced by the function defined in (4), which contains
the Maliuzhinets special function. In particular, the spec-
tral functions and exhibit a pole singularity at

with when or

when . The expressions for the residue contributions
can be cast in the following form:

(20a)

(20b)

with Im Re , where
sgn cosh denotes the Gudermann function.
It is apparent that the excitation condition requires .
When the face is characterized by ,
but for lossy surfacesRe , the two corresponding
surface waves cannot satisfy the excitation condition simul-
taneously: just one of them can be supported by the loaded
anisotropic face. The complex amplitudes of the surface wave
contributions depend on the specific configuration analyzed. In
particular, when with arbitrary values for and ,
we obtain

(21)

where

(22)

In the limit case ( , ) surface waves do not exist
on both wedge faces.

When the corrugations are perpendicular to the edge of the
wedge, the surface wave amplitudes can be expressed as

(23a)

(23b)

where are given in (24), shown at the bottom of the page,
for the full-plane ( if ) and the half-plane, and

(25)

for the acute right-angled wedge configuration .
It is worth noting that for any electrical configuration ana-

lyzed here, if , as expected [21]; indeed,
the Maliuzhinets special function does not contain pole singu-
larities in the latter specific case.

(24)
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(a)

(b)

Fig. 3. Amplitude of the total field in the presence of a right-angled wedge
illuminated by a plane wave at oblique incidence(� = �=2; � = �=4). The
face� = 3�=2 is perfectly conducting. The field is evaluated at a constant
distance from the edge(k� sin � = 5). (a) TE polarization case. (b) TM
polarization case.

When and the Brewster angles defined in
(11) are purely imaginary ; we note that

is the only pole which satisfies
the excitation condition. This pole singularity is introduced in

and by the term defined in (8). Indeed, the
constants contained in the spectral expressions (13) and (14) do
cancel all the nonphysical poles introduced by , but .
The surface wave amplitudes assume the following form:

(26)

with given by (13b) and (14b), depending on the geo-
metrical wedge configuration considered. Finally, we note that
when the surface wave contributions vanish, since

.

C. Diffracted Field

The integrals along the provide the contributions of
the edge diffracted fields. Their accurate asymptotic evaluation
[22] yields a uniform solution for the total field which is smooth
and continuous at the shadow boundaries of the GO fields as
well as at those of the surface waves. Indeed, all terms of order

(where is the large parameter) must be retained
[22] to obtain a uniform behavior of the field when the poles
cross the integration path away from the saddle point; the latter
situation verifies at the shadow boundaries of the surface waves
propagating along the loaded face and excited at the edge by the
diffraction phenomenon. The following uniform expressions for
the longitudinal components of the diffracted fields are obtained

Re

(27a)

Re

(27b)

where is the UTD transition function [8], generalized to
complex argument as in [22], and the summation is extended to
all poles included in the stripRe [22]. For practical
applications, it is convenient to express the diffracted field in
the edge-fixedcoordinate system; since we assume to observe
the field in the far-field region with respect to the diffraction
point the corresponding components can be easily
derived from (27)

(28)

It is important to note that for the interior right-angled wedge
the diffracted field contributions provided by the

integrals vanish, since the spectral representations for
the longitudinal field components are periodic functions, with
period . As previously noted, the surface wave contributions
vanish as well. Consequently, the total field rigorously coincides
with that predicted by the GO solution, i.e., with the superposi-
tion of the incident field, the plane waves singly reflected from
each face and a doubly reflected plane wave. In conclusion, in
the interior right-angled wedge case , the asymptotic
evaluation of the rigorous spectral solution given here is in per-
fect agreement with the solution, which can be obtained by a
direct application of the image principle [21].
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(a)

(b)

Fig. 4. Amplitude of the total field in the presence of an anisotropic impedance
half-plane with a perfectly conducting face(� = 2�). The loaded face(� =
0) exhibits a vanishing surface impedance in the direction perpendicular to the
edge(Z = 0): The half-plane is illuminated by a TMpolarized plane wave.
Geometrical parameters:k� sin � = 5, � = �=6, � = �=2. (a) Copolar
component(E ). (b) Cross-polar component(�H ).

