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A Domain Decomposition Method for the Vector
Wave Equation

Bruno Stupfel and Martine Mognot

Abstract—A nonoverlapping domain decomposition method
(DDM) is presented for the finite-element (FE) solution of
electromagnetic scattering problems by inhomogeneous three-di-
mensional (3-D) bodies. The computational domain is partitioned
into concentric subdomains on the interfaces of which conformal
vector transmission conditions are prescribed and that can be
implemented in the inhomogeneous part. The DDM is numerically
implemented when a conformal vector absorbing boundary con-
dition (ABC) is utilized on the outer boundary terminating the FE
mesh, while employing the standard edge-based FE formulation.
Then, numerical experiments are performed on a sphere and a
cone sphere that emphasize the advantages of this technique in
terms of memory storage and computing times, especially when
the total number of unknowns is very large. Also, these numerical
experiments serve as a severe test for the performances of the
ABC.

. L Fig. 1. “Onion-like” partition of th tational domatih
Index Terms—Electromagnetic scattering, finite-element method. 9 nion-like” partition of the computational dom
formal second-order scalar transmission conditions (TC'’s) and

|. INTRODUCTION ABC's have been employed [20].

HE finite-element method (FEM) is a powerful numerical, N thiS paper, we present the extension of the abovemen-

technique for solving scattering problems involving inhotion€d DDM to the solution of 3-D scattering problems when

mogeneous arbitrarily shaped three-dimensional (3-D) Obje(ﬁs_conformal vector ABC [7] is gpplied on the ter,minating

For open region problems, the radiation condition may be tak8Hter boundary. The_ corresponding conformgl TC’s can ,be
into account either rigorously by prescribing an integral equiiPlemented in the inhomogeneous domain instead of being
tion (IE) on the surface of the object [1]-[4] or approximately bgPPlied in free-space exclusively, as was originally done in
implementing on the outer boundary terminating the FE me ], thus agthonzmg _the desired reduction in memory stprage
an absorbing boundary condition (ABC) [5]-[10] or a perfectl nd mesh size. Also, it allows one to carry on the _evaluatlpn of
matched absorber (PMA) [11]-[14]. When the size of the con{l® numerical performances of this ABC initiated in [10] since

putational domain is electrically large, the number of unknowri8€ Poundary can be placed farther away from the surface of
may be such that all these techniques involve considerable cdfif Scattérer. The organization of this paper is as follows. In
puting times and memory storage requirements. Also, the geﬁgctmn Il, we present the electr_omagnetlc scattering p_roblem
eration of the FE mesh may constitute an insurmountable bEﬂ—be solved and the DDM algorithm employed. In Section |l

tleneck. A possible way to circumvent these difficulties is tHﬁe numerical implementation of the DDM is outlined for an

employ a domain decomposition method (DDM) that allows tHe#9€-Pased FEM and the issue of its numerical complexity
B_addressed. Section 1V is devoted to numerical experiments

decomposition of a large problem into several coupled subprd ) )
lems that can be solved independently. A DDM specific to tfi¥"formed first on a sphere and then on a cone sphere with a

solution of a scattering problem has been originally propos8ih dynamic range for the radar cross section (RCS), which

in [15]-[18] where the subdomains are chosen to be the culfe/ Vs as a severe tgst for thg performanc_es of the DDM as well

cells of the FE mesh (see also [19]). In order to accelerate t%%of the ABC. Section V outlines conclusions and suggestions

convergence of the DDM iterative algorithm, this method hd8" future work.

been adapted for the two-dimensional (2-D) case to a particular

“onion-like” partition of the computational domain into concen- Il. STATEMENT OF THE PROBLEM AND DDM FORMULATION

tric subdomains circumscribing the object (see Fig. 1), and con-The problem to be solved is formulated in Section II-A and
the DDM is presented in Section 1I-B.

