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Matched Asymptotic Expansion for the
Low-Frequency Scattering by a Semi-Circular Trough
In a Ground Plane

Robert W. Scharstein and Anthony M. J. Davis

Abstract—Plane wave scattering by an electrically small circular  the split boundary. Such methods are practically restricted to
trough cutin aninfinite ground plane is solved analytically for both  the low-frequency regime, because of the nonuniform conver-
the TM and TE polarizations. A quasi-static solution for the inner gence of the modal expansions. However, the persistence and

field based upon a transformation to bipolar coordinates exploits . .
the failure of the narrow trough to react to the detailed wave nature patience of these authors [2]-{4] with computers has resulted

of the incident field and forms the starting point for the method of iN SOme impressive numerical results within the accuracy
matched asymptotic expansions. The distant behavior of the inner limits implied by “numerical” or “self” convergence tests,
field must agree with the near behavior of the outer field, which  presumably for troughs as large /as ~ 12. The wavenumber

is a radiative solution of the Helmholtz equation. In addition to ;o 7. _ w/c = 27 /A and2a is the trough diameter.

yielding several analytic terms of the solution in low-order powers The phvsical f th difficulty in th
and the logarithm of the trough wave sizeka the matching process € physical source of the convergence diificully in the
provides an account of the interplay between all of the physical Fourier series is the well-known singular behavior of the fields
parameters. in the vicinity of the two corners where the curved channel
Index Terms—Asymptotic analysis, electromagnetic scattering, 10inS the flat ground plane. The tenable objective of the present
electromagnetic scattering from a gap, ground plane, quasi-static. Paper is the derivation of several dominant terms in ascending
powers ofka that comprise a perturbation expansion for the
trough-scattered field based on the intuitive idea that the far field
sees the trough as a point singularity while the near field sees
HE SCATTERING of a plane electromagnetic wave by theery long waves. Both TM (soft) and TE (hard) polarizations
concave trough and several variants is treated by [1]-[4]f the incident electromagnetic wave are considered. Each case
This geometry is pervasive throughout applied electromagnetiggins with a static solution which is successively modified
and is simple enough to be considered a canonical scatterer. @ linked to the proper radiation field under the framework of
example, it is a basic version of the cavity-backed aperture ttiae method of matched asymptotic expansions [5]. The starting
is a central topic in aircraft radar signature studies. point for the method is the exact solution to the static Laplace’s
Integral equation techniques based upon the applicatieguation, which is forced by several terms in the low-frequency
of the equivalence principle to a curved boundary betwe&xpansion of the boundary behavior of the incident geometrical
the partial cylindrical cavity and a half-space are developegtics field. This exact solution is derived as a Fourier integral
in [1], [2], and [4] and allow for the presence of differenin bipolar coordinates, in terms of which the physical domain
dielectrics in the interior and exterior regions. In such casds,an infinite strip. The far behavior of this inner expansion
the picture is that of a “partially embedded dielectric cylinderts matched to the near behavior of the appropriate radiative
[2]. Some simplification in the mathematical details occurguter field, in a careful succession of steps that group terms of
when the cylinder is half buried, producing the special case @mmon, low-order powers @fz. In addition to supplying the
the semicircular trough [3], [4]. Although the initial approactusual Hankel functions for the outer expansion, the Helmholtz
in [2] is a moment-method expansion of the aperture field, tfeguation provides the mechanism to generate higher order
computations there quickly become equivalent to the “dutgrms in the inner expansion via a perturbative sequence of
series” approaches in [1], [3], and [4] and whereby Fouri€toisson equations. In the development, contributions of order
series of cylindrical harmonics are truncated and forced &a)* In ka appear and the expansions are adjusted to include
agree in the mean-square sense over the semi-circular boung&gh intermediate terms of magnitude betweén)® and
surface. As is common in such mixed boundary value problenég)*. The resultant low-frequency expressions are in agree-
any advantages of using ordinary eigenfunctions of the warent with the applicable results of [3], for example. An entirely
operator are shadowed by the forfeit of orthogonality ovelifferent, and more difficult, high-frequency approximation is
required to characterize the interaction of the scatterer of Fig. 1
with short radio waves.
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Il. TM EXCITATION OF THE SEMICIRCULAR TROUGH

The TM electromagnetic field in this two-dimensional geom-
etry is completely specified in terms of thedirected compo-
nent of the complex phasor electric field, denoted here by the
scalary(z, y). With exp(—iwt) time-harmonic behavior, the
sum of the unit-amplitude plane wave incident from the direc-
tion of ¢; (Fig. 1) and the geometrical-optics reflection from the
ground plane is

"(/)i = e_ikr cos(p—¢;) _ C—ikr cos(p+e;)
= —2i sin(ky sin ¢;) ¢ F* <5 @i 1)

in terms of both Cartesian and polar coordinates. The total field
is defined as the sum of this “incident” (geometrical optics) field
1, that would suffice in the absence of the trough, plus the scat-
tered field, denoted simply as, which is the direct contribu-
tion of the trough. The sought-after scattered field satisfies the
Fig. 1. Semicircular trough in ground plane. Dirichlet boundary value problem

