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Rigorous Evaluation of the Vertex Effects on the
Frequency-Dependent Circuit Parameters of an

Open-Ended Microstrip Line
Sandrino Marchetti, Member, IEEE

Abstract—This study presents the original inclusion of right
singular vertex conditions in integral equations solved by the
method of moments for accurate evaluation of frequency-de-
pendent microstrip discontinuity models required in microwave
integrated circuits (MIC) and monolithic microwave integrated
circuits (MMIC) design. The 90 wedges singularity function for
the current density, weighted with a novel sampling function for
“corner cells,” and the harmonic Green’s function for shielded
structures, is accurately and efficiently integrated in the conical
geometry of the 90 sector. The frequency-dependent effective
length and excess equivalent capacitance of a shielded open-ended
microstrip line are calculated to a higher accuracy with respect
to previous two-dimensional and three-dimensional “full wave
analyses.”

Index Terms—Microstrip transmission line, printed antennas.

I. INTRODUCTION

PRACTICALLY all printed circuits and antennas for
microwave and millimeter wave applications make use

of very thin conductors of polygonal contour presenting some
sharp wedges, where the electromagnetic (EM) fields may as-
sume singular vertex behaviors [16]. Nowadays more accurate
“full wave analyses” for passive circuit components like trans-
formers, filters, mixers, resonators, antennas, etc., still do not
include these singular conditions. This is probably due to the
fact that the simpler formulation of proper weighting functions
has been presented only recently [2], [3] and still their intro-
duction in the named algorithms does not appear to be obvious.
From a very large number of previous studies dealing with
such discontinuities, summarized in books like [1], [14], [15],
the inaccuracy in determining some equivalent circuit elements
has been often attributed to problems of convergence for the set
of functions used to describe approximately the vertex effects.
However, more accuracy for the EM simulation of such singular
behavior is increasingly important at higher microwave and
millimeter-wave frequencies where, in addition, de-embedding
of the measurements and repeatability of the same are difficult.
Moreover, in dealing with monolithic microwave integrated
circuits (MMIC’s), the CAD software should account also for
the possible interactions among elementary discontinuities
since they operate in the same electromagnetic environment.
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In this context, we start (as a way of example) by developing
a rigorous analysis for the classic problem of the open-end mi-
crostrip line, which, for its circuit versatility, has been object
of an incredibly large number of investigations and applications
(see among the others works [4]–[8], [10], [12]). From previous
works the termination has been found electrically equivalent
to an excess frequency-dependent capacitance, strongly influ-
enced by the dielectric substrate thickness and permittivity and
by all of the near by conductors. From the point of view of [2]
and [3], the abrupt end is equivalent to two contiguous wedges
of 90 angular aperture where the charge and current densities
assume a well-quantified singular behavior associated with a
lumped capacitance and inductance, respectively.

Our original contribution, in this paper, consists in the
inclusion of the vertex conditions in a relevant electric field
integral equation (EFIE) solved by the method of moments
(MoM). From the recovered distribution of current, the effec-
tive length and equivalent excess capacitance are evaluated.
The reliability of this approach is based on the development
of an original mathematical apparatus in conical geometry. It
performs the analytical integration of the 90sector current
singularity weighted with a novel sampling function and the
appropriate harmonic Green’s function. This mathematical
tool is assisted by a very efficient curve-fitting program which
recovers the propagation constant and the reflection coefficient
of the open end from current evaluations. Comparison with
previous analyses, results, and measurements confirms that
inclusion of the correct vertex conditions is the dominant factor
in obtaining accurate effective length evaluations with respect
to any sampling of the longitudinal current on the strip or to any
set of functions representing inaccurately the current density
singularity at the vertices.

II. THEORETICAL DEVELOPMENT

A. Definition of the Problem

The theoretical formulation makes reference to the shielded
open-end microstrip line printed on RT-duroid™ and presenting
the geometrical dimensions drawn in Fig. 1. Throughout the
work we always assume sinusoidal excitation (that where not
otherwise specified) is the center frequency of the-band
(15 GHz) where the line exhibits a characteristic impedance

. Other simplifications, for the purpose of this study,
are that the strip is thin and perfectly conducting and its width
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is small compared to the microstrip wavelength ( mm
mm). Consequently, the strip transverse current

density is different from zero only at the vicinity of the dis-
continuity and the longitudinal current density distribution
follows the laws for uniform lines away from discontinuities.

