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Rigorous Evaluation of the Vertex Effects on the
Frequency-Dependent Circuit Parameters of an
Open-Ended Microstrip Line

Sandrino MarchettiMember, IEEE

Abstract—This study presents the original inclusion of right In this context, we start (as a way of example) by developing
singular vertex conditions in integral equations solved by the g rigorous analysis for the classic problem of the open-end mi-
method of moments for accurate evaluation of frequency-de- roqtrin fine, which, for its circuit versatility, has been object

pendent microstrip discontinuity models required in microwave . . . L L
integrated circuits (MIC) and monolithic microwave integrated of an incredibly large number of investigations and applications

circuits (MMIC) design. The 90° wedges singularity function for ~ (S€€ among the others works [4]-[8], [10], [12]). From previous
the current density, weighted with a novel sampling function for works the termination has been found electrically equivalent

“corner celI;," and the harmonig: .Green.’s function' for shield.ed to an excess frequency_dependent Capacitance, strong|y influ-
structures, is accurately and efficiently integrated in the conical o,-qq by the dielectric substrate thickness and permittivity and

geometry of the 90 sector. The frequency-dependent effective . .
length and excess equivalent capacitance of a shielded open-ende@y all of the near by conductors. From the point of view of [2]

microstrip line are calculated to a higher accuracy with respect and [3], the abrupt end is equivalent to two contiguous wedges
to previous two-dimensional and three-dimensional “full wave of 90° angular aperture where the charge and current densities

analyses.” assume a well-quantified singular behavior associated with a

Index Terms—Microstrip transmission line, printed antennas.  luUmped capacitance and inductance, respectively.

Our original contribution, in this paper, consists in the
inclusion of the vertex conditions in a relevant electric field
integral equation (EFIE) solved by the method of moments

RACTICALLY all printed circuits and antennas for(MoM). From the recovered distribution of current, the effec-
microwave and millimeter wave applications make ugéve length and equivalent excess capacitance are evaluated.
of very thin conductors of polygonal contour presenting sonhe reliability of this approach is based on the development
sharp wedges, where the electromagnetic (EM) fields may &$-an original mathematical apparatus in conical geometry. It
sume singular vertex behaviors [16]. Nowadays more accurpgforms the analytical integration of the “98ector current
“full wave analyses” for passive circuit components like transingularity weighted with a novel sampling function and the
formers, filters, mixers, resonators, antennas, etc., still do ragpropriate harmonic Green’s function. This mathematical
include these singular conditions. This is probably due to theol is assisted by a very efficient curve-fitting program which
fact that the simpler formulation of proper weighting functiongecovers the propagation constant and the reflection coefficient
has been presented only recently [2], [3] and still their intr@f the open end from current evaluations. Comparison with
duction in the named algorithms does not appear to be obviopkgvious analyses, results, and measurements confirms that
From a very large number of previous studies dealing wiihclusion of the correct vertex conditions is the dominant factor
such discontinuities, summarized in books like [1], [14], [15]n obtaining accurate effective length evaluations with respect
the inaccuracy in determining some equivalent circuit elemerigsany sampling of the longitudinal current on the strip or to any
has been often attributed to problems of convergence for the $et of functions representing inaccurately the current density
of functions used to describe approximately the vertex effecgngularity at the vertices.
However, more accuracy for the EM simulation of such singular
behavior is increasingly important at higher microwave and
millimeter-wave frequencies where, in addition, de-embedding Il. THEORETICAL DEVELOPMENT
of the measurements and repeatability of the same are difficult. L
Moreover, in dealing with monolithic microwave integrated\' Definition of the Problem
circuits (MMIC’s), the CAD software should account also for The theoretical formulation makes reference to the shielded
the possible interactions among elementary discontinuitiggen-end microstrip line printed on RT-duroid™ and presenting
since they operate in the same electromagnetic environmenthe geometrical dimensions drawn in Fig. 1. Throughout the
work we always assume sinusoidal excitation (that where not
otherwise specified) is the center frequency of fie-band
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is small compared to the microstrip wavelength £ 0.75 mm

