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Higher Order Impedance Boundary Conditions for
Sparse Wire Grids

V. V. Yatsenko, S. A. Tretyakov, Senior Member, IEEE, S. I. Maslovski, Student Member, IEEE, and A. A. Sochava

Abstract—Higher order impedance boundary conditions
designed for modeling wire grids of thin conducting wires are
established. The derivation is based on the exact analytical
summation of the individual wire fields. This allows to write
approximate boundary condition on the grid surface, which
connects the averaged electric field and the averaged current
(or the electric field and the averaged magnetic fields on the two
sides of the grid surface). The condition depends on the tangential
derivatives of the averaged current (up to the sixth order).
This approach provides an extension of the averaged boundary
conditions method (well established for dense grids) to sparse
grids. Numerical examples demonstrate very good accuracy of the
solutions for the field reflected from grids with the wire separation
as large as half of the wavelength.

Index Terms—Impedance boundary conditions, wire grids.

I. INTRODUCTION

I T is well known thatapproximate boundary conditionsis a
very useful tool that can greatly facilitate solutions of var-

ious electromagnetic problems. Of course, certain simplifying
assumptions about the system are made. This can be, for in-
stance, the assumption of a high contrast of the electromagnetic
properties of two media with a common interface. Under this
assumption, the Leontovich boundary conditions for a smooth
interface between two media can be established [1]. Similarly,
electrically thin slabs of various media or layers of high-contrast
materials can be modeled by various sheet or impedance condi-
tions [2]–[5]. The other common assumption is that the structure
is periodical with the period much smaller than the wavelength.
In this case, varioushomogenizationapproaches are possible,
leading to the concept of the surface impedance which connects
the averaged fields [6]–[12]. Such models are known for grids
of wires [6]–[9] or strips [10]–[12]. In many cases the solution
(approximate or even exact) can be easily found for plane wave
excitation; that is, in the Fourier domain, e.g., [12]. The main
problem is to find the boundary conditions in the physical space
so that more complicated excitation or nonplanar structures can
be modeled. In this paper, we consider the classical problem
of the array of parallel conducting wires. We establish approx-
imate impedance boundary conditions for sparse grids in the
physical domain and show that the homogenization is possible
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Fig. 1. The geometry of the problem.

until there are no grating lobes. However, to model sparse grids
higher order impedance boundary conditions are needed.

Electromagnetic properties of wire grids have been studied
for many decades because of their many important technical
applications. For grids of parallel thin wires excited by plane
waves the exact solution for the wire currents can be easily
written in terms of a series of the Hankel functions. This series
converges rather slowly, but the convergence can be improved
using the Poisson summation rule and some other means, as
shown in [13]–[15]. However, the result is still expressed in form
of series of nonrational functions of the wave vector and other
parameters and can be directly applied only to infinite grids ex-
cited by plane waves. For more practical problems, effective
boundary conditions are needed which would model the grid
properties in the physical domain, not only for Fourier-trans-
formed fields and currents.

Such boundary conditions, so calledaveragedboundary con-
ditions, are known for dense grids [8], [9] (separation between
wires is much smaller than the wavelength). These conditions
are second-order impedance boundary conditions which can be
used under two assumptions: 1) the grid period is much smaller
than the wavelength and 2) the wire radius is much smaller
than the grid period. In the theory of the averaged boundary
conditions the local field exciting a reference wire is approxi-
mately calculated using the Euler–MacLaurin summation for-
mula. In order to improve the accuracy of this summation for
grids with somewhat larger distances between wires, an im-
proved Euler–MacLaurin formula was suggested in [16] (but
no improved boundary condition was given). In the present ap-
proach our goal is to find effective boundary conditions that can
be used also for sparse grids when the distance between wires
becomes comparable with the wavelength. In this study, we start
from the exact solution of the corresponding diffraction problem
in the Fourier-transformed domain (for plane waves) and then
find approximate impedance boundary conditions making the
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Fig. 2. Absolute value of the copolarized reflection coefficient for TE-polarized incident wave.

appropriate Taylor expansion of the exact result before trans-
forming the fields to the physical space. This way we establish
a method that allows to derive higher order boundary conditions
of any order. We have explicitly found such conditions with the
second-, fourth-, and sixth-order tangential derivatives of the
fields. In the second order, our method gives, naturally, the same
result as the known approach by Kontorovich [8], [9].

II. THEORY

Consider a periodic grid of parallel conducting wires (Fig.
1). The wires can be ideally conducting or lossy wires whose
impedance per unit length is. Wire radius is , the separation
between the wires is. The grid is excited by a plane wave

(1)

so that the currents in the wires depend on the coordinates as

(2)

where is the coordinate of the th wire. The inci-
dence and reflection angles are equal to(the normal incidence
corresponds to ), the azimuthal angle is . The compo-
nents of the wave vectorof the incident field can be written as

(3)

The amplitude of the incident electric fieldcan be represented
by its components and connected with the Cartesian
components as following (see Fig. 1):

(4)

The suppressed time dependence is of the form.

