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A Domain Decomposition Method for the Vector
Wave Equation

Bruno Stupfel and Martine Mognot

Abstract—A nonoverlapping domain decomposition method
(DDM) is presented for the finite-element (FE) solution of
electromagnetic scattering problems by inhomogeneous three-di-
mensional (3-D) bodies. The computational domain is partitioned
into concentric subdomains on the interfaces of which conformal
vector transmission conditions are prescribed and that can be
implemented in the inhomogeneous part. The DDM is numerically
implemented when a conformal vector absorbing boundary con-
dition (ABC) is utilized on the outer boundary terminating the FE
mesh, while employing the standard edge-based FE formulation.
Then, numerical experiments are performed on a sphere and a
cone sphere that emphasize the advantages of this technique in
terms of memory storage and computing times, especially when
the total number of unknowns is very large. Also, these numerical
experiments serve as a severe test for the performances of the
ABC.

Index Terms—Electromagnetic scattering, finite-element method.

I. INTRODUCTION

T HE finite-element method (FEM) is a powerful numerical
technique for solving scattering problems involving inho-

mogeneous arbitrarily shaped three-dimensional (3-D) objects.
For open region problems, the radiation condition may be taken
into account either rigorously by prescribing an integral equa-
tion (IE) on the surface of the object [1]–[4] or approximately by
implementing on the outer boundary terminating the FE mesh
an absorbing boundary condition (ABC) [5]–[10] or a perfectly
matched absorber (PMA) [11]–[14]. When the size of the com-
putational domain is electrically large, the number of unknowns
may be such that all these techniques involve considerable com-
puting times and memory storage requirements. Also, the gen-
eration of the FE mesh may constitute an insurmountable bot-
tleneck. A possible way to circumvent these difficulties is to
employ a domain decomposition method (DDM) that allows the
decomposition of a large problem into several coupled subprob-
lems that can be solved independently. A DDM specific to the
solution of a scattering problem has been originally proposed
in [15]–[18] where the subdomains are chosen to be the cubic
cells of the FE mesh (see also [19]). In order to accelerate the
convergence of the DDM iterative algorithm, this method has
been adapted for the two-dimensional (2-D) case to a particular
“onion-like” partition of the computational domain into concen-
tric subdomains circumscribing the object (see Fig. 1), and con-
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Fig. 1. “Onion-like” partition of the computational domain
.

formal second-order scalar transmission conditions (TC’s) and
ABC’s have been employed [20].

In this paper, we present the extension of the abovemen-
tioned DDM to the solution of 3-D scattering problems when
a conformal vector ABC [7] is applied on the terminating
outer boundary. The corresponding conformal TC’s can be
implemented in the inhomogeneous domain instead of being
applied in free-space exclusively, as was originally done in
[20], thus authorizing the desired reduction in memory storage
and mesh size. Also, it allows one to carry on the evaluation of
the numerical performances of this ABC initiated in [10] since
the boundary can be placed farther away from the surface of
the scatterer. The organization of this paper is as follows. In
Section II, we present the electromagnetic scattering problem
to be solved and the DDM algorithm employed. In Section III
the numerical implementation of the DDM is outlined for an
edge-based FEM and the issue of its numerical complexity
is addressed. Section IV is devoted to numerical experiments
performed first on a sphere and then on a cone sphere with a
high dynamic range for the radar cross section (RCS), which
serves as a severe test for the performances of the DDM as well
as of the ABC. Section V outlines conclusions and suggestions
for future work.

II. STATEMENT OF THEPROBLEM AND DDM FORMULATION

The problem to be solved is formulated in Section II-A and
the DDM is presented in Section II-B.