2 2
directly with the corners and curvature of the trough and, there- (V24 E)(e, v) =0, e y) Vile, y)onC
fore, the lengthy inner field calculations are performed first. @
This permits a clean account of the motivating ideas and detailg@tere the boundary surfacg includes both the flat sections
evolution of the matching procedure in Section II-C, resulting ijx;| > o and the semicircular are= a, 7 < ¢ < 2. Naturally,
the desired far-field expansion for the trough-scattered TM fielgh. consists of outgoing waves at infinity, in compliance with the
Section Il is a concise summary of the changes required bgual Sommerfeld radiation condition.
the TE-polarized wave. Modifications to accommodate dielec-
tric loading of the trough region are the subject of continuing. Quasi-Static Solution
research by the authors. Likewise, circular indentations othefrne dominant interaction between the electrically small
than the semi-circle are amenable to the present method, filigh and the incident wave (1) is adequately captured by the
the mathematics is more clearly presented as a sequel. If thegtion of Laplace’s equation
dented boundary lies at the planar interface between penetrable 2,(0)
media, i.e., two dielectric half-spaces, then the mathematical VAU z, y) =0 3)

procedure of this paper can be suitably adapted, in principle.48 the static limit of the Helmholtz operator of (2). To leading
extract the dominant low-frequency terms in that scattered fie[gf.der' the narrow trough does not “see” the detailed wave nature
In such a geometry, the excitation could also be a surface waygihe incident field. However, even this zeroth-order static solu-
The vector problem of a plane electromagnetic wave incidefn contains critical information about the full dynamic field, as
upon a partial spherical depression is a candidate for the gengral torced by the boundary data of the true incident wave-field

technique of this paper. Toroidal coordinates are appropriate far(1). A Taylor series expansion of the incident field (1) for
such a three-dimensional geometry, which is further simplifiegh )| &7 gives

through the orthogonality of the azimuthal Fourier modes of a

“body of revolution.” Pi(X, Y) = ¢[—2i sin ¢;Y] + €[~ sin 2¢; X Y]

. Analytic methods such as m.atc.hed asymptptic expgnsions de- 1B {i [sin Gi(X2Y +7?)

rive their power from the exploitation of specific coordinate sys- 4
tems and symmetries. Therefore, compared with general numer- ) ) L3 4
ical approaches, the realizable scope of the present method is +sin 3¢; (X Y —3Y )] } +0(¢)
restricted. Furthermore, attempts to obtain the next term of the (4)

asymptotic expansion beyond the three terms identified herein

are beset with complicated algebra whereupon the reasondpigscending powers of the Helmholtz parametet ka, and
clear physical interactions between the small scatterer and W& the inner coordinates

radiation field become obscured and the method loses its funda- X — £7 y — (5)
mental appeal. Not only are the resultatdsed-formanswers a

invaluable characterizations of the scattering problem, but tAé R = 1, X = cos ¢, Y = sin ¢ and the incident wave is
back-and-forth interplay between the near (inner) and far (outer . . 27 1 - .

fields of the mathemgtizal procedure give t(he reazder a neSN vie\/gz/}"’)}"’;1 =el-2 s di sin @] + ¢ [~ sin 2¢; sin 2]

of the important physics. Unlike numerical approaches that in- + 3 {1 [Sin $; sin ¢+ 1 sin 3¢; sin 3(4 }
volve a matrix inversion, for example, each important physical 4 3

parameter can be traced through to the final result. +O(e*). (6)

Qe
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The tangential derivative on the curved surface Insertion of (15) and (16) into the boundary function (13) per-
1 9 mits identification of the Fourier transforni¥(x) andQ(r) in
<§ 96 ) (14) when evaluated at = 37 /2. The static solution can now
= S ) ) be written as
= ¢[—2¢ sin ¢; X] + €[ sin 2¢;(X* — Y )]
+ {ﬁi[Sin $: X +sin 3¢;(X? — 3XY2)]} WG ) =R A6 ) S 2@) o' &)
7 1
T O(e4) (7) +é§[an¢i@,> * sin 34,
is useful to connect this TM solution via conjugate functions to 92
the TE field in Section Il <28—§QI(§’ m +1(&, 77))} 17)
Laplace’s equation is invariant under a mapping to bipolar
coordinateg¢, n) [6] in terms of the integral function
sinh ¢ sin 7 b sinh(kn) cos(ké)
X=——"-—""— Y=——"— 8 I =
cosh & — cosn cosh& — cosn ®) (& m) /0 sinh(37r/2) cosh(mk/2) dr
with metric coefficients oo i irg
1 =5 | Sy 09
he = hyy = 9) — oo SINN(O7TR cosh(mk

" coshé —cosn
from the Jacobian of the transformation. Several surfaces of ¢

stant¢ and# are drawn as dashed curves on ihe plane of
Fig. 1. Note that

The integrand has two classes of poles on the imaginary axis
Pine complexx = u + v plane given bys,, = 2n/3 and
= 2m + 1 and is analytic at the origin of theplane. When