The method determines and the open-end excess ca-
pacitance by using an EFIE that is solved by the MoM using
Galerkin’s technique. Hereafter, for reasons of brevity, we focus
the attention to the advantages of including vertex conditions
in the framework of the complete formulation reported in [10].
Making use of the continuity equation, the integral equation
that expresses the component of the electric field at the
air-dielectric interface is

(1)
where is the appropriate component of the electric dyadic
Green’s function as given in [9], [10] and is the surface
of the strip conductor.

B. Definition of the Cells of Current

In solving (1) by MoM, the unknown is expressed as a
series of orthonormal test functions, each different from zero
only in a section of the strip, namely the elementary current cell
(see Fig. 2). By a preliminary implementation of an auxiliary
mixed potential integral equation not accounting for singulari-
ties, it has been possible to reveal the type and position of the
excited singularities (see [16]). The obtained current distribu-
tion is schematically depicted in Fig. 3 and shows that a dis-
tributed singularity of current is present at any point of the strip
edge except at the point where a singularity of charge occurs
(see [3, fig. 2]). The singularity of current is of degree1/2 at
any point of the straight edge but0.185 345 at the 90tip A,
whereas the singularity of charge in exhibits 1/2 strength.
The geometry of the cells and the shape of the test functions can
be chosen with some arbitrariness, but the efficiency of the al-
gorithm and the accuracy of the solution are strongly enhanced
if they containa priori the correct known singular behavior of
the current at the conductor edge. To this end we define a va-
riety of cells, namely generator cell, body cells, corner cells,
and open-end cell schematically depicted in Fig. 2. On each cell
a local coordinate system , is fixed except for the corner
cells where the coordinates are used. Specifically, for the
evaluation of the reflection coefficient, the line can be excited
by an ideal gap generator localized at the first cell; that is, the
generator cell [12]. The central part of the strip is subdivided
into body cells, as wide as the strip and at which edges the cur-
rent exhibits singular straight edge behaviors. The wedges of
90 angular aperture are fitted by corner cells where the current
exhibits singular vertex behavior. The maximum radius of influ-
ence of the 90 wedge singularity can be evaluated as (see
[2], [3]):

(2)

where is the free-space wavenumber at 15 GHz andis
typically between 10 and 100. Since the width of the strip is

Fig. 1. Shielded open-ended microstrip line exited by a coaxial cable:2a =

7:11 mm, c = 3:56 mm, 2L = 32:7 mm, d = 18 mm, 2b = 0:75 mm,
h = 0:254 mm, � = 2:22.

Fig. 2. Strip subdivision in current cells with relative local coordinate systems
and sampling functions.

Fig. 3. Lines of current at the open-end and corner cells.

0.75 mm, we do not commit appreciable error considering the
influence of the vertex singularity extended just up to the center
of the strip, i.e., choosing mm.
In addition, if we choose for the corner cell the square form
depicted in Fig. 3, the symmetry with respect to the bisecting
line AC of the fundamental -mode current density (see [3, fig.
2a]), permits one to recover the principal part ofsimply by
using

(3)
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Finally, an open-end cell is to be considered at the center of
the strip termination, half overlapping each corner cell and at
which conductor edge vanishes with a zero of degree 1/2.
Imposition of the latter condition together with the vanishing
of in ensures the behavior of the main current and
singular charge characteristics associated with the fundamental

-mode relative to the point D in Fig. 3 (see [3, fig. 2b]).

C. The Choice of the Test Functions

The Green’s function in (1) can be put in the following form
[9], [10]:

(4)

where and are the discrete
wavenumbers along and respectively, while
is a function of the geometry, frequency and dielectric permit-
tivity as well as of the wavenumbers; its explicit expression can
be found in [9], [10]. The solution of (1) by the MoM using
Galerkin’s technique, requires the evaluation of the following
coefficients:

(5)

for all cells of the strip.
In (5) is the test function for cell , which we

express for convenience as the product of an amplitude,
a weighting function and a sampling function

. The weighting function contains the known singular
conditions specified in the previous subsection, whereas the
simple sampling function is chosen to provide at once ana-
lyticity and fast convergence with respect to and of the
coefficients in (5). In the following equations, the geometry
of the single cells are those shown in Fig. 2 which also shows
schematically the sampling functions. For comparison pur-
poses, we also include in this work a one-dimensional (1-D)
analysis, where no singularities are considered and the test
functions are reduced to the following triangular sampling
functions:

(6)

In (6) is the unknown amplitude of the current at the center
of the cell

When a two-dimensional (2-D) analysis is performed, the test
function includes the straight edge singularity and can be formu-
lated as follows:

(7)

In the three-dimensional (3-D) treatment, (7) holds for the
body cells, whereas for the corner cells the test functions must
fit the vertex conditions as follows:

(8)

is the radial distance from the tip A in Fig. 3
and (see in [3, table
II]). The weighting function in (8) is found from [1, table 2] or
[3, table III] and the sampling functions are chosen in such a
way as to increase analyticity in computing the coefficients (5),
as shown in the next section. Finally, a test function satisfying a
zero of degree 1/2 at the edge of the conductor in the open-end
cell is given by

(9)

We should like to stress that only because of the previous
choices for cells geometry and test functions the simple integral
(1), which considers only the longitudinal current, takes into
accounta priori all the correct main current behaviors at the
open-end. In fact, in spite of all previous test functions are for
current in the direction, the -directed current at the open-end
is forced by (3).

III. I NTEGRATION OFVERTEX SINGULARITIES

The determination of the coefficients in (5) using the test
functions given in (6), (7), and (9) is nowadays a common prac-
tice, hence, only their analytical expressions are reported in Ap-
pendix A. The determination of the same coefficients using the
test function in (8) requires the use of the conical geometry of
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the 90 sector and is of vital importance in the present method-
ology. Thus, we report a detailed formulation, writing

(10)

where

(11)

(12)

Two rectangular coordinate systems are involved in (11), (12)
but neither of them is suitable for analytic and/or accurate eval-
uation of the integrals because of the spherical singularity at the
tip . To avoid this problem we have to express
the integrand in the conical coordinate system, , centered
at A and oriented with the equicoordinate surface fitting
the corner cell [see [16, fig. 3] and Fig. 4(a)], i.e., satisfying the
coordinates transformation

(13)

(14)

where is the parameter of this geometry and,
are auxiliary functions of only. The elementary area is found
to be transformed as follows:

(15)

and consequently the cell is transformed as drawn in
Fig. 4(b). In order to show the procedure, only the integration
in the half cell will be shown explicitly, starting by ex-
pressing the integrand in conical coordinates as follows:

(16)

The singularity at the tip is no longer present, hence,
numerical integration versusof (16) may be performed accu-
rately but requires long computation time in view of the fact the
coefficients (5) are needed for a large number ofand . The

(a)

(b)

Fig. 4. Corner cell in (a) rectangularX-Z and (b) conicalr� � coordinates.

particular choice of the sampling function in (8) permits ana-
lytical integration along (see [11, pp. 424–425]) reducing the
integral (16) to

(17)

where is a Bessel function
of the first kind of order and

(18)

Also the integration along becomes analytically possible if
the integrand functions in (17) are expanded in a double series
using the Graf’s addition theorem and the series representation
of the product of two Bessel functions as follows [13]:

(19)
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Fig. 5. Auxiliary functions� and� versus the conical coordinate� and
the auxiliary variable'.

where , , , are specified in Appendix B. In this way
the integration versus is reduced to evaluate the elementary
integrals of general form

for (20)

Further, noting that the auxiliary functions , formulated
in (13) and (14) satisfy to the properties

(21)

it is possible to change with an auxiliary variable according
to the following transformation (see Fig. 5)

(22)

Consequently, the integral (20) is reduced to the more familiar
form

for (23)

which, using reduction formulas (see for example [11, p. 130]),
can be expressed versusonly

where

(24)

Then we recover the following closed form:

(25)

The integration of IACD given in (12) follows the previous
lines and terminates with a form similar to (25). Hence,and

another integral arising from the integration of , are the
sole forms to be integrated numerically by a NAG library sub-
routine and for this the coefficients are said to be ob-
tainable in a quasi-analytic way. In addition, taking into account
the expressions of , reported in Appendix
B, we can rearrange expression (25) in such a way the summa-
tion in m depends on , but not on . Computationally, this
permits one to generate a quasi-recursive property of the form
(25) that together with fast convergence properties of with

, and of with allows computation of a coeffi-
cients matrix of dimensions

1000 in few minutes with an IBM RISC 6000/550. The ob-
served accuracy is within a few for the more critical large
values of , when compared with the numerical integration
of (16).

For symmetry reasons, the coefficients in the lower 90
corner cell are obtainable from the previous simply
by changing the sign when is even and using the same value
when is odd.