A. Scattering Problem

A monochromatic incident wave ( , ) illuminates
a penetrable inhomogeneous body immersed in free-space.
designates the electric field and the magnetic field times
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the free-space impedance. is the wave number
of the incident field and the assumed time dependence is

. The Leontovich impedance boundary condition
(LIBC) is prescribed upon the surface of the scatterer,
which may be coated by inhomogeneous materials of relative
dielectric permittivity and magnetic permeability that are
position dependent 3 3 tensors. To alleviate the notations, the
dependence of all quantities on the coordinates is suppressed
throughout. In the infinite domain exterior to , satisfies
the vector wave equation

(1a)

and the LIBC on

(1b)

designates the outward normal to as well as to all the
surfaces that are considered in the following,is the normal-
ized impedance assumed to be constant on, and

. , and the
second-order ABC in [7] (termed ABC2) is prescribed upon
the outer boundary terminating the computational domain

must be convex and located in free-space

(1c)

For an arbitrary vector tangent to , the tangential operators
and are defined as

The subscript denotes the scalar product withand

The orthonormal vectors , are tangent to along the prin-
cipal lines of curvature ( ), , are the principal
curvatures of counted positively where is convex, and

. For the zeroth-order ABC (termed ABC0),
we have

The problem to be solved, as constituted by equations (1a)–(1c),
is termed .

B. DDM Algorithm

Now we formulate the DDM algorithm. contains the inho-
mogeneous medium and is partitioned intoconcentric sub-
domains , . and denote, respectively, the
inner and outer boundaries of , and (see Fig. 1).
The algorithm defined in [20] for a 2-D problem is extended to

Fig. 2. PEC sphere (500 MHz): Bistatic RCS computed with an ABC2 onS
from the closed-form solution and the DDM solution withN = 3. (a)� = � =
1 everywhere and TC2. (b)� = 1� i, � = (1� i)=2 in 
 and TC0.

Fig. 3. PEC sphere (500 MHz);er1, er2 versus`. N = 3, � = � = 1
everywhere and� = 10 .

a 3-D problem as follows . Let , be the values of the fields
in at iteration . They satify Maxwell’s equations in

(2a)

and the following TC’s on :

(2b)

with

(2c)

The values of , are those computed on , , and is
the relaxation parameter that accelerates the convergence of the
algorithm: and , . To alleviate
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the notations, it is understood that the values ofimplicitly in-
volved in (2b) are those corresponding to the electric field [see
definition (2c) of ]: Considering, e.g., the first TC in (2b), the
values of in the left-hand side (LHS) are those on coming
from , while the values of in the right-hand side (RHS) are
those on coming from , and may be discontinuous
on the interfaces. For , the LIBC (2.1b) is substituted to
the TC on

(2d)

For , the ABC (1c) is substituted to the TC on

(2e)

The initial values are chosen to be

(3)

For each value of, the problems corresponding to equa-
tions (2a)–(2e) are solved successively for increasing values of
, . On account of (3), the solution of is iden-

tical to the one of with . Increasing amounts to
propagate the scattered field up to the terminating boundary
through the first TC in (2b). Thus ( ) may be considered
as an initial value for the iteration . For , the algo-
rithm propagates similarly the scattered field through the suc-
cessive subdomains up to . It also takes into account, through
the second TC in (2b), the scattered field, calculated at the pre-
vious iteration, which results from the spurious reflections on
the successive interfaces and on where approximate TC’s
and radiation condition are prescribed, respectively. It is impor-
tant to note that when the ABC and TC’s are of zeroth-order and
, are diagonal and correspond to passive materials, it has been

demonstrated in [21] that the solutions of this algorithm tend to
those of problem as goes to infinity, independently of
the choice made for the initial values.

III. N UMERICAL IMPLEMENTATION

For problem , the variational formulation equivalent to the
wave equation in (2a) is, after integrating by parts

is a test function. Because of the definition (2c) of the
operator, we have

(4a)

Fig. 4. Geometry of the cone sphere and partition of the computational
domain.

Fig. 5. Cone sphere withZ = 1 and� = � = 1 everywhere. 800 MHz and
� = 0. (a) Mean RCS forN = 1; 3; 4, ABC2, TC2 andN = 4, ABC0,
TC0. (b) RCS forN = 4, ABC2 and TC2.

