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Matched Asymptotic Expansion for the
Low-Frequency Scattering by a Semi-Circular Trough

in a Ground Plane
Robert W. Scharstein and Anthony M. J. Davis

Abstract—Plane wave scattering by an electrically small circular
trough cut in an infinite ground plane is solved analytically for both
the TM and TE polarizations. A quasi-static solution for the inner
field based upon a transformation to bipolar coordinates exploits
the failure of the narrow trough to react to the detailed wave nature
of the incident field and forms the starting point for the method of
matched asymptotic expansions. The distant behavior of the inner
field must agree with the near behavior of the outer field, which
is a radiative solution of the Helmholtz equation. In addition to
yielding several analytic terms of the solution in low-order powers
and the logarithm of the trough wave size the matching process
provides an account of the interplay between all of the physical
parameters.

Index Terms—Asymptotic analysis, electromagnetic scattering,
electromagnetic scattering from a gap, ground plane, quasi-static.

I. INTRODUCTION

T HE SCATTERING of a plane electromagnetic wave by the
concave trough and several variants is treated by [1]–[4].

This geometry is pervasive throughout applied electromagnetics
and is simple enough to be considered a canonical scatterer. For
example, it is a basic version of the cavity-backed aperture that
is a central topic in aircraft radar signature studies.

Integral equation techniques based upon the application
of the equivalence principle to a curved boundary between
the partial cylindrical cavity and a half-space are developed
in [1], [2], and [4] and allow for the presence of different
dielectrics in the interior and exterior regions. In such cases,
the picture is that of a “partially embedded dielectric cylinder”
[2]. Some simplification in the mathematical details occurs
when the cylinder is half buried, producing the special case of
the semicircular trough [3], [4]. Although the initial approach
in [2] is a moment-method expansion of the aperture field, the
computations there quickly become equivalent to the “dual
series” approaches in [1], [3], and [4] and whereby Fourier
series of cylindrical harmonics are truncated and forced to
agree in the mean-square sense over the semi-circular boundary
surface. As is common in such mixed boundary value problems,
any advantages of using ordinary eigenfunctions of the wave
operator are shadowed by the forfeit of orthogonality over
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the split boundary. Such methods are practically restricted to
the low-frequency regime, because of the nonuniform conver-
gence of the modal expansions. However, the persistence and
patience of these authors [2]–[4] with computers has resulted
in some impressive numerical results within the accuracy
limits implied by “numerical” or “self” convergence tests,
presumably for troughs as large as . The wavenumber
is and is the trough diameter.

The physical source of the convergence difficulty in the
Fourier series is the well-known singular behavior of the fields
in the vicinity of the two corners where the curved channel
joins the flat ground plane. The tenable objective of the present
paper is the derivation of several dominant terms in ascending
powers of that comprise a perturbation expansion for the
trough-scattered field based on the intuitive idea that the far field
sees the trough as a point singularity while the near field sees
very long waves. Both TM (soft) and TE (hard) polarizations
of the incident electromagnetic wave are considered. Each case
begins with a static solution which is successively modified
and linked to the proper radiation field under the framework of
the method of matched asymptotic expansions [5]. The starting
point for the method is the exact solution to the static Laplace’s
equation, which is forced by several terms in the low-frequency
expansion of the boundary behavior of the incident geometrical
optics field. This exact solution is derived as a Fourier integral
in bipolar coordinates, in terms of which the physical domain
is an infinite strip. The far behavior of this inner expansion
is matched to the near behavior of the appropriate radiative
outer field, in a careful succession of steps that group terms of
common, low-order powers of . In addition to supplying the
usual Hankel functions for the outer expansion, the Helmholtz
equation provides the mechanism to generate higher order
terms in the inner expansion via a perturbative sequence of
Poisson equations. In the development, contributions of order

appear and the expansions are adjusted to include
such intermediate terms of magnitude between and

. The resultant low-frequency expressions are in agree-
ment with the applicable results of [3], for example. An entirely
different, and more difficult, high-frequency approximation is
required to characterize the interaction of the scatterer of Fig. 1
with short radio waves.