£ is positive, the symmetric integral (18) is computed as the sum

X24v?— cosh&+cosn _ .\ hen 0= /2, 3 /2 of residues in the upper-half plane
cosh & — cosn
(10) L Sin 27177/3) e /3
and the semicircular trough boundary in the original coordinat{e(g’ = Z coSs mr/g)
system is mapped to the line= 37 /2, while the flat sections ";1
|z| > a are projected onto the ling= 0. Therefore, the entire _9 Z sin[(2m + 1)ple=@m+0e
domain of the original trough problem of Fig. 1, consisting of oo
the trough channel plus the complete upper half ofithgplane oo oo
is mapped via (8) to the stripoo < ¢ < 00, 0 < 7 < 37/2in =-2 ) sin(nn)e ™ + 3 Z n(2nn/3)e"2"¢/?
theé—n plane. Hence, the static boundary value problem is n=1 n=1
< 822 N a_2> YO (e my =0 1) =—3 [coth £¢] + 2 S [coth £(]
9¢ _ sin 7 2 sin(2n/3)
subject to T cosh € —cosn + 3 cosh(2¢/3) — cos(2n/3)
v, 0)= 0 (12) (19)

with ¢ = ¢ — ¢n. This is an appropriate expansion for the far
behavior of the inner field becaugeandr both approach zero
WO (¢, 37/2) asr — oco. The first several terms of are

on the flat portion of the bounday and from (6)

—2¢ sin ¢, 9 . sinh & 3% 5
PO Bk _ 2p; ——> Z - — S AP — ...
€ [ cosh & } +e [ sin d)’coshQ : €7 I=S[-A(— A3(° — A5¢ ] (20)
indi 1 . . .
' [5111}1(7)5 \sin 36, <sech ¢ tanh? ¢ — : sech 5)} even in¢ as required by (18) and with constants
COS
(13) A =4, Az = _:égw As = 3141?)28' (21)
on the curved surface. Even and odd symmetry componentdfbferms of the polar representatign= xe~*, I, and its re-
the solution are written as Fourier integrals quired{-derivatives are
w0 (¢ )= /Oo {g((“)) cos “g } sinh k7 de.  (14) I =A;x sin B+ Asx? sin 38 + A;x° sin 58
F ° 0 K) sin K oI
. . . . =34 23 4+ 5A; 43
Successive differentiation of the spectral representation [7] 85 3 sin 20+ 545X sin 4f
&I
cos Iﬁf _
dr 15 —— =6Asy sin 3 + 20A4;x> sin 34. (22)
Cosh 5 cosh(rr/2) " (15) a¢?
supplies the additional forms In terms ofZ = R€?, where

secﬁg }_ 1 /Oo (liIiQ)COS(IiS) dre. (16) ¢ 1 1 1
0

secht tanh” £ [~ 2 cosh(rr/2) 5 =tanh™ — = Z tomtast (23)



804

the three forms above are

1 1 1
I=5-24 -4+ —+—
> 1<Z+3Z3+5Z°>
3
1 1 32A5
—8A. [ = 4+ — ) — =2 4 ...
8Az <Z + 3Z3> 75 +
sin ¢ 2 sin 3¢
~2A A1 +843 ) ——
"R + <3 1t 3) R3
2 - =
+ <—A1 184, +32A5> sin 5¢
5 R5
or | 1 1 \? 545-16
S| =844 =4+ =) - == -
o " | T <Z + 3Z3> 73
sin 2¢ sin 4¢
2?1 [ 1 1 20A; -8
AN =640 2 = — ) 2
ag2 T TR <Z * 3Z3> Z3 }
sin ¢ sin 3¢
~ 1243 + (243 + 1604;) —.

The “static” solution (17) in the inner field is therefore

VOU(R, ¢)
sin ¢
R

~ —€2i sin ¢;

24,

sin 3¢

5

sin 2¢
2

+ €2 sin 2¢;

124,

sin ¢
R

+ (:3% {sin (f)7 |:2A1

1,
+ 5 S 3¢z |:(2A1 + 24A3) R

2
+ <§A1 + 1245 + 320A;,>

+ terms of higher order ia.

B. Perturbative Correction

A perturbative correction to this inner field proceeds by exs

2
+ <;A1 + 843 + 32A5>
J

+ (843 + 804;)

sin 3¢
R3

2
+ <§A1 + 8A3>

sin 5¢

R5

|

2
+ <§A1 + 8A3>
sin ¢

)

R3
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o? o?
a¢ oy

I(¢,n)

A particular solution that vanisheswgt= 0, 37 /2 is required
(cosh & — cos )2’

of
< (32)

Direct use of the Green'’s function is precluded by the singular
behavior at¢, n) = (0, 0), which, therefore, must be removed
by means of a function that mimics the singularity but fails to
satisfy (32) exactly. With the far behavior éf¢, n) given by

)W?@nn:mﬁn@

(24) (22) and with
o 2n (”7)271
cosh & —cos = Z W
n=0
_ (g2 oy | 1 &=
(25) =(¢ +77)[5+T+"' (33)
the forcing term of (32) is
I, m)
(26)  (cosh & — cosn)?
~ A, 51113/3 4 <4A3 B %z‘h) sin 34 4 %Alsmﬁ (34)

in terms of the cylindrical bipolar coordinates. Particular solu-
tions corresponding to these three forcing terms are defined by

Vg[x_l In x sin ] = —2x"% sin
Vg[x In x sin ] =2x 7" sin g3

sin 4¢ 21, ool
7} Vilx sin 38] = —8x* sin 34. (35)
sin 3¢ The desired asymptotic solution of (32) is now assembled and

written as

|

U ~2i sin ¢ {—ZAlx—l In x sin § + §Aix In x sin 3
+ 3(A1/12 — Az)x sin 343
B
+ <—1 +B2X> sin [3} .
X