Fig. 6. Same as Fig. 5.� = 30 . Mean RCS.

with

(4b)
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When , the integral on in the LHS of (4a) is replaced
by , and the one in the RHS of (4b) is
zero. Similarly to what has been done in [20] it can be shown,
by using the boundary conditions (2b), (2d) and (2e), thatcan
be recursively calculated as follows:

(5a)

(5b)
with the convention that the integral on in (5b) is zero when

and . Then, the surface integrals in the LHS of
(4a) and those in the RHS of (5a), (5b) are integrated by parts
by virtue of the identities

(6a)

(6b)

obtained by dropping the terms involving the tangential deriva-
tives of the curvatures, that have been any how neglected in the
expression (1c) of the second-order ABC [7]. As in [10], each
subdomain is meshed with tetrahedrons, first-order edge-
basis functions are employed and a Galerkin procedure is used.
For second-order ABC and/or TC’s, the discretization of the sur-
face divergence terms in (4a), (5a), (5b) generated by the
operator [see (6b)] is performed as mentioned in [10]. The vari-
ational formulation (4a) is thus transformed into the following
linear system

(7)

where the matrix is symmetric. Each subdomain is separately
meshed and, in order to simplify the numerical implementation,
the surface mesh of generated by the volume meshing of

is chosen to be identical to the one of the same interface
generated by the meshing of. For each polarization TM or TE
of the incident wave, and for fixed values ofand , we proceed

as follows: 1) compute ; 2) read on binary files the previously
computed quantities that are necessary for the calculation of
and compute ; and 3) solve system (7) with the same conjugate
gradient (CG) than the one employed in [10] (the initial solution
is and is preconditioned by the diagonal); the CG is
stopped when

(8)

(here and in the following the norm is used); write on binary
files the computed quantities that are used in the following steps.
The algorithm is stopped when

(9)

( , control the accuracy of the results) and the RCS is
computed from the values of on if surrounded by
free-space or else from those of , , , on the
interface in contact with free-space (see Appendix).

If of designates the number of elements in, then the
memory storage required for the solution of the whole problem
is [10]. In other words, if the subdomains
are constructed in such a way that they contain an identical
number of elements, then the DDM divides by a factor approxi-
mately equal to the memory size required for the solution of
the entire problem . Let be the number of unknowns
in , the number of CG iterations required for the solution
of problem and the number of DDM iterations satisfying
(9). Then, the total computing time is

TCPU(DDM) (10)

If is the same for all subdomains, then
where is the total number of unknowns for . The
numerical calculations performed in Section IV show that, for
given orders of the ABC and TC’s, can be bounded
by a constant independent of and ( decreases when
increases since the previous solution is used as an initial value
for each CG). This implies and (10) becomes

TCPU(DDM) TCPU

(11)
We note that the DDM is less costly, in terms of CPU times, than
the solution of the entire problem if .

IV. NUMERICAL EXPERIMENTS

As in [10], all the numerical results presented in this section
have been performed on bodies of revolution (BOR’s): sphere
and cone sphere. The boundary and the interfaces are ax-
isymmetric. No symmetry is taken into account. The meshes
have been realized with IDEAS and are such that the length of
most of the edges is smaller than . MoM or hybrid FE-IE
codes for BOR’s [22], [2] serve as references, and the calcu-
lations are performed on one processor of a Cray T90. In the
examples presented here, only the first subdomain may contain
materials and and are scalar. The value of the relaxation pa-
rameter as defined in Section II-B, is randomly chosen at
each iteration. [see (9)]—obviously, the accu-
racy required for the DDM algorithm must be lower than the one
for the CG—and, unless otherwise mentioned, [see
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Fig. 7. Same as Fig. 5.� = 0. Mean RCS ford = 15 cm [10] andd = 30
cm (DDM).

(8)]: It has been found that these values have always ensured the
RCS convergence. A complete calculation is necessary for each
polarization and incidence angle, and the major part of the com-
puting time is devoted to the solution of systems (7). Validation
tests performed on a sphere are presented in Section IV-A, and
Section IV-B is devoted to the cone sphere results.