A. Scattering Problem
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the free-space impedangg. ko = 27/} is the wave number 5 — ‘ g 10
. . . . — {l — analytical
of the incident field and the assumed time dependence T il TE T T
exp(iwt). The Leontovich impedance boundary conditiol o T 8 T Tt
(LIBC) is prescribed upon the surfacs, of the scatterer, ol 4 10
which may be coated by inhomogeneous materials of relati
dielectric permittivitye and magnetic permeability that are
position dependent 8 3 tensors. To alleviate the notations, th® s | 1 10
dependence of all quantities on the coordinates is suppres§ i
throughout. In the infinite domain exterior t&,, H satisfies
the vector wave equation
-10 ¢ 1 -20
Vx[e'VYxHl-kipH =0, V.(uH)=0
i1
E= _k_oe VxH (1a) -15 ‘ w w w w w -30
0 50 100 150 O 50 100 150
and the LIBC onSy 6 6
_ . Fig. 2. PEC sphere (500 MHz): Bistatic RCS computed with an ABC2 pn
nXxe 12 xH = _'Lkozﬂtg- (1b) from the closed-form solution and the DDM solution with= 3. (a)e = p =
1 everywhere and TC2. (&)= 1 — ¢, p = (1 —i)/2 in &4 and TCO.
n designates the outward normal & as well as to all the
surfaces that are considered in the followitgis the normal- 0
ized impedance assumed to be constantSpnand H;, = er1 ABCO TCO
-nx(nxH).H=H"+H E=FE"+F andthe || erl ABC2 TCO
second-order ABC in [7] (termed ABC2) is prescribed upon 4 |i -—— erl ABC2TC2
the outer boundarg s terminating the computational domain i —=a 9:2 ﬁggg Igg
_ B ; ) A—~Ae
(92 = So U S¢)— S, must be convex and located in free-space O ——0 or2 ABG2 TO2
nxV x H =pH; +~(Lr+ Lp)H},. (1c)
For an arbitrary vectoy’ tangent toS, the tangential operators
Lg and L, are defined as
Lr(V) =V x{n(N¥xV).}, Lp¥)=N4,(V.Vy).
The subscript. denotes the scalar product withand : : : :
0 50 100 150 200 250
Btr =2k + 3k + k1) (ik + (k2 — r1)/4) 1] !
. /[Q(Lk + 2l‘im)] Fig. 3. X PEC sdphere (5006MHz)z,rl, er2versust. N = 3, e = pu =1
¢ = 107°.
Bta =[—2k% + (Bk1 + ko) (ik + (k1 — 12)/4) ] evennere anec
120k + 26, a 3-D problem as follows . LeE¢, H¢ be the values of the fields
v =(1 = irim k) [2(ik + 2] in Q; at iteration’. They satify Maxwell's equations if;
—1 £ 2 L __
The orthonormal vectors, ¢, are tangent t&; along the prin- Vx [N x Hi] = kopd =0
cipal lines of curvaturer{ = #; x t»), k1, 12 are the principal V.(uH{) =0
curvatures ofS; counted positively wheré; is convex, and Bl — _'_ie_lv < HY (2a)
Km = (K1 + K2)/2. For the zeroth-order ABC (termed ABCO), = ko — T
we have and the following TC's ord}; = S;_1 U S;:
B= iko(t1t1 +tat2), ~=0. T-H =T"H' |, TConSi_,
. . + 17l ot -1 -1
The problem to be solved, as constituted by equations (1a)—(1c), TTH; =T [ ;™ + (1 — a)H; 1] TConS;
is termedPspc. (2b)

B. DDM Algorithm with

Now we formulate the DDM algorithnf2 contains the inho- 7+ H = 4 x [¢ 71V x H] — [/3 +(Lg + LD):| H,,. (2c)
mogeneous medium and is partitioned id¥oconcentric sub- =
domains®?;, 1 <4 < N. S,_; andsS; denote, respectively, the The values of3, v are those computed of}_;, S;, anday is
inner and outer boundaries 8, andS; = Sy (see Fig. 1). the relaxation parameter that accelerates the convergence of the
The algorithm defined in [20] for a 2-D problem is extended talgorithm:«; = 0 and0 < «, < 1/2, ¢ > 2. To alleviate
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the notations, it is understood that the values whplicitly in-
volved in (2b) are those corresponding to the electric field [st
definition (2¢) of'*]: Considering, e.g., the first TC in (2b), the
values of in the left-hand side (LHS) are those Sn_; coming
from €2;, while the values of in the right-hand side (RHS) are
those onS;_; coming from€};_;, ande may be discontinuous
on the interfaces. Far = 1, the LIBC (2.1b) is substituted to
the TC onsS,

ds &

ds
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Fig. 4. Geometry of the cone sphere and partition of the computational

nx etV x Hf = —ikoZHj,,. (2d)
For: = N, the ABC (1c) is substituted to the TC ¢hy
TYHY =TT H™. (2e)
The initial values are chosen to be domain.
H==H"™ 1<i<N. (3) 20
10