Inclusion of the two homogeneous terms, with constahtand
B> derived in Appendix A, sustains the order consistency of this

(27) (36)

2xpansion. These constants are needed to justify the matching in

pressing the scaled Helmholtz operator in inner coordinates Section II-C, but their determination requires more information
(VEH 4+ U(R, ¢) =0

and writing the (partial) solution as the series

than an asymptotic solution can provide since there is a Dirichlet
condition atp = 37 /2 to be satisfied.
The pertinent combinations of the far-field bipolar coordi-

(28)

U(R, ¢) = ¥ (R, ¢)+¢2\1/2(R’ ¢)+¢3\p3(3’ $)+--- (29) nates are now expressed in terms of the inner polar coordinates

: . . . . . . via
in which there exists the possibility of inserting terms with

scale factors involvindn ¢. Insertion of the series (29) into the
Helmholtz equation (28) yields upon equating like powers, of

an iterative sequence of Poisson equations

ViV, 10 = —V,.

The first two terms ofJ(¢) andO(€?) are the first two terms in
the static solutiont®) (R, ¢) of (27). That is, both; and ¥,

satisfy Laplace’s equation while
ViUz =~

2

R

cos 2¢
3R?

1
lnxz§ln(§2+772)~1n<

)+

—igh —3ig
—ig ¢ ¢
Xe v 2 < + _>
(30) R 3R3
B 1 ] i
Z_ ~ | ReE? —
X 2 < ST )
) _
—3i8 _ ¢ Z 2 g
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These expressions enable the particular solution (36) to Bee corresponding first term in the outer field is, therefgrey
written e21h, with near behavior

o) o~ —didy sin ;220 asp— 0. (44)

~ A1 R In(R/2) sin ¢

2¢ sin ¢;
1 . This must be the close-in limit of the cylindrical wave function
+ E[(A;[/G-FZBQ) Sln (/) 9
. (1 : :
— (A1/12+ A3) sin 3¢]  (38) Hy (p)sin ¢ ~ wip OB ¢ (45)
asRk — oo. and thus
Py = 2 Ay sin ;HI (p) sin g+ -+ . (46)

C. Outer Field Expansion and Matching Results

The outer field consists of outwardly propagating solutions E)xpressed in inner coordinates, this first term of the outer field

the Helmholtz equation that vanish on the ground plane whéPe

¢ = 0, 7. Evidently, an appropriate expansion for the outer field - — _9%A sin o, 2e 3R 1 3RI_1n(R/2
in terms of the outer coordinaje= kr = eR is <Y iy sin g ROt A=t (R/2)

W(p, ¢) = cL()HV (p) sin ¢+ ca(e) H (p) sin 2+ - - . +1/2 =y +7i/2} | sin ¢

(39) (47)
The region of overlap between the inner and outer expansions
is characterized by = ¢ with 0 < » < 1 such that small which introduces terms of orde? ande® In ¢ into the inner
p corresponds to larg® = <*~*. The following development field. Note that:/» does not affect the(e?) term in ¥. The
is facilitated by the explicit near-in behavior of the first threéner field expansion, modified from (29), is now of the form
Hankel functions

U=el; +0,+In ey +SUg+ -0, (48)
H]El)(p) ~ i F —pIn(p/2) + p(1/2 — v+ 7ri/2):| The dominant far-field behavior of; is known from the pre-
”1L p16 vious quasi-static result of (27),
B N_[_H_ 2 l(p/2 in 2
2 (0) dmi | p? F Ine/2) Wy =¢? sin 2¢; {1214381;—2(7) + - }
+p*(3/4 — y + 7i/2 } in 2
PR3/ =y wif2) = sin 2¢; [12A36481n2 ¢ } . (49)
P
Dy, L [384 48 . 5
B3 (p) 24mi { 3 + p 60— " In(p/2) This inner field triggers a corresponding term@fe*) in the

5 outer field such that
+p°(11/12 — v + 7ri/2)} : (40)
W~ gy + My (50)
A careful matching of the outer behavioR — o) of the where
inner field¥ (R, ¢) with the inner behaviafp — 0) of the outer sin 26
field ¢ (p, ¢) is accomplished by grouping terms of common thy ~ sin 2¢112A3p—2 asp—0 (51)

e-dependence and permits the asymptotic construction of the _
trough-scattered field. The back-and-forth interplay between tA!st be the near behavior of
inner and outer fields can now proceed directly, unencumbered .. (1) .

X L N ) = 3 2¢; AsH. 2¢. 52
by the above detailed derivations of the various inner fields. The V4 mi sin 26, AsHy ™ (p) sin 2¢ (52)
static inner field is forced by the boundary data of the incideffhe two terms of the cumulative outer field (50) are(@fe)
wave (6), whereupon the largest componen¥ofn powers of and O(e?) when expressed in inner coordinates. According to
€, 1S (47), the distant behavidz — oo) of the next two inner field

components is
V=l +--- 41
' ( ) \Ifgl ~ 2LA1 sin (f)ZR sin ¢

where (27) supplies Wy ~2A sin ¢;ln B/2—1/2 + v — wi/2]R sin ¢.
(53)

(42) The harmonicls; satisfies homogeneous boundary conditions
atn = 0, 37 /2. Since the asymptotic form df3; ~ R sin ¢ =
In terms of outer coordinates, this first term of the inner field i$" is both harmonic and proportional to the boundary behavior
in ¢ of ¥; onn = 37 /2, the desired function is the combination
S11
sind } ,
p

\Ifgl = A1[2L sin (/)ZY — \Ifl] (54)

Wy = —2¢ sin ¢ {2141 Slzd) 4. } .

eV = —2¢ sin ¢; |:622A1 (43)
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The perturbation series (29) reveals thaf is a solution to a  Parallel to the static field development from the TM boundary

Poisson equation (32), which must cancel the nonzero incidefata of (4), thed (<) component of the TE field is now written

field of (4) on the troughy = 3/2. The static field{” of .