< Ay = 14.5 mm). Consequently, the strip transverse current

density.J, is different from zero only at the vicinity of the dis-

continuity and the longitudinal current density distributién

follows the laws for uniform lines away from discontinuities. y=c
The method determined. and the open-end excess ca-

pacitance by using an EFIE that is solved by the MoM using X\ 5

Galerkin’s technique. Hereafter, for reasons of brevity, we focus
the attention to the advantages of including vertex conditions
in the framework of the complete formulation reported in [10]. =h L
Making use of the continuity equation, the integral equation
that expresses th&,. component of the electric field at the

e
elative dielectric constant g,

st

air-dielectric interfacey = h is 0 z=d z=2lz
Fig. 1. Shielded open-ended microstrip line exited by a coaxial cable:
E.(z,h,z) =/ C Gelwyhyzal by 2) Tl 2 da’ d2' 5 ) mm, e = 356 mm, 2L = 32.7 mm,d = 18 mm, 2b = 0.75 mm,
S strip h = 0.254 mm, e, = 2.22.
1)

whered., . is the appropriate component of the electric dyadic ‘
Green's function as given in [9], [10] angl.i, is the surface X i T
of the strip conductor. x=2a Xi
B. Definition of the Cells of Current x=a+b /\ —f- = 2/ Oq

In solving (1) by MoM, the unknowry, is expressed as a x=a . .
series of orthonormal test functions, each different from zero = Lz,
only in a section of the strip, namely the elementary currentcell x=a-b X
(see Fig. 2). By a preliminary implementation of an auxiliary .
mixed potential integral equation not accounting for singulari- 0 7=7; z=d z

ties, it has been possible to reveal the type and position of the

excited singularities (see [16]). The obtained current distribfig. 2. Strip subdivision in current cells with relative local coordinate systems
tion is schematically depicted in Fig. 3 and shows that a di&?d sampling functions.

tributed singularity of current is present at any point of the strip

edge except at the poii? where a singularity of charge occurs z Z=2q A=0

(see [3, fig. 2]). The singularity of current is of degreé&/2 at * B , ,
any point of the straight edge but0.185 345 at the 90tip A,

whereas the singularity of charge In exhibits —1/2 strength.

The geometry of the cells and the shape of the test functions can

be chosen with some arbitrariness, but the efficiency of the al-

gorithm and the accuracy of the solution are strongly enhanced c
if they containa priori the correct known singular behavior of

the current at the conductor edge. To this end we define a va-

riety of cells, namely generator cell, body cells, corner cells,

and open-end cell schematically depicted in Fig. 2. On each cell

a local coordinate systet;, Z; is fixed except for the corner

cells where theX, Z coordinates are used. Specifically, for the X=4q=2b
evaluation of the reflection coefficient, the line can be excited +X

by an ideal gap generator localized at the first cell; that is, the

generator cell [12]. The central part of the strip is subdividagly 3 |ines of current at the open-end and comer cells.
into body cells, as wide as the strip and at which edges the cur-

rent exhibits singular straight edge behaviors. The Wedgesd?f75 mm, we do not commit appreciable error considering the

23:1%?&”5'5: i’?:::/iﬁéjﬁg::gigy?ﬁ;nri;iie;ixﬁ;eijzi?il:}rfﬁﬁﬁuence of the vertex singularity extended just up to the center
9 : of the strip, i.e., choosing.x = 2¢ = 0.75/2 = 0.375 mm.

encermax Of the 9G wedge singularity can be evaluated as (Seiﬁ addition, if we choose for the corner cell the square form

X=2q

h

(2], [3]): depicted in Fig. 3, the symmetry with respect to the bisecting
1 line AC of the fundamentalf -mode current density (see [3, fig.
Flmax = 2a]), permits one to recover the principal partfofsimply by
using

wherer is the free-space wavenumber at 15 GHz andis
typically between 10 and 100. Since the width of the strip is J(X, 7)) =—-J.(Z,X). 3)
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Finally, an open-end cell is to be considered at the center ofwWhen a two-dimensional (2-D) analysis is performed, the test
the strip termination, half overlapping each corner cell and ftnction includes the straight edge singularity and can be formu-
which conductor edgd. vanishes with a zero of degree 1/2lated as follows:

Imposition of the latter condition together with the vanishing

of J, in x = a ensures the behavior of the main current and . 1
singular charge characteristics associated with the fundamental Ji(a' 2") = I 3
E-mode relative to the point D in Fig. 3 (see [3, fig. 2b]). 1— <&>
b