For each value of, the problemsP{ corresponding to equa-
tions (2a)—(2e) are solved successively for increasing values
i, 1 < 4 < N.On account of (3), the solution d@?} is iden-
tical to the one ofPspc with Sy = 5;. Increasing amounts to
propagate the scattered field up to the terminating boun8lary
through the first TC in (2b). ThugZ*, H') may be considered
as an initial value for the iteratiohh = 2. For¢ > 2, the algo-
rithm propagates similarly the scattered field through the su
cessive subdomains up £ . It also takes into account, through
the second TC in (2b), the scattered field, calculated at the p
vious iteration, which results from the spurious reflections ¢
the successive interfaces and 8p where approximate TC's
and radiation condition are prescribed, respectively. It is impc
tant to note that when the ABC and TC's are of zeroth-order and

RCS (dB)

1.7m

; T 20
— MoM — MoM
-—-- N=1 ABC2 #7 —— N=4 ABC2TC2TM
I —— N=3ABC2 TC2 P ——- N=4 ABC2TG2 TE 110
——- N=4 ABC2 TC2
| @ --©N=4 ABCO TCO 1o
-10
1 -20
1 -30
1 -40
1 -50
-60

50

100 150 0 50
6

100 150
6

¢, p are diagonal and correspond to passive materials, it has b&@n5. Cone sphere withf = 1 ande = x = 1 everywhere. 800 MHz and

demonstrated in [21] that the solutions of this algorithm tend ﬁ%o
those of problemPspc as/ goes to infinity, independently of
the choice made for the initial values.

I1l. NUMERICAL IMPLEMENTATION

For problemP, the variational formulation equivalent to the
wave equation in (2a) is, after integrating by parts

/Q {(V % H). T (V x HY) ~ BH pH | d0
i -30

RCS (dB)

- / H.(nx [tV x HY)dS
Si—1

+/ H(nx[ctVY x H]dS =0.
Si

H is a test function. Because of the definition (2c) of ffi&
operator, we have

/ {(V x B).e (Y x H) — RRHLpHS } a2
£

Si—1 —

10 |

-50 P

= 0. (@) Mean RCS folV = 1, 3, 4, ABC2, TC2 andN = 4, ABCO,
(b) RCS forN = 4, ABC2 and TC2.

c .

———- N=1 ABC2
e N=4 ABC2 TC2
&--—0 N=4 ABCO TCO

0 40

160 200
Gl

80 120

Fig. 6. Same as Fig. B¢ = 30°. Mean RCS.

240 280 320 360

+ / Hyg [B+2(Lr+Lp)| Hyds =4 (42) =~ / Hy T HEdS — / H., T H{dS. (4b)
S; = Si—1 S;
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Wheni = 1, the integral onSy in the LHS of (4a) is replaced as follows: 1) computel;; 2) read on binary files the previously
by ikoZ fso Etg.ﬂﬁtg dS, and the one in the RHS of (4b) iscomputed quantities that are necessary for the calculatiéh of
zero. Similarly to what has been done in [20] it can be showand computé?; and 3) solve system (7) with the same conjugate
by using the boundary conditions (2b), (2d) and (2e),4hatn  gradient (CG) than the one employed in [10] (the initial solution

be recursively calculated as follows: is H:~! and 4, is preconditioned by the diagonal); the CG is
oi=1: stopped when
= ), BT H S s — ¥l < cc ®
1
£22 (here and in the following th&Z norm is used); write on binary
B=bt p2(1 - aé)/ H,,. [[_3 +~(Lgr+ LD):| filesthe cqmpu.ted quantities that are used in the following steps.
51 = The algorithm is stopped when
(Hay, — Hip,)dS (5a) 1Hf — H{*|| < epp 9)
(eca, eppm control the accuracy of the results) and the RCS is
02 < i< N: computed from the values afx H% on Sy if Sy surrounded by
1 % inc free-space or else from thoserok H¢, n x E¢, i < N, onthe
by =— H,, TTH™ dS t ¢
i s, ==tgs 2SS interfacesS; in contact with free-space (see Appendix).