(17) furnishes the needed nonhomo boundary behavi WY = (=2i cos ¢:)J (€, 1) (59)
geneous boundary behavior, 1 )

and\Ifgp) of (38) displays the corredt ln(R/2) sin ¢ far-field

variation in (53). Hence, in addition to the sulnéo) + \pg”, a

harmonic function is required that vanishesp#s 0, 37 /2 and 1 ﬂ _ a_J (60)

has the far-field formvR sin ¢ = Y of the remaining terms in R3¢ OR

(53). Asiin (54), this additional function is [2¢ sin ¢;Y — U],

where (53) supplies the scale factor, resulting in

where, since

J 4 I is an analytic function o +4Y = Ré® = Z. In view
of (8), itis also analytic in the bipolar coordinates- £ —in =

Uy =0 + 0P 4 A (—1/2 4~ — 7i/2) xe~*¥, where the pertinent Cauchy—Riemann equations
[2isin ¢ Y — U], (55) aJ  1al 1aJ ol 61)

o . ax ~ x98  x 9B Ix
The four components of the inner field (48) now permit its ) ) )
expression in outer coordinates ug¢e* ). Proper arrangement détermine the harmonic conjugate
of these terms and matching to the near behavior of the three 3 5
. . ; ) =-A 3 — A 3 — As 53 2
Hankel functions yields the final form for the scattered field 4 1X cos £ 3X" cos 3f X" cos 56 (62)

ticipated in (19
Y(p, $) =2 sin $i{2Ay — *[541/24 + By anticipated in (19)

+ A2(In e~1/2 + v — mi/2)]} J 4+l = 2 coth ¢ — coth 3¢. (63)
+sin 3¢;¢*(41/12 + 43)|H{7 (p) sin ¢ Similarly, theO(e2) portion of the static TE field is
+ 37 sin 2(/)i€4A3H§1)(p) sin 2¢ 4 7 sin ¢ie* © aJ )
(A1/12 + A)HD () sin 3¢ + O(° n ¢). W2l = —cos i + W (64)

(56) where the additionap;-independent term arises from

8\113
lIl. TE POLARIZATION < R >R=1 o 1 (65)

The scalar field of interest is now the single component gf (58) This flux out of the trough generates a monopole field

the magnetic field, which is polarized in the axfa) direction. 5nq must be balanced by an equal flux from infinity. The two
Some of the ensuing analysis mimics that for the TM polarizgsqyirements

tion and is consequently abbreviated. The Neumann boundary
condition, vanishing of the normal derivative on the boundary <8\P§> =0foré #0
C, applies and the incident or geometrical optics field is an =0

”(/}i = e_ikr COS(¢_¢5) + e—ik’l’ COS(¢+¢7-) and

—ikx cos ¢;

=2 cos(ky sin ¢;)e < /oy
. 2 —
=2 cos(eY sin ¢;)e X o8 /_Oo < n )nzo dc=n (66)
~2— 2eX cos ¢; — (Y7 sin? ¢; + X2 cos® ;)
+ i3 cos ¢; (XY2 sin? ¢; + %X?’ cos? ¢;). (57)

on the image of the flat portion of indicate the presence of a
Dirac—delta function

On the curved boundary of the electrically small trough, the ovs3 B [
normal derivative is ) m6(§) = oS K& ds. (67)
<a¢i> This singularity exists at the origin of the transform coordinates
IR ) g1,y <o (&, ) corresponding to infinity in the originat—y plane. A
= €[—2i cos ¢; X] + €2 [—1 — cos 2¢( X% — Y?)] suitable Fourier transform representation for the monopole term

is thus evaluated by residue calculus

o — /°° cosh k1 — cosh(nk /2) cosh k(37 /2 — 1)
(58) 27 ) sinh(37r/2) cosh(mr/2)

+é3 {2[3 cos ¢; X + cos 3¢ (X3 — 3XY2)]}

+ O(eh).

cos k&

dr

The scattered field arises to cancel this nonzero normal deriva-
tive. The static component of the scattered inner figl@ is a

i , i i =21n 2 cosh 26 — 2 cos 2] — In[2 cosh £ — 2 ]
solution of Laplace’s equation subject to these Neumann con- = 3 cosl 3 COS 37 cos cos 7
ditions for which the compatibility condition will necessitate a 2 cos 2¢
flux at infinity. ~In(2/R) + 5 —p

+ 3 In(2/3). (68)
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According to (58), theD(<?) static field is analogous to (38). The constant is evaluated in Appendix B.
927 Matching the near-field behavior of the Hankel function of
e + J)} (69) order zero