IV. NUMERICAL RESULTS

It is worth observing that extensive numerical tests were first
performed to verify that the proposed solution recovers in the
limit the solution for the corresponding perfectly conducting
wedges, illuminated at oblique incidence [8]. Also, we numer-
ically checked that at normal incidence our high-frequency
expressions provide the same results as those obtained by a
direct application of the exact Maliuzhinets solution valid for
an isotropic impedance wedge [23]. Indeed, since the principal
anisotropy directions are parallel and perpendicular to the edge,
at normal incidence the general vector problem reduces to the
superposition of two simpler scalar problems, whose solutions
were given by Maliuzhinets in [17]. A sample of numerical
results are shown in this section to demonstrate the effects on
the scattered field introduced by the loaded face anisotropy.

The first example refers to a right-angled wedge illumi-
nated by a plane wave impinging on the edge from

. The field is evaluated at a constant distance from
the edge . Both TE and
TM polarization cases are considered in
Fig. 3(a) and (b), respectively. The face is per-
fectly conducting. The continuous lines in Fig. 3(a) repre-
sent the amplitude of the copolar and the cross-polar

components of the total field versus the observation
angle when the face is loaded by an impedance
tensor exhibiting a vanishing surface impedance in the di-
rection perpendicular to the edge and a diverging
value along the direction of the edge . We note
that these values of the anisotropic surface impedances can
account for the presence of corrugations or strips perpen-
dicular to the edge. Indeed, since the incident plane wave
has its direction of propagation in the plane containing the
edge and the normal to the anisotropic face, the impedance
tensor provides an accurate model for an artificially soft sur-
face [1]. As expected, the curve for the copolar component
of the total field closely compares with that corresponding
to the perfectly conducting right-angled wedge case (dotted
line), except in the vicinity of the loaded face
due to the presence of a surface wave. Also, the limit case

is considered in Fig. 3(a); for the specific
incidence direction considered, the anisotropic face provides
an accurate model for an artificially hard surface [1]. The
dashed-dotted line describes the behavior of the amplitude
of the total field copolar component ; we note that
the cross-polar component exactly vanishes in the latter
case, as well as in the case of the corresponding perfectly
conducting wedge. Fig. 3(b) refers to the other polariza-
tion case (TM). In particular, the continuous lines describe
the amplitude of the copolar and the cross-polar longitu-
dinal components of the total field obtained by assuming

and on the loaded face . Again,
the dotted line refers to the case of a perfectly conducting
right-angled wedge. We note that the curve calculated for
the copolar component of the total field in the case

, exactly overlaps with that for the per-
fectly conducting right-angled wedge; moreover, in both the
latter cases the cross-polar components of the field rigor-
ously vanish. We also point out that, when the face of
the wedge is characterized by , , the plots
for the co-polar components of the field in both Fig. 3(a)
and (b) and , respectively) exhibit a very similar
behavior in a wide angular sector around the normal to the
loaded face. This sector coincides with that region of space
where the contributions from the incident and reflected field
are dominant, in agreement with the reflecting properties of
the artificial surface, which do not depend on polarization.
A larger and larger disagreement is observed between the
corresponding curves when the observation point moves to-
ward the perfectly conducting face, where the contribution
of the diffracted field becomes more and more important.
Indeed, this field component must satisfy either Dirichlet or
Neumann conditions at the face , depending on
the polarization. Similar considerations apply to the case in
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(a)

(b)

Fig. 5. Amplitude of the total field in the presence of an anisotropic impedance
half-plane with a perfectly conducting face(� = 2�). The loaded face(� =
0) exhibits a vanishing surface impedance in the direction perpendicular to the
edge(Z = 0). The half-plane is illuminated by a TEpolarized plane wave.
Geometrical parameters:k� sin � = 5, � = �=6, � = �=2. (a) Copolar
component(�H ). (b) Cross-polar component(E ).

which the loaded face is characterized by a tensor impedance
with (compare dashed-dotted curve in Fig.
3(a) with dotted curve in Fig. 3(b).