If N;l of designates the number of element$ip then the
memory storage required for the solution of the whole problem
: is O(max;—1, ;v N¢') [10]. In other words, if the subdomains
+2 / H,,. [ﬁ—i-fy(LR + LD)} ﬂ%i_l)tg ds are constructed in such a way that they contain an identical

Si-1 B number of elements, then the DDM divides by a factor approxi-

+ / H,, TtH™ dS
Si—1

622 mately equal taV the memory size required for the solution of
b=l o 21— a[)/ H,g the entire problenPapc. Let N be the number of unknowns
L s in ©;, n¢ the number of CG iterations required for the solution
y : . o
|8+~(Lr+L HETL  — HE 1) dS of problemP; and L the number of DDM iterations satisfying
[/: (Lr D)} (_(“’l)tg T ) (9). Then, the total computing time is
+2 Hiy |B+~v(Lr+L L X
s g+attart iv) TCPUDDM)=0 |3~ > nf(N;“"f] (10)
H o1y — Hiy' + e Hig = HT ), 1S =t it

(5b) If N7t is’the- same for all subdomains, th&f"™ ~ N"*/N
: _ _ _ _ where N*" is the total number of unknowns fdPypc. The
with the convention that the integral ¢ in (5b) is zero when nymerical calculations performed in Section IV show that, for
i = N and¢ > 2. Then, the surface integrals in the LHS Obiven orders of the ABC and TC's,{/N*" can be bounded
(4a).and i i the' RHS of (52). (5b) are Integrated by P3P a constanty independent of andi (y decreases whef
by virtue of the identities & constan Indapenden of ands (x decreases wheh
/ " Li(Hi)dS = / +(V x H)o(V x H),dS (6a) foreach CG). Thisimpliea < yN*"/N and (10) becomes
S

’ TCPU(DDM) < O [LX (Nun)g} L

5 5 N2 ~ F TCPLKPA]gc).
VLLp(Hi)dS = = [ A(V.H) (THiy)dS - (60) a1
obtasined by dropping the ter?ns involving the tangential derivélYe note that the DDM is less costly, in terms of CPU times, than
tives of the curvatures, that have been any how neglected in the solution of the entire problefis s if L < N2.

expression (1c) of the second-order ABC [7]. As in [10], each

subdomaing; is meshed with tetrahedrons, first-order edge- IV. NUMERICAL EXPERIMENTS

basis functions are employed and a Galerkin procedure is usedA

For second-order ABC and/or TC's, the discretization of the SUl=ve been performed on bodies of revolution (BOR's): sphere

face divergence terms in (4a), (5a), (Sb) generated byihe and cone sphere. The boundsafy and the interfaces are ax-

operator [see (6b)]is performed as mentioned in [10]. The Varé'ymmetric. No symmetry is taken into account. The meshes

e_ltional formulation (4a) is thus transformed into the foIIowinglave been realized with IDEAS and are such that the length of
linear system most of the edges is smaller thay10. MoM or hybrid FE-IE

AHE =0 @) codes for BOR’s [22], [2] serve as references, and the calcu-

lations are performed on one processor of a Cray T90. In the

where the matri; is symmetric. Each subdomain is separatelgxamples presented here, only the first subdomain may contain
meshed and, in order to simplify the numerical implementatiomaterials and and;. are scalar. The value of the relaxation pa-
the surface mesh of; generated by the volume meshing ofametera, as defined in Section 1I-B, is randomly chosen at
2,41 is chosen to be identical to the one of the same interfaeach iterationeppy = 3ecq [see (9)]—obviously, the accu-
generated by the meshing@f. For each polarization TM or TE racy required for the DDM algorithm must be lower than the one
of the incident wave, and for fixed values&énd:, we proceed forthe CG—and, unless otherwise mentioned; = 102 [see

s in [10], all the numerical results presented in this section
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—— MoM
——— d=15cm ABC2 [10]
———- N=4 (d=30cm) ABC2 TC2
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Fig. 7. Same as Fig. Bi* = 0. Mean RCS fowl = 15 cm [10] andd = 30
cm (DDM).