By exploiting the conjugate functions and, algebra similar ~ H{Y(p) ~ %[ln(p/Z) + 9]
to that in Section Il can be avoided, and the static TE inner field &

\I/:())O) = i |:COS ¢:3J + % cos 3¢; <

deduced in the form +1- %pQ {1 + %[111@/2) +v - 1]} (75)
w
VOR, ¢)
cos (/) cos 3¢ with the ¢-independent component df, in the inner field,
~ €2 cos ¢; |24, A1 + 843 R’ demonstrates that the outer scattered field has the term
< A; + 84 4 324; ) Cozjﬂ W~ mic? HV () /2 (76)
2 {111(2/}2) n g C0;22¢ +cos 2; [12A3 CO;% and so the inner field must have terms
1 24 i
cos 4¢ U~ —ZR?2014+ 200 2 —1]y =
+(8A45 + 160A45) o ” 1€ R { + 7r[n(eR/ Y+ —1] 5 77)
_ 3t {COS & [GAl cos ¢ T (24, + 24143)@} whichincludeg1/4)e* In ¢ R?. Comparison with the monopole
4 R R term(—1/2)¢2R? in the incident fieldy; of (57) shows that the
I 1 cos 3¢ [(ZAl I 24A3)COS ¢ monopole term in the outer scattered field is modified to
2 cos 3¢ NE 1227 gL
+ <§A1 + 1245 +320A5> T}} (4 5 [ 26 ne| Hq'(p). (78)
+ terms of higher order ia (70)

This is in agreement with [3], since Hinders and Yaghjian work
analogous to (27). Next, a particular solution is required of with conjugate expressions.
By using the exponential form af; in (57) it can be readily

0? 0? (») J(En)
= 4= —9; , ’ shown that
<8§2 * ) W38, m) = 2 cos ¢ (cosh & — cos 7)?

. (71) O/ a; ) 1,
subject tod¥{” /an = 0 atn = 0, 3x/2, but now the advan- 5 d¢ = —2meJi(e) ~ —me" [ 1—ce ).
T R=1

_ R/
tages of conjugate functlons are reduced by the presence of the = (79)

metric (cosh & — cos 1) =% which is not analytic ir¢. Thus, for  The monopole must cancel this flux, i.e., its strength up te*)

example, there is a sign change in the formula analogous to (34)described by modifying (78) to the form
namely
2

J(€, n) P~ T {1 _lenme- égﬂ B (). (80)

(cosh &€ — cos )2 2
cos /3 1 cos 33 1  cosf ; ; ; ; ; ; ;
~ —4A; 4A5 — — Ay T oA ) The higher order multipole fields in the inner field expression
x? 3 3 b% (70) indicate that the outer field(p, ¢) also contains the terms
(72)
. . . T 2 2 3Al

Note that since/ is an odd function of, the compatibility con- meT | =241 cos ¢; +¢€ 4 cos @i
dition is satisfied. Hence, the use of a formula conjugate to (35)
gives the particular solution +(A1/12 + As) cos 3(/)2‘)} H]El)(p) cos ¢

\Ifép) ~2i cos ¢; [ZAl)(_l In x cos B+ £A1x In x cos 38 — mie*3A3 cos 2(7)7;H§1)(p) cos 2¢

— et (A1 /12 4 Ag) cos ¢iHS" (p) cos 3. 81
—%(A1/12—A3)x cos 33 e (A/ 3) ¢iH3 " (p) ¢ (81)

D, Asinthe TM case, the inner field is henceforth of the form (48),
+ <7 + Dg)() coS /3} (73)  with
from which (37) reveals to exhibit the distaRtbehavior W3 = Aj[—2i cos ¢ R cos ¢+ V] (82)
@)
v 1 and
Sicos b A1R In(R/2) cos ¢ + 7
- [(A1/6 + 2Dy) cos ¢ + (As + A1 /12) cos 3¢] Uy =00 4 0P 4 A (y - 1/2 — in/2)

(74) - [—2¢ cos ¢; R cos ¢ + V1] (83)
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such that the scattered field expansion follows: Hence, the pertinent far-field form
i 1 1 in 2
Vo)~ T 1= e e | 1) e (1 singm
2 2 8 1 (& n)—(0,0) 3 cosh %50 — cos %770
3A -
+ me? [—2A1 cos ¢; + € <Tl cos ¢; ~ % as (&o, m0) — (0, 0). (A.3)
&+
+(A1/12 4 A3) cos 3(/%‘)} Thus, if the terms in (34) are removed from the right-hand side
W . of (32), the remaining particular solution behaves as a multiple
H)(p)cos¢ — 2me” cos ¢; of n = x sin B asy — 0. This removal is achieved by suitably

[A3(y—1/2—in/2+ In¢)+ A1 /12+ Dy]  combining three independent functions which vanishy at
TIeY) L4 _ ‘ 0, 3w /2 and whose Laplacians have leading terms of the type
H;7(p) cos ¢ + mie*(1/18 — 3A3 cos 2¢;) sin 3/x°, as in (34).

- H{M(p) cos 26 — met (A1 /12 + As) cos ¢, Consider the produdf™ = f f of the two harmonic func-
- HM(p) cos 3¢+ O(e® In ¢). (84) tions
0 2
f1 S 37 f2 = In(2 cosh & — 2 cos 7).