The TM excitation of the semicircular trough is formulated
as a scalar boundary value problem in Section II, the applicable
static solution is obtained in Section II-A, and the perturba-
tive correction to account for dynamic effects via the Helmholtz
equation is obtained in Section II-B. The quasi-static field reacts
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Fig. 1. Semicircular trough in ground plane.

directly with the corners and curvature of the trough and, there-
fore, the lengthy inner field calculations are performed first.
This permits a clean account of the motivating ideas and detailed
evolution of the matching procedure in Section II-C, resulting in
the desired far-field expansion for the trough-scattered TM field.
Section III is a concise summary of the changes required by
the TE-polarized wave. Modifications to accommodate dielec-
tric loading of the trough region are the subject of continuing
research by the authors. Likewise, circular indentations other
than the semi-circle are amenable to the present method, but
the mathematics is more clearly presented as a sequel. If the in-
dented boundary lies at the planar interface between penetrable
media, i.e., two dielectric half-spaces, then the mathematical
procedure of this paper can be suitably adapted, in principle, to
extract the dominant low-frequency terms in that scattered field.
In such a geometry, the excitation could also be a surface wave.
The vector problem of a plane electromagnetic wave incident
upon a partial spherical depression is a candidate for the general
technique of this paper. Toroidal coordinates are appropriate for
such a three-dimensional geometry, which is further simplified
through the orthogonality of the azimuthal Fourier modes of a
“body of revolution.”

Analytic methods such as matched asymptotic expansions de-
rive their power from the exploitation of specific coordinate sys-
tems and symmetries. Therefore, compared with general numer-
ical approaches, the realizable scope of the present method is
restricted. Furthermore, attempts to obtain the next term of the
asymptotic expansion beyond the three terms identified herein
are beset with complicated algebra whereupon the reasonably
clear physical interactions between the small scatterer and the
radiation field become obscured and the method loses its funda-
mental appeal. Not only are the resultantclosed-formanswers
invaluable characterizations of the scattering problem, but the
back-and-forth interplay between the near (inner) and far (outer)
fields of the mathematical procedure give the reader a new view
of the important physics. Unlike numerical approaches that in-
volve a matrix inversion, for example, each important physical
parameter can be traced through to the final result.

II. TM EXCITATION OF THE SEMICIRCULAR TROUGH

The TM electromagnetic field in this two-dimensional geom-
etry is completely specified in terms of the-directed compo-
nent of the complex phasor electric field, denoted here by the
scalar . With time-harmonic behavior, the
sum of the unit-amplitude plane wave incident from the direc-
tion of (Fig. 1) and the geometrical-optics reflection from the
ground plane is

(1)

in terms of both Cartesian and polar coordinates. The total field
is defined as the sum of this “incident” (geometrical optics) field

that would suffice in the absence of the trough, plus the scat-
tered field, denoted simply as, which is the direct contribu-
tion of the trough. The sought-after scattered field satisfies the
Dirichlet boundary value problem

on

(2)

where the boundary surface includes both the flat sections
and the semicircular arc , . Naturally,

consists of outgoing waves at infinity, in compliance with the
usual Sommerfeld radiation condition.

A. Quasi-Static Solution

The dominant interaction between the electrically small
trough and the incident wave (1) is adequately captured by the
action of Laplace’s equation

(3)

as the static limit of the Helmholtz operator of (2). To leading
order, the narrow trough does not “see” the detailed wave nature
of the incident field. However, even this zeroth-order static solu-
tion contains critical information about the full dynamic field, as
it is forced by the boundary data of the true incident wave-field
of (1). A Taylor series expansion of the incident field (1) for
small gives

(4)

in ascending powers of the Helmholtz parameter , and
with the inner coordinates

(5)

At , , and the incident wave is

(6)
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The tangential derivative on the curved surface

(7)

is useful to connect this TM solution via conjugate functions to
the TE field in Section III.