C. The Choice of the Test Functions <1 + é) <7 <0

The Green'’s function in (1) can be put in the following form . Zg (7
[9], [10]; (1 - 72) Ci>Z>0

In the three-dimensional (3-D) treatment, (7) holds for the
G..(x, h,z; 5" h, 2') body cells, whereas for the corner cells the test functions must
>~ & ) fit the vertex conditions as follows:
= Z Z f(r, ke, k) sin(kex)
N=1 M=0
v+1)/2
-sin(k,z") cos(k.z) cos(k.z") @ i) = L%
7"~

wherek, = Nn/2a andk, = M= /2L are the discrete r 1— Z 0<X < Z<2
wavenumbers along and z, respectively, whilef(x, k,, k. ) ) V2XZ 2q/" - ==
is a function of the geometry, frequency and dielectric permit- 9 X
. ) - : Vv v S— >X>7Z>
tivity as well as of the wavenumbers; its explicit expression can 2X 2 1 2q/) 20z X=2220
be found in [9], [10]. The solution of (1) by the MoM using (8)
Galerkin’s technique, requires the evaluation of the following
coefficients: r = v X2 4+ Z? is the radial distance from the tip A in Fig. 3

andy = 0.814655 (seer — 1 = o = —0.185344 7 in [3, table
[1]). The weighting function in (8) is found from [1, table 2] or

Ci. v = Cilkn, k2) = / sin(kya’) cos(k.2') [3, table 1lI] and the sampling functions are chosen in such a
cell way as to increase analyticity in computing the coefficients (5),
i@, 2 da’ d7 (5) as shown in the next section. Finally, a test function satisfying a
zero of degree 1/2 at the edge of the conductor in the open-end
for all cells of the strip. cell is given by

In (5) J;(«/,72") is the test function for cel, which we
express for convenience as the product of an amplitljde

a weighting functionw;(z’,2’), and a sampling function T, ) = I |1 — N\’
Ji(z’,2"). The weighting function contains the known singular ST

»Q|N

conditions specified in the previous subsection, whereas the X,

simple sampling function is chosen to provide at once ana- <1 + —Z> , —¢<X; <0

lyticity and fast convergence with respectitp and k. of the . )? 9)
coefficients in (5). In the following equations, the geometry <1 - j) , g2 X; >0

of the single cells are those shown in Fig. 2 which also shows

schematically the sampling functions. For comparison pur-ye should like to stress that only because of the previous

poses, we also include in this work a one-dimensional (1-Rhoices for cells geometry and test functions the simple integral

analysis, where no singularities are considered and the 1§{ which considers only the longitudinal current, takes into

functions are reduced to the following triangular samplingccounta priori all the correct main current behaviors at the

functions: open-end. In fact, in spite of all previous test functions are for
current in thex direction, ther-directed current at the open-end
is forced by (3).

Ji(x', 2" = Lwi(2, 2)g:(2, 2)

7.
<1 + j) , 4<7Z; <0 Ill. I NTEGRATION OF VERTEX SINGULARITIES

=1 ©) The determination of the coefficients in (5) using the test

<1 + 7) , £22;20. functions given in (6), (7), and (9) is nowadays a common prac-
tice, hence, only their analytical expressions are reported in Ap-

In (6) I; is the unknown amplitude of the current at the centgrendix A. The determination of the same coefficients using the
of the cells. test function in (8) requires the use of the conical geometry of
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the 90 sector and is of vital importance in the present method- zt
. . i B Cc
ology. Thus, we report a detailed formulation, writing 2q
o(v+1)/2
Ci(km7 kz) =1 1 (IABC + IACD) (10) =0 /_/
where /
N v ~ D »
1. = sin(ky2’) cos(k, 2 " =0 o=x 2q X
o= [ sinha)cosths) e
Z\Y (@
. <1 - 2—) dx’ dz (11)
q . b c
E/kD
Licp = / sin(kyz') cos(k. 2 )WW2X Zr' 2
ACD
X Y ! ! Z 5 -
- 1—= d2’d. (12) axis X axis
2q
Two rectangular coordinate systems are involved in (11), (12) n A .
but neither of them is suitable for analytic and/or accurate eval- 0 /2 x ¢
uation of the integrals because of the spherical singularity at the
tip » = X = Z = 0. To avoid this problem we have to express (b)