IV. CONCLUSION ~ cosh 26 —cos 2p’ )
The method of matched asymptotic expansions yields sevefgl Laplacian '

terms in a perturbation series for the scattered field due to the
TM and TE excitation of the semicircular trough in a groungs2 (1) =2Vf -Vfa

plane. These low-frequency anglytic splutions are expressed in _ % sin % n sinh % ¢ sinh &
ascending powers of the electrical size of the trodghand =2 5 732 cosh £~ cos

also involve the logarithm dfa. The simple form of the results (cosh £& — cos 3n) K
explicitly shows the dependence of the trough-scattered field 2 cos 21 z sin? n

upon the source and observation angles as well as the frequency
via ka. The unmistakably dominant feature of the TM-polar-
ized far field is the dipole term of(ka)?, with amplitude in R
agreement with the dual-series results of Hinders and Yaghjian cosh § — cos 77
[3], where the constar#A; = 5/27 is accurately computed as
0.185. Clearly, the next terms 6f(ka)* in the multipole ex- aineq by first expanding,, f> and then evaluating f, - V fo.
pansion have insignificant effect upon the radiation field. In thg,, o asymptotic form off, is

case of the TE-polarized wave, the scattered field also contains

cosh %f —cos %77 (cosh 2¢ — cos %77)2

sin 7

(A.5)

exhibits the required singularity. Its details are more easily ob-

a_monopole component (if(_/m)2 that ?s independent_of the in- fo~ln [52 + %54 . %774]
cidence angle. No conclusions applicable to electrically larger s L )
troughs follow from this low-frequency solution, which quickly = (&% + %) +1n [1 4+ (&% — )]
becomes invalid aka increases beyond unity. ~21n x + 1—12X2 cos 28. (A.6)
APPENDIX A Define
EVALUATION OF THE CONSTANT Bsy
Use of the exact form of(£, 5) from (19) shows that the error f3 =n [§(2 cosh £ —2 cos 3)] (A7)
term in (34) isO(x). The Green'’s function for the problemis i
with asymptotic form
G(Sv 77;507 770) *
o |:COSh 2(¢ — &) — cos 2(7— o) a1 I ~2 lnx—i—%XQ cos 2/3:111(£2+772)+2—%(52—7(7;)5)
A cosh %(5 —&o) — cos %(77 + 70) . Hence '
but the right-hand side of (32) is too singulanat 0 for direct 30f; 3n 3n _ 1y
use of G(¢ — &, n; o). Note thatdn( can be written as an /1 = 3o CETE W 3 sin 8 <; - ﬁ) (A.9)
integral of the second term iR(¢ — &, '), i.e.,
and the required Laplacian is
7m0 2.7
4G =2 S 37 dnf 2 (1)
TG =—- = .
3 cosh 3(¢ — &) — cos 377/ g VIER =2V -V
i~ oy O 2 O O
- 2
=—4 Z % exp (—%n|£ — £0|) sin %nn sin %71770- (z; .an X4 ?/33 9B g
n=1 o sin [ _ sin /[ _sin /' (A.10)

(A.2) ¥3 9y
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The limiting form of the Laplacian of a second function + £(A1/12 — As)x(sin 38 — sin f3)
F@ = f f+ is similarly -
12sin 8 4sin B 4sin 38 _ 54 sinﬁzM (A.19)
V2@ o _ sin /[ _ 4sin I5 _ 4sin 15 ' (A.11) 92 X 2 .

x* 9x 9x =t

A third function agrees with (36). Evidentlyp; = 0; in fact, it was precluded

43 by the9/4 factor in f*. Addingln (9/4) to f* corresponds to

F® = _ Z RO 77 nr In[¢? + (n + 3n)? adding a homogeneous solutionf%? . The required solution

WS €2 (0 + 3nm)? is therefore
(AlZ) 2¢ sin (/)Z

has the singular behavior of the first term on the right-hand side \pgp)(g, n) = [ClF(l)(S, n) + CQF(2)(§, )

of (36), but also vanishes at= 0, 37 /2 because iff is an odd 81 5
function, then the image system is such that +C5FP (¢, 77)}
oo oo 3w/2
Y fn+2nL)=0 at n=0,+L, £2L, --- . (A.13) n 2 sin ¢; / /
n=—oo 47
—oo 0
Its Laplacian follows from (35
P &) . { 1(&0,m0) V3
V2E®) — 4 Z n+ 37;7T _— 4 sin /3 (A.14) (fjosh & —cos )2 81
nEle 187 3nm 2 [ F® o, no) + C2E@(&o, mo)
The desired linear combination of the above three functions ) @
follows from writing +C3 ) (&, 770)} }
v = mzlirlld)’ [ClF(l) + CF® I [cosh 2(& — &) —cos 3(n — 770)}
" Lcosh (€ — &) — cos 3(n+mo)
+C3 F'* + bounded term}s (A.15) - d€o dno (A.20)
whereupon whereupon its far-field limit¢, ) — (0, 0) yields, from (A.3)
VQ\I/gp) N 21 sin ¢; and (A.19), the remaining constant in (36)
81
4 sin B _ _ A g~ In@Bem) -1 1
) {[03 = 3(CL + ()] 3 & B (A3 Ai/12) 972 — n? 3w
4 sin 3 oo 37/2
— (Cl + 02) 9 / 50, 770) VQ
X . (cosh &y — cos 19)? 81
. 0 —
_ <cl + %@) sin 35 } . (A16)
X