A. Numerical Results for the Sphere

The radius of the perfectly conducting (PEC) sphere is 25 cm.
and the subdomains are spherical shells. The radii of,

and are 30, 34 and 37 cm, respectively, so that
the distance between and is 12 cm. The calculation fre-
quency is 500 MHz. First, everywhere. We observe
on Fig. 2(a) (bistatic RCS versus observation angle) a good
agreement between the DDM results obtained in five iterations
with second-order ABC and TC’s (ABC2 and TC2) and those
obtained in closed form for the problem with an ABC2
on [10]. The polarization conventions are as in [10]: TM
(TE) corresponds to the incident magnetic (respectively elec-
tric) field transverse to the plane of incidence defined by the
BOR’s revolution axis and the direction of incidence. We get the
same agreement with various values for the order of the ABC,
the TC, the frequency, and. For example, we have plotted on
Fig. 2(b) the bistatic RCS obtained with the material ,

in , an ABC2 on and, for the DDM, a
zero-order TC (TC0) on and . Fig. 3 plots two types of
error versus , viz. and ,

obtained for , everywhere, and
various orders for the ABC and TC. In view of these results, we
can readily draw the following conclusions.

The convergence of is approximately independent of
the order of the ABC and TC, although slightly faster with
the TC2 for low values of.
As it has been already observed in [20], decreases
more rapidly with a TC2, thus demonstrating its superior ef-
ficiency.

Fig. 8. B(d; �) for the sphereR = 30 cm, ABC2 onS , 800 MHz.

TABLE I
CONE SPHERE:

NUMBER OFELEMENTSN AND UNKOWNSN FOREACH SUBDOMAIN 


One may explain the different behaviors of and
by the fact that the solution converges more rapidly on the
periphery of the domain. For example, it can easily be shown
from (5a), (5b) that the solution in is affected by the radi-
ation condition on only if —this is the reason why
the number of iterations increases with—; hence, the stop-
ping criterion (9) performed on the solutions in ensures
the convergence of the solutions in each subdomain, but we
may think that it is more advantageous to compute the RCS
from the values of the fields on , as it has been done in
[20].
Since all the results have been obtained with the same com-
puting times, we note that a calculation performed with an
ABC2 and TC2 is roughly three times longer than a com-
putation performed with an ABC2 and TC0, the reason for
this being that the convergence of the CG for the solution of
problem is all the slower as the order of the boundary con-
ditions is high [10]. As a consequence, it is recommended to
employ the TC0.
Finally, we have verified that the restart procedure defined

in [20] for 2-D problems works also for 3-D problems: A first,
computation performed with , followed by a restart where
the last subdomain is added, yields identical results to those di-
rectly obtained with .

B. Numerical Results for the Cone Sphere

The cone sphere is identical to the one defined in [10]: the
total length of the object is 2 m, the radius of the sphere 30
cm, and the tangent is continuous at the junction between the
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Fig. 9. PEC cone sphere coated with the material� = 1� i, � = (1� i)=2
in 
 ; 800 MHz and� = 0.

sphere and the cone (see Fig. 4). Let us first mention that the
various numerical experiments performed with this geometry
show that the DDM behaves as indicated in Section IV-A.
, the interfaces are conform to , and the subdomains are such

that they contain approximately the same number of elements.
The values of the distances separating the interfaces are, for
increasing values of, 10, 8, 6, and 6 cm, so that is placed 30
cm away from (see Fig. 4). For all the examples presented
below, only the bistatic RCS is computed.