(8)]: It has been found that these values have always ensured the
RCS convergence. A complete calculation is necessary for eact’

TABLE |

CONE SPHERE
BER OF ELEMENTS N &' AND UNKOWNS N ™ FOR EACH SUBDOMAIN §2;

Fig. 8. B(d, 0) for the sphere? = 30 cm, ABC2 onS;, 800 MHz.

polarization and incidence angle, and the major part of the co

puting time is devoted to the solution of systems (7). Validatic L] 2, s 2
tests performed on a sphere are presented in Section IV-A, ¢ 800MHz  (Nf! = 75358 N5 = 89556 |Ng' = 83544 INJ' = 105799
Section IV-B is devoted to the cone sphere results. IVP" = 98534 |V = 120355 [Ng™ = 117917 |N{" = 148383
1.2GHz  |Nf! = 284154 |N§' = 332385 [N§!' = 320588 [Ng' = 386662
A. Numerical Results for the Sphere VEn = 356245 Ve = 424260 [Ven = 420779 INpm = 507678

The radius of the perfectly conducting (PEC) sphere is 25 cm.
N = 3 and the subdomains are spherical shells. The radij pf ) ) _
S, andSs = S; are 30, 34 and 37 cm, respectively, so that One may explain the dlﬁerent behaviorsef (¢) andgr2(£)
the distance betwees, andS; is 12 cm. The calculation fre- Py the fact that the solution converges more rapidly on the
guency is 500 MHz. Firsg = 5 = 1 everywhere. We observe Periphery of the domain. For exgmple, it can easily be shpwn
on Fig. 2(a) (bistatic RCS versus observation arfjla good ~ from (5a), (Sb) that the solution 2, is affected by the radi-
agreement between the DDM results obtained in five iterationsation condition onS; only if £ > N—this is the reason why
with second-order ABC and TC’s (ABC2 and TC2) and those the number of iterations increases with—; hence, the stop-
obtained in closed form for th&, s problem with an ABC2 ~ Ping criterion (9) performed on the solutions@h ensures
on S [10]. The polarization conventions are as in [10]: TM the cor}vergenc;e_of the solutions in each subdomain, but we
(TE) corresponds to the incident magnetic (respectively elec-may think that it is more advantageous to compute the RCS
tric) field transverse to the plane of incidence defined by the from the values of the fields ofi, as it has been done in
BOR’s revolution axis and the direction of incidence. We get the [2_0]- ) )
same agreement with various values for the order of the ABC,Since all the results have been obtained with the same com-
the TC, the frequency, anl. For example, we have plotted on Puting times, we note that a calcqlatlon performed with an
Fig. 2(b) the bistatic RCS obtained with the materiat 1 —i, ~ ABC2 and TC2 is roughly three times longer than a com-
@ = (1 —4)/2in Q, an ABC2 onS; and, for the DDM, a  Putation performed with an ABC2 and TCO, the reason for
zero-order TC (TCO) or$; and S. Fig. 3 plots two types of  this being that the convergence of the CG for the solution of
error versug, viz. er1 ander2, problemP is all the slower as the order of the boundary con-
ditions is high [10]. As a consequence, it is recommended to
er1(0) = log(|Hf — HEY|), oty e o, :
er2(f) = 10g[||HtégN(SN—1) - HtZgN—l(SN—l)”] Finally, we have verified that the restart procedure defined
obtained forN = 3, e = 1 = 1 everywhereecq = 107% and in [20] for 2-D problems works also for 3-D problems: A first,
various orders for the ABC and TC. In view of these results, wemputation performed withh = 2, followed by a restart where
can readily draw the following conclusions. the last subdomain is added, yields identical results to those di
The convergence afr1(¢) is approximately independent offectly obtained withV = 3.
the order of the ABC and TC, although slightly faster with .
the TC2 for low values of. B. Numerical Results for the Cone Sphere
As it has been already observed in [20}2(¢) decreases The cone sphere is identical to the one defined in [10]: the
more rapidly with a TC2, thus demonstrating its superior efetal length of the object is 2 m, the radius of the sphere 30
ficiency. cm, and the tangent is continuous at the junction between the
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20 — Ve e ] 20 numerical noise corresponding to a sphere of radtuwith
— — - Net ABCO TCO —— - N=4 ABCO TCO j Z = 1 centered in a spherical domain on whose boundary, of
10 [O-——ON=4ABC2TCO [ &—ON=4 ABC2TCO 110 radiusR + d, is prescribed an ABC. If'(d, #) denotes the far
scattered field amplitude, then we may define the numerical
Or 19 noiseB(d, §) in dB as
@ -10 ¢ -10 2
% B(d’ 9) =10 1Og[47r|FABC(d’ 9) - Few(d’ 9)| ] (12)
2 -20 | -20
F., (Fapc) designates the exact (respectively computed with
-30 1 .30 an ABC) amplitude. For a sphere of radius 30 cm (equal to the
7 one of the spherical part of the cone sphere) and an ABC2, we
-40 | ! 1 -40 get at 800 MHz the curves of Fig. 8 far = 15, 30 and 120
! ' cm: whend increases from 15-30 cm, the noise is effectively
S0 T 100 80 o so 100 180 >0 reduced by about ten dB, but a distance of 120 cm is necessary