. . . . . ' [CIF( )0, m0) + C2 P (&, m0)
The scale factor 81 trims the ensuing arithmetic. By comparison

with (34), set +C5F P (6o, m0)] }
C3—3(C1 +Cq) =81- 4
—5(CL+C) =81-4,/3
Cr+2C, =81-(A1/3—-443).  (A17)

i 2
sin 7o

’ 2 2
cosh 5&o — cos M0

déo dio. (A.21)

Now check the behavior of?’ APPENDIX B
EVALUATION OF THE CONSTANT D>

In 2 1
(1) ~ _X . & . 1 .
r 6 X sin. 9% In x sin § + g A cos 20 The Green’s function for the Poisson equation (71) with Neu-
| 2 1 mann boundary conditions at= 0, 37 /2 must be defined b
F@ we2X gin 8- gX In x sin 5+ gX sin 3 cos 20 Y 4 ™/ Y
) LN . a3y 1 V2G(E, m) = [6(6 — &) = 6(¢ + £0))6(n — m)
FO 2 X (L) csin g Y BT €0 >0 -
X s =1 " 0 < o < 3m/2 '
(A.18) whereupon
Thus
. W @) 3) G=2 [COSh 56~ &) = cos 507 — )
B3 [OIF + Co I + O3 F } 4r cosh (5 + &) — cos %(77 7o)
Iny . 1 ) cosh 3 (5 £o) — cos %(77 +10)
~—2A—2 Z . B.2
24, " sin 3+ 6A1X In x sin 3 cosh 2 (5 &) — cos %(77 ) (B.2)



810 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 5, MAY 2000

with the forcing term restricted t§, > 0. This formulation of with the same constants as in (A.15). The asymptotic behavior
@ is, of course, consistent with the right hand side of (71) beiraf the F¥) is

an odd function of. For0 < [£| < &o, (B.2) can be rewritten as In x 9 1
FO ~6—=2 cos B+ §X In y cos 5+ ZX cos 3 cos 23
X

§o+§
: 2
47rG:—2 / [ sinh 3¢ F(2)~61n—X cos [3—1—;)( In y cos [3—1—%)( cos [3 cos 20
35 . cosh 35’ —cos 5 (77 o) X ,
o In 2 = In(3n7
sinh %5/ :| dg/ F(3) N_2TX COS /3 — <§) X COs /3 Z (712 )
cosh 2¢/ — cos 2(n + o) "~ (B.11)
1 - 1 —2né&y /3 i
—8{554‘; e ° ie.,
— LG FD 4 0 F® 4 O3 F®
-sinh 2n& cos Znn cos %nno} (B.3) ! [ ' ? s }
~ 2A11117X cos B+ éAlX In x cos 3
and so the far-field form is such that
— $(A1/12 — Az)x(cos 33 + cos f3)
7r 2 sinh 2&
-G —— 3 5A = In(3nw
& (¢,m—(0,0) 3 cosh %50 — cos %770 + ﬁx cos 3 Z (n2 ) (B.12)
—2 N
R as (&, m0) — (0, 0). (B-4) " and thereforeD, = 0in (73). The desired solution is thus
2¢ cos ¢;
In this case, the remaining particular solution behaves as a mttl (€, n) = —Td) [QF(I)(S, ) + CoFA(E, n)
tiple of £ = x cos S asy — O. O F®
Introduction of the function FC (L, 77)}
. oo 37/2
h 2 £ 1 P . ’
I = s;n 3¢ ; zgaf2~3cos/3<—+i> +2Lcos¢,
cosh 5§ —cos 57 2 0§ x 27 Ax
(B.5) 0 0
together withf,, f3 and the same functional forms 8 and T(€0, 10) v2
(2) . . . .. . 0, 7o _O O F(l)
F'%) of Appendix A, gives the asymptotic variations (cosh € — cos 70)2 | 81 1 (60, 70)
v2p@ ., _ 12 Czs p + 4 (;OS B _ cos 38 (B-6) +Cy ' (&, o) + Ca (&, 770)} }
X X
cosh 3(£ = &o) — cos 3(n — o)
12cos §  4cos 3 4cos 38 .ln [ 3 3
2 (2
VZFE® ~ & + 9 oy (B.7) cosh 2(£ + &) — cos 2(n— o)
The X .COSh ( &o) — cos %(77—}-770)}
e image system cosh 2(€ 1 &) — cos 2(n 4 10)
¢ - d&o dno
F® = _ _ 1 2 3n7)?] (B.8

- which yields in the limit ag¢, n) — (0, 0)
satisfies the specified Neumann conditions and exhibits the re-

quired behavior in its Laplacian Dy (A1/12 _ Ag) - oA21 1n(37217r)
97 — n
203 _ 4 N £ L dcosp oo 3m/2
VI =4 Ym0 ®9 =y Heom) V3
T 3 (cosh & —cos 79)2 81
0 0
Then
: [OlF(l)@o, 10) + C2F (&0, m0)
() _ 2t cos ¢
vy = 81 +C3F® (&, 770)} }
: [ClF(l) + CoF® 4 3 F® 1 bounded term}s sinh 2,

. déo dno. B.14
(B.10) cosh %50 — cos %770 S0 drjo ( )
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