A further example is shown in Fig. 4(a) and (b). The ge-
ometry of the scattering problem is sketched in the same
figures; it consists of an anisotropic impedance half-plane
with a perfectly conducting face . The field is calcu-
lated at a constant distance from the edge .
The half-plane is illuminated by a TM polarized

plane wave impinging on the edge from
. The loaded face of the wedge exhibits a

vanishing surface impedance in the direction perpendicular
to the edge. Different plots are shown in both figures for
different values of the normalized surface impedance in the
direction of the edge . The amplitude of the longi-
tudinal copolar component of

(a)

(b)

Fig. 6. Amplitude of the field scattered by an anisotropic impedance full plane
with a perfectly conducting face(� = �). (a) TM polarization case. (b) TE
polarization case. Geometrical parameters:k� sin � = 10; � = �=4; � =
�=3.

the total field is shown in Fig. 4(a). In particular, the contin-
uous line refers to the limit case ; the dashed and
the dotted lines correspond to different finite values of the
longitudinal normalized surface impedance: and

, respectively. The dashed-dotted line has been
plotted as a reference in the figure; it represents the case
of a perfectly conducting half-plane. As apparent, starting
from the curve for , at the decreasing of the nor-
malized surface impedance along the-axis the curves for
the field amplitude smoothly reduce to that for the perfectly
conducting half-plane. The same consideration applies to Fig.
4(b), where curves for the amplitude of the cross-polar lon-
gitudinal field component are plotted. We observe that
the amplitude of the cross-polar field component becomes
smaller and smaller at the decreasing of, eventually van-
ishing in the case of the perfectly conducting half-plane,
as expected. The dual case of the TEpolarization

is reported in Fig. 5(a) and (b), where all the other



MANARA et al.: HIGH-FREQUENCY EM SCATTERING ILLUMINATED AT OBLIQUE INCIDENCE 799

geometrical and electrical parameters coincide with those in
Fig. 4(a) and (b). As far as the copolar component of the
total field is concerned [Fig. 5(a)], we observe that for the
polarization under test this component is not strongly af-
fected by the value of the normalized surface impedance
along the -axis, except in the vicinity of the loaded face
where the surface wave provides the dominant contribution
to the field.

The last example refers to the case of a planar junction be-
tween an anisotropic impedance surface (face and a
perfectly conducting surface (face . The full plane is
illuminated by either a TM [Fig. 6(a)] or a TE [Fig. 6(b)]
polarized plane wave, impinging on the edge from ,

. The scattered field is evaluated at a normalized dis-
tance . Several curves are plotted in both Fig. 6(a)
and (b) with reference to different surface impedance tensors
holding at the loaded face . In particular, the continuous
lines in Fig. 6(a) refer to the copolar and the cross-polar

components of the scattered field obtained in the case
, ; conversely, the dashed lines in the same

figure represent the copolar and the cross-polar
components of the scattered field in the case of an isotropic
impedance face at : . A further curve
(dotted line) is plotted as a reference; it corresponds to the field
reflected by a perfectly conducting plane. It is worth observing
that in the latter case the cross-polar component of the
scattered field exactly vanishes. Similar considerations apply to
the case reported in Fig. 6(b), where all electrical and geomet-
rical parameters remain unchanged but the polarization, which
is now TE . Again, the continuous and the dashed lines rep-
resent the behavior of the copolar and the cross-polar

components of the scattered field when the surface imped-
ances on the loaded face assume the following values:

, , and , respectively. A
further curve (dashed-dotted line) has been added to show the
behavior of the copolar component of the scattered field
in the case: , (the cross-polar component ex-
actly vanishes). Again, the dotted line corresponds to the mag-
netic field amplitude of the plane wave reflected by a (PEC)
plane.

V. CONCLUSION

A uniform high-frequency solution for the scattering by edges
in anisotropic impedance surfaces illuminated at oblique inci-
dence has been proposed, when the principal anisotropy axes are
parallel and perpendicular to the edge. The specific anisotropic
impedance boundary condition considered here exhibits a van-
ishing surface impedance along a principal anisotropy axis and
an arbitrary one in the orthogonal direction. In certain circum-
stances, this surface impedance tensor may represent an efficient
model for describing the scattering properties of artificially hard
and soft surfaces. The uniform asymptotic expressions for the
fields are given in a closed form containing the well-known Mal-
iuzhinets special function. From a computational point of view,
we observe that this solution exhibits the same numerical com-
plexity as those previously derived for other specific impedance
wedge configurations at oblique incidence.
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