The firsts results have been obtained at 800 MHz with
and everywhere: The overall length of the object
is and the radius of the sphere . The number of
elements and unknowns in each subdomain is
given in Table I, with a total number of
unknowns. The number of elements and unknowns for the
equivalent problem solved without the DDM would
have been 354 257 and 431 372, respectively (one must deduct
the unknowns on the interfaces to that are shared by
the contiguous subdomains). Fig. 5(a) plots the arithmetical
mean of the RCS calculated for the two polarizations, i.e.,
(RCS(TM) RCS(TE))/2, in axial incidence on the cone-tip
( ) for , with ABC2 and TC2 (as a
comparison, we have plotted the results obtained with ,
ABC0 and TC0 and we recall that the exact RCS is polarization
independent when ). This allows us to verify that the
accuracy increases when is placed farther away from the
object—even if the arithmetical mean improves the results
[see Fig. 5(b)]—independently of the angle of incidence (see
Fig. 6: mean RCS for ). Fig. 7 compares the mean
RCS calculated in [10] for axial, on tip incidence without the
DDM for a distance cm between and with the
one calculated with the DDM and cm ( ). We
observe that doubling the value ofallows us to obtain (for the
mean RCS) an error smaller than 5 dB for RCS levels higher
than 45 dB, instead of 30 dB for cm. Actually the
RCS error decreases more slowly from some value of[cf.
[10] and Fig. 5(a)]. If we compare the computational domain
to an anechoid chamber, we can calculate analytically the

numerical noise corresponding to a sphere of radiuswith
centered in a spherical domain on whose boundary, of

radius , is prescribed an ABC. If denotes the far
scattered field amplitude, then we may define the numerical
noise in dB as

(12)

( ) designates the exact (respectively computed with
an ABC) amplitude. For a sphere of radius 30 cm (equal to the
one of the spherical part of the cone sphere) and an ABC2, we
get at 800 MHz the curves of Fig. 8 for , 30 and 120
cm: when increases from 15–30 cm, the noise is effectively
reduced by about ten dB, but a distance of 120 cm is necessary
to get below 75 dB. On account of the fact that the forward
scattering RCS ( ) is 5 dB lower for the sphere than for
the cone sphere, we may extrapolate that a good accuracy on
RCS levels higher than70 dB would be achieved for the cone
sphere with equal to about 1 m, while keeping in mind that the
numerical noise for a given ABC depends on the shape of the
object and on the impedance boundary condition (for a PEC, the
noise is about ten decibels larger when the ABC2 is employed)
on the incidence angle and on the shape of the “chamber.” In-
deed, we note that in view of Fig. 6 ( ), that if the mean
RCS is correctly computed with an ABC2 and for levels
that are higher than40 dB, there is obviously a problem around
160 , although the RCS value is relatively large (about10 dB).
A calculation performed with at the same frequency,
with the same subdomains and meshes, but with the material

, substituted to free-space in , yields
a similar accuracy (ABC2 and : see Fig. 9) although
the surface object is closer to the boundary ( cm).
Again, one verifies the superior performances of the ABC2 over
the ABC0.

Then, keeping the same subdomains, the average edges length
of the FE cells has been reduced by 50% in order to perform
calculations at 1.2 GHz. Now, the overall length of the object is

, the radius of the sphere , and the corresponding
values of and are given in Table I, with a total number
of unknowns. The number of elements
and unknowns for the equivalent problem solved without
the DDM would have been 1 323 789 and 1 604 233, respec-
tively, involving considerable difficulties in the mesh generation
and very large computer resources. The RCS has been com-
puted for with , ABC2 and TC0,
and everywhere on one hand [Fig. 10a)], and

on , and in on the other
hand [Fig. 10(b)]. The accuracy achieved is approximately the
same than at 800 MHz [see Figs. 5(b) and 9] which confirms
that, for a sufficiently high value of the frequency, the efficiency
of an ABC depends on the distancebetween the boundary
and the surface of the object, rather than on [10]. Fig. 11
plots cm, calculated at 1.2 GHz and 5 GHz for
the sphere of radius 30 cm with and an ABC2 or the
high-order ABC (HOABC) proposed in [10]. Again, it confirms
that the ABC2’s performances remain virtually unchanged at 5
GHz (except for the small values of) and that even the HOABC
does not allow a noise reduction below60 dB. These results



STUPFEL AND MOGNOT: DOMAIN DECOMPOSITION METHOD FOR VECTOR WAVE EQUATION 659

Fig. 10. Cone sphere: 1.2 GHz and� = 0. DDM with N = 4, ABC2
and CT0. (a)Z = 1 and� = � = 1 everywhere. (b)Z = 0 and� = 1,
� = (1 � i)=2 in 
 .

are given as indications only, and one must be aware that their
generalization to other geometries is not always justified.