Laplace’s equation is invariant under a mapping to bipolar
coordinates [6]

(8)

with metric coefficients

(9)

from the Jacobian of the transformation. Several surfaces of con-
stant and are drawn as dashed curves on the– plane of
Fig. 1. Note that

when

(10)
and the semicircular trough boundary in the original coordinate
system is mapped to the line , while the flat sections

are projected onto the line . Therefore, the entire
domain of the original trough problem of Fig. 1, consisting of
the trough channel plus the complete upper half of the– plane
is mapped via (8) to the strip , in
the – plane. Hence, the static boundary value problem is

(11)

subject to

(12)

on the flat portion of the boundary and from (6)

sech sech

(13)

on the curved surface. Even and odd symmetry components of
the solution are written as Fourier integrals

(14)

Successive differentiation of the spectral representation [7]

(15)

supplies the additional forms

sech
sech

(16)

Insertion of (15) and (16) into the boundary function (13) per-
mits identification of the Fourier transforms and in
(14) when evaluated at . The static solution can now
be written as

(17)

in terms of the integral function

(18)

The integrand has two classes of poles on the imaginary axis
of the complex plane given by and

and is analytic at the origin of theplane. When
is positive, the symmetric integral (18) is computed as the sum

of residues in the upper-half plane

(19)

with . This is an appropriate expansion for the far
behavior of the inner field becauseand both approach zero
as . The first several terms of are

(20)

even in as required by (18) and with constants

(21)

In terms of the polar representation , , and its re-
quired -derivatives are

(22)

In terms of Re , where

(23)
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the three forms above are

(24)

(25)

(26)

The “static” solution (17) in the inner field is therefore

terms of higher order in (27)

B. Perturbative Correction

A perturbative correction to this inner field proceeds by ex-
pressing the scaled Helmholtz operator in inner coordinates

(28)

and writing the (partial) solution as the series

(29)

in which there exists the possibility of inserting terms with
scale factors involving . Insertion of the series (29) into the
Helmholtz equation (28) yields upon equating like powers of,
an iterative sequence of Poisson equations

(30)

The first two terms of and are the first two terms in
the static solution of (27). That is, both and
satisfy Laplace’s equation while

(31)

A particular solution that vanishes at is required
of

(32)
Direct use of the Green’s function is precluded by the singular
behavior at , which, therefore, must be removed
by means of a function that mimics the singularity but fails to
satisfy (32) exactly. With the far behavior of given by
(22) and with

(33)

the forcing term of (32) is

(34)

in terms of the cylindrical bipolar coordinates. Particular solu-
tions corresponding to these three forcing terms are defined by

(35)

The desired asymptotic solution of (32) is now assembled and
written as

(36)

Inclusion of the two homogeneous terms, with constantsand
derived in Appendix A, sustains the order consistency of this

expansion. These constants are needed to justify the matching in
Section II-C, but their determination requires more information
than an asymptotic solution can provide since there is a Dirichlet
condition at to be satisfied.

The pertinent combinations of the far-field bipolar coordi-
nates are now expressed in terms of the inner polar coordinates
via

Re

(37)
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These expressions enable the particular solution (36) to be
written

(38)

as .

C. Outer Field Expansion and Matching Results

The outer field consists of outwardly propagating solutions to
the Helmholtz equation that vanish on the ground plane where

. Evidently, an appropriate expansion for the outer field
in terms of the outer coordinate is

(39)
The region of overlap between the inner and outer expansions
is characterized by with such that small

corresponds to large . The following development
is facilitated by the explicit near-in behavior of the first three
Hankel functions

(40)

A careful matching of the outer behavior of the
inner field with the inner behavior of the outer
field is accomplished by grouping terms of common
-dependence and permits the asymptotic construction of the

trough-scattered field. The back-and-forth interplay between the
inner and outer fields can now proceed directly, unencumbered
by the above detailed derivations of the various inner fields. The
static inner field is forced by the boundary data of the incident
wave (6), whereupon the largest component of, in powers of
, is

(41)

where (27) supplies

(42)

In terms of outer coordinates, this first term of the inner field is

(43)

The corresponding first term in the outer field is, therefore,
with near behavior

as (44)