the integrand in the conical coordinate system, ¢ centered Fig.4. Corner cellin (a) rectangulaf-Z and (b) conicat — ¢ coordinates.
at A and oriented with the equicoordinate surfdce  fitting

the corner cell [see [16, fig. 3] and Fig. 4(a)], i.e., satisfying thgsrticular choice of the sampling function in (8) permits ana-

coordinates transformation lytical integration along- (see [11, pp. 424-425]) reducing the
integral (16) to
X =kr[y/1— (kcos$)? — kcos ¢
_ /2
=rd.(¢) (13) Tame — S/ 1
WETT ) oo, + @)
J, 2zt
. [Sin(C"" —z1) %1(/;)
Z =kr[\/1— (kcos$)? + kcos ¢ j ()
. _ _ v+1/2\~

wherek = 1/1/2 is the parameter of this geometry add, . whereS = /7T\(v + 1)/2¢+D), J,41/2 is a Bessel function
are auxiliary functions of only. The elementary area is foundys ihe first kind of orden +1/2 and

to be transformed as follows:

®
VB B C* =lky(a+b)£k.d, 2t = <km—“’j:kz>. 18
dr' d7 = dX dZ = r%dr dg (15) (a+5) \"™e. (18)

) _Also the integration along becomes analytically possible if
and consequently the cell BCD is transformed as drawn in ihe integrand functions in (17) are expanded in a double series
Fig. 4(b). In order to show the procedure, only the integratiqfsing the Graf’s addition theorem and the series representation

in the half cell ABC will be shown explicitly, starting by ex- of the product of two Bessel functions as follows [13]:
pressing the integrand in conical coordinates as follows:

g, 2+
/2 1 2¢/®s sin(Ct — 21) i/—if/;)
Iapc = / —_— / sinfkz(a+b—7r9,)] ? _
0 (I)m‘i‘q)z 0 i _ JV+1/2(Z )
7’(1)»/ v + Slll(O —Z ) W
~coslk.(d —r®,)] <1 - ”) 0o - 0o
2q _ Z A ']n—l—z/—l—l/Q(qkz) Z
~krY dr d. (16) ~ (qk.)+1/2) —
The singularity at the tip = 0 is no longer present, hence, Nan(kny ko) + b (Ko kz)qkm&}
numerical integration versusof (16) may be performed accu- ®.

rately but requires long computation time in view of the fact the < i )"“m (19)

coefficients (5) are needed for a large numbek,0fndk... The qk”@
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4 another integral arising from the integration Bfcp, are the
1 sole forms to be integrated numerically by a NAG library sub-
D, Oy routine and for this the coefficient; (k. k.) are said to be ob-
T2 R =—— . tainable in a quasi-analytic way. In addition, taking into account
the expressions af,, (k.. k.), b,(k,, k.) reported in Appendix
B, we can rearrange expression (25) in such a way the summa-
tion in m depends o#,., but not onk.. Computationally, this
permits one to generate a quasi-recursive property of the form
. (25) that together with fast convergence propertieBgf, with
0 /2 z ¢ m, n and ofJ,, 1,1 /> with n allows computation of a coeffi-
0 n/4 w2 ¢ cients matrixC; (k. , k.) of dimensionsVyiop X Mstop = 200
x 1000 in few minutes with an IBM RISC 6000/550. The ob-
Fig. 5. Auxiliary functions®, and®. versus the conical coordinateand Served accuracy is within a fef§, for the more critical large
the auxiliary variablep. values ofk, k. when compared with the numerical integration
of (16).
whereA,,, Bum, an, b, are specified in Appendix B. In this way For symmetry reasons, the coefficients in the lowef 90

the integration versug is reduced to evaluate the elementarféOrner cell are obtainable from the previalig k.., k) simply
integrals of general form y changing the sign wheN is even and using the same value

when X is odd.