On Fig. 12 is displayed , i.e., the ratio of the
number of CG iterations required for the solution of problem

to the number of unknowns in , multiplied by 10 versus
for ( ), and

various ABC’s and TC’s at 800 MHz and 1.2 GHz. repre-
sents the number of problems ( and ) that have
been solved during the iteration process. These plots show that
the convergence of the CG is all the slower as the order of the
boundary conditions for problem is high (as it has been al-
ready mentioned for the sphere in Section IV-A) and that, for a
TC0, is almost independent of and even lower for
a three times denser mesh (1.2 GHz). This justifies the hypoth-
esis on which the evaluation (11) of the DDM computing time
is based, and we may estimate that, for this particular example
( and ), TCPU(DDM) TCPU —we
recall that for , only the problem is solved [see (9)],
so that in (11). As an indication, we give on Fig. 12
the values of TCPU(DDM) corresponding to the various cal-
culations. Note that the elementary matrices ofare entirely
recomputed at each iteration.

V. CONCLUSIONS

The DDM proposed in [20] for the solution of 2-D prob-
lems has been extended to the 3-D vector case, and the TC’s
can be implemented in the inhomogeneous domain, thus fur-
ther reducing the memory storage. It has been demonstrated in
[21] that the algorithm converges to the solution of the original
problem when zero-order ABC and TC’s are employed. The
numerical results presented in Section IV show that the same
conclusion holds true for second-order conditions, and that the
DDM characteristics etablished for 2-D problems [20] are also
valid in 3-D. Because of the large numbers of unknowns each
subproblem is solved with a CG, and it has been found to be
more advisable, in terms of computing times, to use the zero-
order TC, despite the superior efficiency of the second-order
one. Thus, the DDM presented in this paper has allowed the

Fig. 11. B(d = 30 cm,�) for the sphereR = 30 cm, ABC2 onS .

Fig. 12. Cone sphere:10 n =N versusm with four subdomains.

solution of a very large problem involving more than 1.3.10
elements and 1.6.10unknowns with a reasonable number of
iterations, while employing the standard edge-based FE formu-
lation. The accuracy achieved with the ABC2 at 800 MHz and
1.2 GHz on the stealth cone sphere with or coated with
an absorbing material may be considered as satisfactory on a
50-dB dynamic range (the RCS error is lower than 5 dB for a
distance object to boundary equal to 30 cm).

However, the fact that the numerical noise generated by the
spurious reflections on the boundary depends, except for low
frequencies, on and not on implies that a similar accuracy
will be obtained at higher frequencies only if a large number
of subdomains is implemented, thereby leading to very large
computing times, and considerable difficulties in mesh genera-
tion especially since the meshes of the interfaces have been con-
strained here to be identical for adjacent subdomains in order to
facilitate the numerical implementation. This constraint could
be suppressed if the subdomains are separately meshed and an
interpolation scheme is devised that links the unknowns on both
sides of an interface. Finally, the substitution of an integral equa-
tion to the ABC would allow to achieve a better accuracy with
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greater reliability: Considering the infinite free-space domain
exterior to the object as an additional subdomain, only the in-
homogeneous coating should be meshed, thereby reducing the
number of subdomains, and the corresponding DDM algorithm
has been shown to converge to the solutions of the exact scat-
tering problem [21].

APPENDIX

Let us assume, for the sake of simplicity, that only the first
subdomain does not contain free-space. On account of the
continuity of the tangential components of the fields on, the
RCS is computed from the following vector quantity:

(A.1)

where is the unit vector pointing in the direction of observa-
tion. From the third equation in (2a) and the definition (2c) of

, the integral on the electric field in (A.1) becomes

with

Then, because of the TC on, can be recursively computed
as follows:
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