This must be the close-in limit of the cylindrical wave function

(45)

and thus

(46)

Expressed in inner coordinates, this first term of the outer field
is

(47)

which introduces terms of order and into the inner
field. Note that does not affect the term in . The
inner field expansion, modified from (29), is now of the form

(48)

The dominant far-field behavior of is known from the pre-
vious quasi-static result of (27),

(49)

This inner field triggers a corresponding term of in the
outer field such that

(50)

where

as (51)

must be the near behavior of

(52)

The two terms of the cumulative outer field (50) are of
and when expressed in inner coordinates. According to
(47), the distant behavior of the next two inner field
components is

(53)

The harmonic satisfies homogeneous boundary conditions
at . Since the asymptotic form of

is both harmonic and proportional to the boundary behavior
of on , the desired function is the combination

(54)
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The perturbation series (29) reveals that is a solution to a
Poisson equation (32), which must cancel the nonzero incident
field of (4) on the trough . The static field of
(17) furnishes the needed nonhomogeneous boundary behavior,
and of (38) displays the correct far-field
variation in (53). Hence, in addition to the sum , a
harmonic function is required that vanishes on and
has the far-field form of the remaining terms in
(53). As in (54), this additional function is ,
where (53) supplies the scale factor, resulting in

(55)

The four components of the inner field (48) now permit its
expression in outer coordinates up to . Proper arrangement
of these terms and matching to the near behavior of the three
Hankel functions yields the final form for the scattered field

(56)

III. TE POLARIZATION

The scalar field of interest is now the single component of
the magnetic field, which is polarized in the axial direction.
Some of the ensuing analysis mimics that for the TM polariza-
tion and is consequently abbreviated. The Neumann boundary
condition, vanishing of the normal derivative on the boundary

, applies and the incident or geometrical optics field is

(57)

On the curved boundary of the electrically small trough, the
normal derivative is

(58)

The scattered field arises to cancel this nonzero normal deriva-
tive. The static component of the scattered inner field is a
solution of Laplace’s equation subject to these Neumann con-
ditions for which the compatibility condition will necessitate a
flux at infinity.

Parallel to the static field development from the TM boundary
data of (4), the component of the TE field is now written

(59)

where, since

(60)

is an analytic function of Re . In view
of (8), it is also analytic in the bipolar coordinates

, where the pertinent Cauchy–Riemann equations

(61)

determine the harmonic conjugate

(62)

anticipated in (19)

(63)

Similarly, the portion of the static TE field is

(64)

where the additional -independent term arises from

(65)

in (58). This flux out of the trough generates a monopole field
and must be balanced by an equal flux from infinity. The two
requirements

for

and

(66)

on the image of the flat portion of indicate the presence of a
Dirac–delta function

(67)

This singularity exists at the origin of the transform coordinates
corresponding to infinity in the original– plane. A

suitable Fourier transform representation for the monopole term
is thus evaluated by residue calculus

(68)
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According to (58), the static field is

(69)

By exploiting the conjugate functions and , algebra similar
to that in Section II can be avoided, and the static TE inner field
deduced in the form

terms of higher order in (70)

analogous to (27). Next, a particular solution is required of

(71)
subject to at , but now the advan-
tages of conjugate functions are reduced by the presence of the
metric which is not analytic in . Thus, for
example, there is a sign change in the formula analogous to (34),
namely

(72)

Note that since is an odd function of , the compatibility con-
dition is satisfied. Hence, the use of a formula conjugate to (35)
gives the particular solution

(73)

from which (37) reveals to exhibit the distantbehavior

(74)

analogous to (38). The constant is evaluated in Appendix B.
Matching the near-field behavior of the Hankel function of

order zero

(75)

with the -independent component of in the inner field,
demonstrates that the outer scattered field has the term

(76)

and so the inner field must have terms

(77)

which includes . Comparison with the monopole
term in the incident field of (57) shows that the
monopole term in the outer scattered field is modified to

(78)

This is in agreement with [3], since Hinders and Yaghjian work
with conjugate expressions.