/2 1 D, J
I; = . ore, 13, \9. d¢ IV. OBTAINED RESULTS

forj=0,1,2,---. (20) The satisfaction of the boundary conditioRs = 0 at the
strip conductor, imposed in (1) using the MoM with Galerkin’s
Further, noting that the auxiliary functiods,, . formulated technique, gives the following matrix equation:
in (13) and (14) satisfy to the properties
[Z]- 1] =[V] (26)
P42 =1 &.-d,=cosp, P,P.=(ksing)?
1) where[!] is the unknown vector of the current density ampli-
tudesl; at the center points of th¥, cells and V] is the excita-
tion vector that for the present gap generator excitation method,
presents only one nonzero value at the generator cell [12]. In

(26) [Z] is the N, x N. matrix of moments of elemen;; ob-

itis possible to changg with an auxiliary variables according
to the following transformation (see Fig. 5)

pef0,n], ®.—sing, . —cosp, @ [07 g} ' tained using the coefficients (5) as follows:
22 o> o>
@2 2= S Fn ke h)Cilha k) (ks )
Consequently, the integral (20) is reduced to the more familiar N
form = F 5 koo o) Ci (s k) C (K K2
1 w/4 sin ¢ i1z 1 N=l M=
I = _— - 4 ii=
j NG /0 <Cos<p> (cosg) 2 ) fori,j=1,2,---, N,. 27)
forj=0,1,2,-- (23) " In order to avoid convergence problems we have chosen the

. . . maximum summation indexe$op X Msiop = 200 x 1000;
which, using reduction formulas (see for example [11, p. 1301)ne higher value oML, is due to the fact the functiofivaries

can be expressed versiisonly as a constant and a constant tinkeswhen &, and k. go to
_ infinity respectively [9]. Then a value ef = 18 mm is chosen
I; = I;(j,Io), where I,= / -—+1d¢' for the strip length, corresponding to about 70 cells/wavelength.
o sing(cosp)” Furthermore, in order to facilitate the comparison of the solu-
(24)  tion [1] for 1-D, 2-D, and 3-D analyses, we chod¥®= 2 = b
in Fig. 2, that is to say the union of the two corner cells repro-
duces a usual body cell when no vertex conditions are consid-
00 J (gh) & ered. Consequently, th&] matrix is symmetric for the 1-D and
Iigc =S Z A, 2ttt/ 200 Z Bom 2-D cases, while for the 3-D case the symmetry fails only in the
"0 (gh.)r+1/2 =0 last three columns and rows associated with the two corner cells
Nan (ke k) g 2m + b (ke k) Liiamy1]. (25)  and with the open-end cell. Nevertheless, in all cases it is noted
that the diagonal elements[df] are dominant and the other ele-
The integration of IACD given in (12) follows the previousments taper off uniformly as one moves away from the diagonal,
lines and terminates with a form similar to (25). Henfigand confirming a property common to all closed structures [10]. All

1

Then we recover the following closed form:
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these properties are used to considerably reduce the computer TABLE |
time in determiningZ] and in recovering the vector solution COMPARISON OF 1-D, 2-D, AND 3-D LiNE
. PARAMETERS
solving (26) as follows:
dim B (rad/m) p y (rad) Ly (mm) Leg/h
_ 111, 1D 4327 1.00 -0.106 0.123 0.548
] =17] V1 (28) 2D 433.2 1.00 -0.101 0.117 0.520
3D 432.8 1.00 -0.055 0.064 0.284

The propagation constart and the open circuit reflection
coefficientI’,., through its amplitude and phasey, are used
to compare the results of the three analyses and to simulate
the electric behavior of the discontinuity. A negative value of
~ indicates that the electric open circuit section is moved
from the open-end by an effective lengths = —~/23
(mm). For characterizing the abrupt end the parambtgr i
is more commonly used, while for simulation purposes the VO%
same phase delay indicated hyis reproduced by an equiv- Zo
alent excess capacitance of valGe= tan(SL.g)/wZo(F) Left
[10]. Summarizing, the situation of the strip feed by a(0- (b)
coaxial cable, its electric equivalent, and the simulation using
an ideal gap generator excitation can be schematized as in v#; Z0 Toc—= =L Coc
Fig. 6(a)—(c) respectively. The recovered current amplitude
distributions for the 1-D, 2-D, and 3-D cases at the median z
line of the strip are reported in Fig. 7. The open-end re- (©
g_lon_ _IS enlarged m the insert in order t(? bette_r show thﬁg. 6. Open-ended microstrip line excited by coaxial cable. (a) Physical line.
significant decreasing of the current obtained with the 3-[B) Equivalent electric line. (c) Ideal simulated line.
analysis. From the same distribution we back out simulta-
neously3, p, and~ using a very accurate curve fitting pro- Ml
gram that compares the numerical evaluations[Zf with
the theoretical distribution of current pertaining to an ideal 1 g
uniform line and parametrized just b§, p, and v. From
the fitting are excluded the data too close to the generatol
and open-end cells, where higher order modes are excitec
The parameters so recovered are shown in Table I. 0.75
The /3 value obtained using an accurate alternative spectra
domain technique is about 433 and the valug gfven by the
theory for an open line is 1 (notice that for the chosen geomet:

@

ZO FOC—>

rical dimensions and working frequencies, radiation losses dut 0.50

to couplings with the box conductors are negligible). Thus, ac- 3Q Z;D‘/m

cording to Table | the fitting program that was used recovers 020 \\

these values very accurately leading us to believe that the valu g 55 o X

of v is also very reliable. Surprisingly, the results show that the on W

inclusion of the straight edge singularity of the 2-D case does E“‘ A ‘B]
not improve substantially the accuracylafz with respect to a é’u oy

1-D case because it does not contain more accurate informatio 0.00 122 123 328 125 we 1z

about the open end. The fact thiatg /% for the 1-D and 2-D 0.50 0.75 1.00 1.25 z/A

_analyses IS abOUt.l'Q tlmes. Ia_rge_r than the correct 3-D om.aFiIS. 7. Module of the density of current. at the microstrip median line
in part due to a missing optimization process for the samplingative to 1-D, 2-D, and 3-D analyses.
function shape as proved necessary in [10].

The current density surface distribution on the strip is
shown in Fig. 8. The transverse current denshy is re-
covered by using (3) and its behavior is shown in Fig. 9. For the sake of comparison we implement our program for
Note that from (8), (3) and Fig. 9 it appears thaf, J. a microstrip printed on allumina substratg. = 9.6), with
are discontinuous at the 9Qips proceeding along the con-Z; = 40 @ at 15 GHz, as analyzed in [4], [7], [8]. We choose
ductor edge. Physically speaking, the singular current densitylengthd = 24.176 mm and a cell subdivision of about 30
flows along the edge and bends°98uddenly at the tips as cells/wavelength. The recovered valuesiadind p agree when
schematized in Fig. 3. We finally remark that the determi-D, 2-D, or 3-D analyses are performed whies /h is equal
nation of J,, J. with classic analyses, not accounting foto 0.72,0.71, and 0.31, respectively. Only the last value is in ex-
(3), requires a[Z] matrix four times larger. cellent accordance with those reported in [7] and [8].

V. EFFECTIVELENGTH FREQUENCY DEPENDENCE
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* THIS RESEARCH
®  JANSEN & KOSTER
A DUNLEAVY & KATEHI
o ITOH
L/h © HAMMERSTAD & BEKKADAL

045 =
0.40
0.35
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0.25

0.20 - L

fe=17.9
0.15 T T T T T L) T T - 'I T § 1 L)
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f (GHz)

Fig. 10. L. /h relative to the open-ended microstrip line of parameers-
7.747 mm,c = 5.08 mm,2L = 32.7 mm,d = 24.176 mm,2b/h = 1.57,
h = 0.635 mm, ande,. = 9.6.

where a discrepancy a little bit bigger than 1% that we believe
is due to the spherical nature of the vertex singularity that is
not considered in [7], where the current is represented by the
product of a function solely ok and one solely of.

From the comparison with the 2-D analysis by Dunleavy we
argue that better accuracy is due to the weighting functions at
the open-end rather than to the optimization of the test functions
shape and number for wavelength (respectively indicated with
K andl, in [8]) because we have used simple triangular func-
tions and only 30 samples/wavelength.

Fig. 9. Density of currenf,, on the strip surface for a complete 3-D analysis. Lastly we can add the following conclusions to those_ of