IV. OBTAINED RESULTS

The satisfaction of the boundary conditions at the
strip conductor, imposed in (1) using the MoM with Galerkin’s
technique, gives the following matrix equation:

(26)

where is the unknown vector of the current density ampli-
tudes at the center points of the cells and is the excita-
tion vector that for the present gap generator excitation method,
presents only one nonzero value at the generator cell [12]. In
(26) is the matrix of moments of elements ob-
tained using the coefficients (5) as follows:

for (27)

In order to avoid convergence problems we have chosen the
maximum summation indexes 1000;
the higher value of is due to the fact the functionvaries
as a constant and a constant timeswhen and go to
infinity respectively [9]. Then a value of mm is chosen
for the strip length, corresponding to about 70 cells/wavelength.
Furthermore, in order to facilitate the comparison of the solu-
tion [I] for 1-D, 2-D, and 3-D analyses, we choose
in Fig. 2, that is to say the union of the two corner cells repro-
duces a usual body cell when no vertex conditions are consid-
ered. Consequently, the matrix is symmetric for the 1-D and
2-D cases, while for the 3-D case the symmetry fails only in the
last three columns and rows associated with the two corner cells
and with the open-end cell. Nevertheless, in all cases it is noted
that the diagonal elements of are dominant and the other ele-
ments taper off uniformly as one moves away from the diagonal,
confirming a property common to all closed structures [10]. All
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these properties are used to considerably reduce the computer
time in determining and in recovering the vector solution
solving (26) as follows:

(28)

The propagation constant and the open circuit reflection
coefficient , through its amplitude and phase , are used
to compare the results of the three analyses and to simulate
the electric behavior of the discontinuity. A negative value of

indicates that the electric open circuit section is moved
from the open-end by an effective length
(mm). For characterizing the abrupt end the parameter
is more commonly used, while for simulation purposes the
same phase delay indicated byis reproduced by an equiv-
alent excess capacitance of value
[10]. Summarizing, the situation of the strip feed by a 50-
coaxial cable, its electric equivalent, and the simulation using
an ideal gap generator excitation can be schematized as in
Fig. 6(a)–(c) respectively. The recovered current amplitude
distributions for the 1-D, 2-D, and 3-D cases at the median
line of the strip are reported in Fig. 7. The open-end re-
gion is enlarged in the insert in order to better show the
significant decreasing of the current obtained with the 3-D
analysis. From the same distribution we back out simulta-
neously , , and using a very accurate curve fitting pro-
gram that compares the numerical evaluations of with
the theoretical distribution of current pertaining to an ideal
uniform line and parametrized just by, , and . From
the fitting are excluded the data too close to the generator
and open-end cells, where higher order modes are excited.
The parameters so recovered are shown in Table I.

The value obtained using an accurate alternative spectral
domain technique is about 433 and the value ofgiven by the
theory for an open line is 1 (notice that for the chosen geomet-
rical dimensions and working frequencies, radiation losses due
to couplings with the box conductors are negligible). Thus, ac-
cording to Table I the fitting program that was used recovers
these values very accurately leading us to believe that the value
of is also very reliable. Surprisingly, the results show that the
inclusion of the straight edge singularity of the 2-D case does
not improve substantially the accuracy of with respect to a
1-D case because it does not contain more accurate information
about the open end. The fact that for the 1-D and 2-D
analyses is about 1.9 times larger than the correct 3-D one, is
in part due to a missing optimization process for the sampling
function shape as proved necessary in [10].

The current density surface distribution on the strip is
shown in Fig. 8. The transverse current density is re-
covered by using (3) and its behavior is shown in Fig. 9.
Note that from (8), (3) and Fig. 9 it appears that,
are discontinuous at the 90tips proceeding along the con-
ductor edge. Physically speaking, the singular current density
flows along the edge and bends 90suddenly at the tips as
schematized in Fig. 3. We finally remark that the determi-
nation of , with classic analyses, not accounting for
(3), requires a matrix four times larger.

TABLE I
COMPARISON OF 1-D, 2-D, AND 3-D LINE

PARAMETERS

(a)

(b)

(c)

Fig. 6. Open-ended microstrip line excited by coaxial cable. (a) Physical line.
(b) Equivalent electric line. (c) Ideal simulated line.

Fig. 7. Module of the density of currentJ at the microstrip median line
relative to 1-D, 2-D, and 3-D analyses.