By using the exponential form of in (57) it can be readily
shown that

(79)
The monopole must cancel this flux, i.e., its strength up to
is described by modifying (78) to the form

(80)

The higher order multipole fields in the inner field expression
(70) indicate that the outer field also contains the terms

(81)

As in the TM case, the inner field is henceforth of the form (48),
with

(82)

and

(83)
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such that the scattered field expansion follows:

(84)

IV. CONCLUSION

The method of matched asymptotic expansions yields several
terms in a perturbation series for the scattered field due to the
TM and TE excitation of the semicircular trough in a ground
plane. These low-frequency analytic solutions are expressed in
ascending powers of the electrical size of the troughand
also involve the logarithm of . The simple form of the results
explicitly shows the dependence of the trough-scattered field
upon the source and observation angles as well as the frequency
via . The unmistakably dominant feature of the TM-polar-
ized far field is the dipole term of , with amplitude in
agreement with the dual-series results of Hinders and Yaghjian
[3], where the constant is accurately computed as
0.185. Clearly, the next terms of in the multipole ex-
pansion have insignificant effect upon the radiation field. In the
case of the TE-polarized wave, the scattered field also contains
a monopole component of that is independent of the in-
cidence angle. No conclusions applicable to electrically larger
troughs follow from this low-frequency solution, which quickly
becomes invalid as increases beyond unity.

APPENDIX A
EVALUATION OF THE CONSTANT

Use of the exact form of from (19) shows that the error
term in (34) is . The Green’s function for the problem is

(A.1)

but the right-hand side of (32) is too singular at for direct
use of . Note that can be written as an
integral of the second term in , i.e.,

(A.2)

Hence, the pertinent far-field form

as (A.3)

Thus, if the terms in (34) are removed from the right-hand side
of (32), the remaining particular solution behaves as a multiple
of as . This removal is achieved by suitably
combining three independent functions which vanish at

and whose Laplacians have leading terms of the type
, as in (34).

Consider the product of the two harmonic func-
tions

(A.4)
The Laplacian

(A.5)

exhibits the required singularity. Its details are more easily ob-
tained by first expanding and then evaluating .
The asymptotic form of is

(A.6)

Define

(A.7)

with asymptotic form

(A.8)
Hence

(A.9)

and the required Laplacian is

(A.10)
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The limiting form of the Laplacian of a second function
is similarly

(A.11)

A third function

(A.12)
has the singular behavior of the first term on the right-hand side
of (36), but also vanishes at because if is an odd
function, then the image system is such that

at (A.13)

Its Laplacian follows from (35)

(A.14)

The desired linear combination of the above three functions
follows from writing

bounded terms (A.15)

whereupon

(A.16)

The scale factor 81 trims the ensuing arithmetic. By comparison
with (34), set

(A.17)

Now check the behavior of

(A.18)

Thus

(A.19)

agrees with (36). Evidently ; in fact, it was precluded
by the factor in . Adding to corresponds to
adding a homogeneous solution to . The required solution
is therefore

(A.20)

whereupon its far-field limit yields, from (A.3)
and (A.19), the remaining constant in (36)

(A.21)

APPENDIX B
EVALUATION OF THE CONSTANT

The Green’s function for the Poisson equation (71) with Neu-
mann boundary conditions at must be defined by

(B.1)

whereupon

(B.2)
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with the forcing term restricted to . This formulation of
is, of course, consistent with the right hand side of (71) being

an odd function of . For , (B.2) can be rewritten as

(B.3)

and so the far-field form is such that

as (B.4)

In this case, the remaining particular solution behaves as a mul-
tiple of as .

Introduction of the function

(B.5)
together with , and the same functional forms of and

of Appendix A, gives the asymptotic variations

(B-6)

(B.7)

The image system

(B.8)

satisfies the specified Neumann conditions and exhibits the re-
quired behavior in its Laplacian

(B.9)

Then

bounded terms

(B.10)

with the same constants as in (A.15). The asymptotic behavior
of the is

(B.11)

i.e.,

(B.12)

and therefore in (73). The desired solution is thus

(B.13)

which yields in the limit as

(B.14)
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