o ¢ Jansen [7], Itoh [4], and Dunleavy [10] about the two physical

concurring phenomena responsible for the frequency depen-

For evaluating the frequency dependencelqfi/h, we dence ofL.x/h. The open-end can be thought to be equivalent
should remember that our modeling for the vertex singular cotw- a capacitive effect related to the deposition of charge’ by
ditions can be considered valid at most in the range [2, 20] Glrnd an inductive effect produced by the transverse curfent
where condition (2) is satisfied assuming.. = 2¢ = 0.5 Inthe static casd, = 0 and the open-end and the ground plane
mm. Further, for this same gamma, the curve fitting prograoonductor constitute a pure capacitance. When the frequency
that evaluateg, p, and~ works correctly in spite of the fact increases, the inductive effect of the curreitdecreases the
that current distribution data are available only for a fraction @quivalent capacitance. For higher frequencies additive capaci-
A at the lower frequencies. The calculated valuesgf/h are tive couplings (antenna effects) with conductors other than the
marked in Fig. 10. A static value df.i/h can be extrapolated ground plane should be accounted for. Of particular importance
from our curve in Fig. 10 by using simple interpolation ofre the box resonances and the propagation of the second-order
available data. This provides a static value close to the ommde which has a cutoff frequency fif = 17.9 GHz. In order
obtained with a static analysis by Hammerstad and Bekkadal validate these hypotheses, | have made some significant
[5]. changes in the dimensions of the box and then the variations

Concerning the frequency dependence, Fig. 10 shows that ouf..; at 4, 18, and 22 GHz were determined. Unfortunately,
data are in better agreement with those of the 3-D analysis tiee actual measurement techniques for this accurate frequency
ported in [7] where Jansen estimated an absolute error witliiapendence suffer from repeatability measurement errors (see
1% in the obtained values. The present analysis shows soii@; [8]).
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(2n+2r+3)(2+2v+1)

Api1 = A, Ag=1
+ (2n+2v +1) (n+1) 0
B _ (n+rv+2m+2)(n+rv+2m+1) By om
mmAl = (m+1)2m+1)2n+2v+2m+3) (n+vrv+m+1)
1
B, =———B,.o, Boo=1
0T o 2437 00
VI. FURTHER DEVELOPMENTS while for the open-end cell they are expressible as follows:
The presented algorithm is suitable for investigating the be- Ci(ky, k) = L;4q” cos(kyq) cos(k.(d — q))

havior of L.y/h versus strip and box dimensions as well as Sin2(/€xq)

substrate thickness and dielectric constant as required in CAD Fs(k.q)
for MIC’s and MMIC'’s. However, further developments will be

also addressed to accurately evaluate the frequency depenté1ire
lumped elements associated with other microstrip discontinu- Fy(k.q) = {le(qu)/(kzq), fork, # 0}
ities including 270 and/or any aperture vertices. Mixed poten- * /2, fork. =0 "

tial integral equations will be employed in the more general case|, the former equationg, and./; are the Bessel functions of
where current and charge singularities are both excited and gfzer zero and one, respectively.

counted for. The study can be extended to open circuits and an-
tennas with obvious differences in the Green’s functions and

moment-method matrix.

kxq

APPENDIX B

The coefficients4,,, B,,., which appear in (19) can be ex-
VIl. CONCLUSION pressed through their recursive formulas as shown at the top of
the page, while the coefficients, (k,, k.), b, (ks, k.) are given
The effective-length frequency dependence of an open-en
shielded microstrip line has been originally evaluated by in-
cluding the effects of the EM singularities at the open end. In an(kz, k) = ani(kz)an2(kz)

solving the EFIE by the MoM, the singularities are accounted

for by a novel choice of the current cells geometry and the a\ghere

sociated test and weighting functions. The accurate evaluation a1 () = {Sin(/fx(a +b)), neven

of the matrix of moments has required the use of a suitable con- e cos(kz(a+b)), nodd

ical geometry for the 90sector. The comparison with previous 2cos(k.(d—q)), neven
works shows that satisfying priori the known vertex condi- tn2(hs) = { —2sin(k.(d — ¢)), nodd

tions is a dominant factor in obtaining efficiency and accurac

with respect to optimization and/or convergence problems of the

functions approximating the current behavior at the open end., (i, .) = (n+2m+v+1)
Consequently, this study constitutes a further refinement and a @m+1)(n+m+v+1
deeper insightinto the physical phenomenon associated with thigere

open-end microstrip line showing the role and quantitative ef- sin(ky(a+b)), n odd
fect of the EM singularities. It also constitutes the starting study bn1(ksy) = { cos(k(a + b))7 1 even
for analyzing any printed circuit discontinuity with this method- 2sin(k. (d ’ ) odd
ology. Ly o ) Tesin{Re—q)), n
gy an(kz) { —2COS(I€Z(d _ q))7 n even
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