9 8 to get below—75 dB. On account of the fact that the forward
scattering RCSA = 180°) is 5 dB lower for the sphere than for
_ , _ ' _ the cone sphere, we may extrapolate that a good accuracy on
iFnIgS‘Z?;. 80%'5,\5':;2‘)2?159‘3?5@ %‘?ated with the material 1 — i, u = (1 —4)/2  RCg Jevels higher than 70 dB would be achieved for the cone
sphere withd equal to about 1 m, while keeping in mind that the
numerical noise for a given ABC depends on the shape of the
sphere and the cone (see Fig. 4). Let us first mention that @igject and on the impedance boundary condition (for a PEC, the
various numerical experiments performed with this geometppise is about ten decibels larger when the ABC2 is employed)
show that the DDM behaves as indicated in Section IM¥A=  on the incidence angle and on the shape of the “chamber.” In-
4, the interfaces are conform #, and the subdomains are sucljeed, we note that in view of Fig. 8¢ = 30°), thatif the mean
that they contain approximately the same number of elemergeS is correctly computed with an ABC2 and= 4 for levels
The values of the distances separating the interfaces are, fothat are higher thar 40 dB, there is obviously a problem around
increasing values af 10, 8, 6, and 6 cm, so that; is placed 30 1607, although the RCS value is relatively large (abed0 dB).
cm away fromS, (see Fig. 4). For all the examples presented calculation performed withZ = 0 at the same frequency,
below, only the bistatic RCS is computed. with the same subdomains and meshes, but with the material

The firsts results have been obtained at 800 MHz Witk 1 ¢ = 1 —4, i = (1 —4)/2 substituted to free-space ity yields
ande = ;. = 1 everywhere: The overall length of the objecg similar accuracy (ABC2 and/ = 4: see Fig. 9) although
is 5.44 A and the radius of the sphefes A\. The number of the surface object; is closer to the boundar§, (4 = 20 cm).
elementsN{! and unknownsV/" in each subdomai?; is Agdain, one verifies the superior performances of the ABC2 over
given in Table I, with a total number &F"_, N#* = 485189 the ABCO.
unknowns. The number of elements and unknowns for theThen, keeping the same subdomains, the average edges length
equivalent problemPsgc solved without the DDM would of the FE cells has been reduced by 50% in order to perform
have been 354 257 and 431 372, respectively (one must dediadtulations at 1.2 GHz. Now, the overall length of the object is
the unknowns on the interfacef to S3 that are shared by 8.16 A, the radius of the sphere2 ), and the corresponding
the contiguous subdomains). Fig. 5(a) plots the arithmetioadlues of V! and V™ are given in Table |, with a total number
mean of the RCS calculated for the two polarizations, i.ef ;_, N#* = 1708971 unknowns. The number of elements
(RCS(TMHRCS(TE))/2, in axial incidence on the cone-tipand unknowns for the equivalent probléfysc solved without
(™ = 0) for N = 1, 3,4, with ABC2 and TC2 (as a the DDM would have been 1323789 and 1604 233, respec-
comparison, we have plotted the results obtained with- 4, tively, involving considerable difficulties in the mesh generation
ABCO0 and TCO and we recall that the exact RCS is polarizati@md very large computer resources. The RCS has been com-
independent whe = 1). This allows us to verify that the puted for6"*c = 0° with N = 4, ABC2 and TC0,Z = 1
accuracy increases whefy is placed farther away from theande¢ = p = 1 everywhere on one hand [Fig. 10a)], and
object—even if the arithmetical mean improves the resuls = 0 on Sg, ¢ = 1 andp = (1 —4)/2 in ©; on the other
[see Fig. 5(b)]—independently of the angle of incidence (séand [Fig. 10(b)]. The accuracy achieved is approximately the
Fig. 6: mean RCS fof*c = 30°). Fig. 7 compares the meansame than at 800 MHz [see Figs. 5(b) and 9] which confirms
RCS calculated in [10] for axial, on tip incidence without thehat, for a sufficiently high value of the frequency, the efficiency
DDM for a distanced = 15 cm betweenS, and Sy with the of an ABC depends on the distandebetween the boundary
one calculated with the DDM and = 30 cm (V = 4). We and the surface of the object, rather thandgn [10]. Fig. 11
observe that doubling the value @fllows us to obtain (for the plots B(d = 30 cm, ) calculated at 1.2 GHz and 5 GHz for
mean RCS) an error smaller than 5 dB for RCS levels highttre sphere of radius 30 cm with = 1 and an ABC2 or the
than—45 dB, instead 0f30 dB ford = 15 cm. Actually the high-order ABC (HOABC) proposed in [10]. Again, it confirms
RCS error decreases more slowly from some valug §df. that the ABC2's performances remain virtually unchanged at 5
[10] and Fig. 5(a)]. If we compare the computational domai@Hz (except for the small values #fand that even the HOABC
to an anechoid chamber, we can calculate analytically tbees not allow a noise reduction belevw60 dB. These results
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Fig. 10. Cone sphere: 1.2 GHz aft® = (0. DDM with N = 4, ABC2
and CTO. (a)Z = 1 ande = p = 1 everywhere. (b = 0 ande = 1,
po=(1—1)/2in Q.