V. EFFECTIVE-LENGTH FREQUENCYDEPENDENCE

For the sake of comparison we implement our program for
a microstrip printed on allumina substrate , with

at 15 GHz, as analyzed in [4], [7], [8]. We choose
a length mm and a cell subdivision of about 30
cells/wavelength. The recovered values ofand agree when
1-D, 2-D, or 3-D analyses are performed when is equal
to 0.72, 0.71, and 0.31, respectively. Only the last value is in ex-
cellent accordance with those reported in [7] and [8].
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Fig. 8. Density of currentJ on the strip surface for a complete 3-D analysis.

Fig. 9. Density of currentJ on the strip surface for a complete 3-D analysis.

For evaluating the frequency dependence of , we
should remember that our modeling for the vertex singular con-
ditions can be considered valid at most in the range [2, 20] GHz
where condition (2) is satisfied assuming
mm. Further, for this same gamma, the curve fitting program
that evaluates , , and works correctly in spite of the fact
that current distribution data are available only for a fraction of

at the lower frequencies. The calculated values of are
marked in Fig. 10. A static value of can be extrapolated
from our curve in Fig. 10 by using simple interpolation of
available data. This provides a static value close to the one
obtained with a static analysis by Hammerstad and Bekkadal
[5].

Concerning the frequency dependence, Fig. 10 shows that our
data are in better agreement with those of the 3-D analysis re-
ported in [7] where Jansen estimated an absolute error within
1% in the obtained values. The present analysis shows some-

Fig. 10. L =h relative to the open-ended microstrip line of parameters2a =

7:747 mm, c = 5:08 mm,2L = 32:7 mm,d = 24:176 mm,2b=h = 1:57,
h = 0:635 mm, and� = 9:6.

where a discrepancy a little bit bigger than 1% that we believe
is due to the spherical nature of the vertex singularity that is
not considered in [7], where the current is represented by the
product of a function solely of and one solely of .

From the comparison with the 2-D analysis by Dunleavy we
argue that better accuracy is due to the weighting functions at
the open-end rather than to the optimization of the test functions
shape and number for wavelength (respectively indicated with

and in [8]) because we have used simple triangular func-
tions and only 30 samples/wavelength.

Lastly we can add the following conclusions to those of
Jansen [7], Itoh [4], and Dunleavy [10] about the two physical
concurring phenomena responsible for the frequency depen-
dence of . The open-end can be thought to be equivalent
to a capacitive effect related to the deposition of charge by
and an inductive effect produced by the transverse current.
In the static case and the open-end and the ground plane
conductor constitute a pure capacitance. When the frequency
increases, the inductive effect of the currentdecreases the
equivalent capacitance. For higher frequencies additive capaci-
tive couplings (antenna effects) with conductors other than the
ground plane should be accounted for. Of particular importance
are the box resonances and the propagation of the second-order
mode which has a cutoff frequency of GHz. In order
to validate these hypotheses, I have made some significant
changes in the dimensions of the box and then the variations
in at 4, 18, and 22 GHz were determined. Unfortunately,
the actual measurement techniques for this accurate frequency
dependence suffer from repeatability measurement errors (see
[6], [8]).
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VI. FURTHER DEVELOPMENTS

The presented algorithm is suitable for investigating the be-
havior of versus strip and box dimensions as well as
substrate thickness and dielectric constant as required in CAD
for MIC’s and MMIC’s. However, further developments will be
also addressed to accurately evaluate the frequency dependent
lumped elements associated with other microstrip discontinu-
ities including 270 and/or any aperture vertices. Mixed poten-
tial integral equations will be employed in the more general case
where current and charge singularities are both excited and ac-
counted for. The study can be extended to open circuits and an-
tennas with obvious differences in the Green’s functions and
moment-method matrix.

VII. CONCLUSION

The effective-length frequency dependence of an open-ended
shielded microstrip line has been originally evaluated by in-
cluding the effects of the EM singularities at the open end. In
solving the EFIE by the MoM, the singularities are accounted
for by a novel choice of the current cells geometry and the as-
sociated test and weighting functions. The accurate evaluation
of the matrix of moments has required the use of a suitable con-
ical geometry for the 90sector. The comparison with previous
works shows that satisfyinga priori the known vertex condi-
tions is a dominant factor in obtaining efficiency and accuracy
with respect to optimization and/or convergence problems of the
functions approximating the current behavior at the open end.
Consequently, this study constitutes a further refinement and a
deeper insight into the physical phenomenon associated with the
open-end microstrip line showing the role and quantitative ef-
fect of the EM singularities. It also constitutes the starting study
for analyzing any printed circuit discontinuity with this method-
ology.