Fig. 11. B(d = 30 cm,#) for the sphere? = 30 cm, ABC2 onS,.
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------- 1.2GHz ABC2 TCO TCPU=20400s

are given as indications only, and one must be aware thatth 18 |
generalization to other geometries is not always justified.

On Fig. 12 is displayed0°nf /N#™, i.e., the ratio of the
number of CG iterations required for the solution of problen
P! to the number of unknowns i2;, multiplied by 1¢ versus
m=N{-1+ifor N=4(1<4i<4),Z=1and
various ABC’s and TC'’s at 800 MHz and 1.2 GHa. repre-
sents the number of problem‘é' (¢ < £andi < 1) that have
been solved during the iteration process. These plots show tl
the convergence of the CG is all the slower as the order of tl :
boundary conditions for proble®! is high (as it has been al-
ready mentioned for the sphere in Section 1V-A) and that, for
TCO,nf/N™ is almost independent 6¥;*" and even lower for 0
a three times denser mesh (1.2 GHz). This justifies the hypot
esis on which the evaluation (11) of the DDM computing time
is based, and we may estimate that, for this particular examplg 12. cone spheran®n¢/N#" versusm with four subdomains.
(N =4 andL = 10), TCPU(DDM) < 0.6 TCPU Pspc)—Wwe

— L i
;%c?rlllalt&at;org in (Ll’l(;_nlxsthaenﬁ:%?ggs;, I\?\/:Oglj\i/\(/a: gieﬁié?)kzsolution of a very large problem involving more than 1.3.10

the values of TCPU(DDM) corresponding to the various Caja_lem_ents and_ 1.6.iQmI§nowns with a reasonable number of

. : : iterations, while employing the standard edge-based FE formu-
culations. Note that the elementary matricesAgfare entirely lation. The accuracy achieved with the ABC2 at 800 MHz and
recomputed at each iteration. lon. uracy ieved wi z