APPENDIX A

The coefficients in (5) relative to the body cells and generator
cell are given by

where

for 1-D
for 2-D

for
for

while for the open-end cell they are expressible as follows:

where

for
for

In the former equations and are the Bessel functions of
order zero and one, respectively.

APPENDIX B

The coefficients , which appear in (19) can be ex-
pressed through their recursive formulas as shown at the top of
the page, while the coefficients are given
by

where

even
odd

even
odd

and

where

odd
even

odd
even

respectively.

REFERENCES

[1] T. Itoh, Ed.,Numerical Techniques for Microwave and Millimeter-Wave
Passive Structures. New York: Wiley, 1989.

[2] S. Marchetti and T. Rozzi, “Electric field singularities at sharp edges
of planar conductors,”IEEE Trans. Antennas Propagat., vol. 39, pp.
1312–1320, Sept. 1991.

[3] , “H-field andJ-current singularity at sharp edges in printed cir-
cuits,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1321–1331, Sept.
1991.

[4] T. Itoh, “Analysis of microstrip resonators,”IEEE Trans. Microwave
Theory Tech., vol. AP-22, pp. 946–952, Nov. 1974.

[5] E. Hammerstad and F. Bekkadal,Microstrip Handbook, Norway: Univ.
Trondheim, 1975, sect. III, p. 25.



MARCHETTI: VERTEX EFFECTS ON CIRCUIT PARAMETERS OF OPEN-ENDED MICROSTRIP LINE 825

[6] C. Gupta, B. Easter, and H. Gopinath, “Some results on the end effect of
microstriplines,”IEEE Trans. Microwave Theory Tech., vol. MTT-26,
pp. 649–652, Sept. 1978.

[7] R. H. Jansen and N. H. L. Koster, “Accurate results on the effect of single
and coupled microstrip lines for use in microwave circuit design,”Arch.
Elek. Ubertragung, vol. 34, pp. 453–459, 1980.

[8] L. P. Dunleavy and P. B. Katehi, “Shielding effects in microstrip discon-
tinuities,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1767–1774,
Dec. 1988.

[9] H. A. Ghaly, J. Citerne, and V. Fouad Hanna, “Complete dyadic Green
functions for three-dimensional non radiating discontinuity analysis,”
Soc. Int. Symp. Antennas Propagat., pp. 874–877, June 1991.

[10] L. P. Dunleavy and P. B. Katehi, “A generalized method for analyzing
shielded thin microstrip discontinuities,”IEEE Trans. Microwave
Theory Tech., vol. 36, pp. 1758–1766, Dec. 1988.

[11] I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals, Series, and Prod-
ucts. New York: Academic, 1980.

[12] P. B. Katehi and N. G. Alexopoulous, “Frequency-dependent charac-
teristics of microstrip discontinuities in millimeter-waves integrated
circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.
1029–1035, Oct. 1985.

[13] E. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher
Transcendental Functions. New York: McGraw-Hill, 1953, vol. II,
Bateman Project.

[14] I. J. Bahl and P. Bhartia,Microstrip Antennas. Norwood, MA: Artech
House, 1980.

[15] R. K. Hoffmann, Handbook of Microwave Integrated Cir-
cuits. Norwood, MA: Artech House, 1987.

[16] S. Marchetti, “Simplified conducting plane sector diffraction theory and
EM fields singularities at sharp edges of printed circuits,”J. Electro-
magn. Waves Applicat., vol. 11, pp. 675–688, 1997.

Sandrino Marchetti (M’91) received the Dr.
and Ing. degrees (cum laude) in electronics with
telecommunication from the University of Ancona,
Italy, in 1986, and the Dr. Philosophy from the
University of Bath, U.K., in 1992.

From 1987 to 1991, he was a Research Fellow
at the University of Bath, U.K. From 1991 to
1994 he was Research Engineer at the Laboratory
LCST-INSA of Rennes, France, where he was ap-
pointed Maitre de Conference, France, 1993. During
1994 he was a Research Engineer at the Laboratoire

D’Electronique, University of Nice-Sophia Antipolis, France. Since 1995 he
has been involved in settling up a Metrology Laboratory, Senigallia, Italy,
while performing measurements on several physical quantities and testing
of equipments for industrial processes. His research topics are solutions of
Maxwell equations in new coordinate systems, space-domain formulations of
Green’s functions for stratified media, solution of frequency- and space-domain
integral equations applied to the analysis of edge effects, diffractions, and
radiation in microwave and millimeter-wave integrated circuits and antennas.