1.2 GHz on the stealth cone sphere with= 1 or coated with
an absorbing material may be considered as satisfactory on a
50-dB dynamic range (the RCS error is lower than 5 dB for a
The DDM proposed in [20] for the solution of 2-D prob-distanced object to boundary equal to 30 cm).
lems has been extended to the 3-D vector case, and the TC’Blowever, the fact that the numerical noise generated by the
can be implemented in the inhomogeneous domain, thus fapurious reflections on the boundary depends, except for low
ther reducing the memory storage. It has been demonstratefr@guencies, ord and not ond/A implies that a similar accuracy
[21] that the algorithm converges to the solution of the originalill be obtained at higher frequencies only if a large number
problem when zero-order ABC and TC’s are employed. Th# subdomains is implemented, thereby leading to very large
numerical results presented in Section IV show that the sarmmmputing times, and considerable difficulties in mesh genera-
conclusion holds true for second-order conditions, and that ttien especially since the meshes of the interfaces have been con-
DDM characteristics etablished for 2-D problems [20] are alsdrained here to be identical for adjacent subdomains in order to
valid in 3-D. Because of the large numbers of unknowns eafdcilitate the numerical implementation. This constraint could
subproblem is solved with a CG, and it has been found to be suppressed if the subdomains are separately meshed and an
more advisable, in terms of computing times, to use the zeioterpolation scheme is devised that links the unknowns on both
order TC, despite the superior efficiency of the second-ordgdes of an interface. Finally, the substitution of an integral equa-
one. Thus, the DDM presented in this paper has allowed ttien to the ABC would allow to achieve a better accuracy with

#iterations/#unknowns * 1000
S [=] oo 5

N

/}\'\xi 7 Ll 7™LY >\--—v\"/\\—4‘:
1 5 9 13 17 21 25 29 33 37
m=4(l-1)+i

K
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greater reliability: Considering the infinite free-space domain [8] F. Collino and P. Joly, “New absorbing boundary conditions for the finite

exterior to the object as an additional subdomain, only the in- element solution of 3-D Maxwell's equationsEEE Trans. Magn.vol.
h . hould b hed. thereb duci 31, pp. 1696-1701, 1995.
omogeneous coating shou e meshed, thereby reducing tr’[@] R. Cicchetti, “A class of exact and higher-order surface boundary condi-

number of subdomains, and the corresponding DDM algorithm  tions for layered structures|EEE Trans. Antennas Propagatol. 44,
has been shown to converge to the solutions of the exact scaf; £P. 249-259, 1996. , -
. 10] B. Stupfeland M. Mognot, “Implementation and derivation of conformal
tering pmblem [21]' absorbing boundary conditions for the vector wave equatidnZlec-
tromagn. Waves Applvol. 12, pp. 1653-1677, 1998.
APPENDIX [11] Z.S.Sacks,D.M.Kingsland, R. Lee, and J. F. Lee, “A perfectly matched
anistropic absorber for use as an absorbing boundary conditBE

Let us assume, for the sake of simplicity, that only the first __ Trans. Antennas Propagatol. 43, pp. 1460-1463, 1995.

. . 12] J. Y. Wu, D. M. Kingsland, J. F. Lee, and R. Lee, “A comparison of
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f(Z/) = thottr.m (A1) [15] B. Després, Ph.D dissertation, Université Paris IX Dauphine, Paris,
. . L . . France, 1991.
whereuw,. is the unit vector pointing in the direction of observa- [16] ——, “Domain decomposition method and the Helmholtz problem,”
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i . L . 1992, pp. 44-52.

z];  the mtegral on the electric field in (A'l) becomes [17] ——, “Domain decomposition method and the Helmholtz problem (part

1
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1 [18] ——, “A domain decomposition method for the harmonic Maxwell
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with [19] V. V. Shaidurov and E. I. Ogorodnikov, “Some numerical method of
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o V= + gl RANS ) Numer. Aspects Wave Propagat. Phenomé882, pp. 73-79.

A (Q’) 47 /s T ﬂl (7— )f(l ) dr’. [20] B. Stupfel, “A fast domain decomposition method for the solution of

! electromagnetic scattering by large objectifEE Trans. Antennas

Propagat, vol. 44, pp. 1375-1385, 1996.
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Then, because of the TC ¢, I* can be recursively computed [21]

as follows: solution of large electromagnetic scattering problerdsElectromagn.
1 1 4 pinc/ , , Waves Appl.vol. 13, pp. 1553-1568, 1999.
I (%) = 4— TTH '(Z )f(7_ ) dr [22] P. Bonnemason and B. Stupfel, “Modeling high frequency scattering by
T Js axisymmetric perfectly or imperfectly conducting scattereEdgctro-

magn, vol. 13, pp. 111-129, 1993.

020 1) =1 )+ /S | 8+ + o)

’ (ﬂitgl - ﬂgtgl)f(il) dr’.
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