A. Summation of the Wire Fields

Each wire (number ) creates electric field whose component
in the direction along the wires (-direction) is (see, e.g., [17, p.
492])

(5)

Here , is the wave number,
is the wave impedance, and is the Hankel

function. As is usually done, we have replaced the wire field by
the field of an infinitely thin current line along the wire axis. In
this theory, we assume that the wire radius is small compared
to the wavelength and it is much smaller than the
distance between the wires . To solve for the current
in wires we need to know the local field, which acts on a wire
surface. This field can be expressed as

(6)
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Fig. 3. Absolute value of the copolarized reflection coefficient for TM-polarized incident wave.

The sum of the Hankel functions can be calculated using ([18,
8.521.1, 8.522.3]):

(7)

Here is the Euler constant ([18, 9.73]). The prime
in the sum denotes that the summation is made over allexcept

. This is the known result that leads to the exact (valid for
thin wires) solution of the plane wave diffraction problem (see,
e.g., [13]–[15]).

Now we can write the boundary condition on the surface of
one of the wires (wire )

(8)

Here is the field created by the reference wire current at
that wire surface

(9)

Under the assumption that , we replace the Hankel
function by its asymptotic expression for small arguments

(10)

which leads to

(11)

From the last relation, we determine the wire current (it is con-
venient to introduce surface current densityconnected to the
current as )

(12)
where is calledgrid parameter

(13)

Note that the sum in (13) converges very quickly. For dense
grids such that and it gives a very
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Fig. 4. Absolute value of the cross-polarized reflection coefficient.

small correction and can be neglected. In that case, the averaged
current density is given by (12) with replaced by

(14)

This is a well-known result found by Kontorovich [8], [9] with
a different approach (Kontorovich averaged boundary condition
approach). As we see, the result of the exact summation differs
from the approximate Kontorovich boundary condition by an
additional member in the expression for the grid parameter.

B. Boundary Condition

Relation (12) connects the averaged induced current with
the incident plane wave field. To establish a relation between
the induced current and the incident field for arbitrary incident
fields we should transform (12) to the physical space. For
arbitrary fields in the physical domain and

. Obviously, to arrive to effective boundary
conditions we should find a rational approximation for the grid
parameter (13). This can be done using the Taylor expansion
of the series in (13). To make the expansion, let us introduce
function as the following:

(15)

where and . Making
the Taylor expansion of the sum in (13) we obtain

(16)

(17)

where is the Riemann zeta function ([18, 9.522]). With the
accuracy to terms of the order we have for

(18)
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Fig. 5. Absolute value of the copolarized reflection coefficient as a function of the normalized distance between wires for TM-polarized incident wave.

To find the boundary condition which connects the averaged
fields, there is no need to perform averaging. It is enough to
note that the averaged field equals to the field created by the
averaged current. Thus, the component of the total (Fourier-
domain) averaged electric field in the grid plane is the sum
of the incident field and the plane
wave field (its -component) created by the current sheet

(19)

The line over a symbol denotes the averaged over a grid period
quantities. Substitution of the current density from (12) gives
for the averaged total field

(20)

From (3), we recognize that .
Finally, we can make the Fourier transform to the physical

space replacing and . The
result is the boundary condition which connects at the grid plane
the -component of the total field with the surface current
density . It reads

(21)

where

(22)

The boundary condition can be also written in terms of the
averaged magnetic field on the two sides of the grid because

, where the superscripts mark the av-
eraged fields on the sides and , respectively.

III. REFLECTION AND TRANSMISSIONCOEFFICIENTS

The effective higher order boundary conditions are primarily
needed to solve diffraction problems for nonplane wave exci-
tation or for limited in size grids. However, to check the accu-
racy of the solution, we will next calculate exact and approx-
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Fig. 6. Same as in Fig. 5 for the transmission coefficient.

imate reflection coefficients for infinite grids excited by plane
waves. For this goal, we find the reflection and transmission co-
efficients in terms of the grid parameter.

In the far zone, the grid field is a plane wave field with the
components

(23)

where and are the unit vectors connected with the unit
vectors of the Cartesian coordinate system as following (see Fig.
1):

(24)

After substitution of the current (12), the copolarized and
cross-polarized reflection coefficients are found as

(25)

for TM-polarized incident wave and

(26)

for TE-polarized incident wave.
The transmission coefficients are determined as

(27)

(28)

IV. NUMERICAL EXAMPLES

In the following numerical examples shown in Figs. 2–4, we
compare the exact results for the reflection coefficient with that
found with the use of the sixth-order impedance boundary con-
ditions and the second-order averaged boundary conditions by
Kontorovich. The grid in these examples has the wire spacing

, the wire radius is . One of the incidence
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angles is fixed , the other angle varies. The grid is
ideally conducting (the surface impedance ). On Figs. 5
and 6 the reflection and transmission coefficients as functions
of the parameter are depicted. Values of the incidence an-
gles are the following: . We observe that the
sixth-order conditions provide a very good model for the grid
properties. The calculated curves go between that for the exact
solution and that given by the second-order approximation, but
very close to the exact solution nearly up to the first resonance
of the grid when .

For such sparse grids the second-order Kontorovich boundary
conditions give considerable error, which should be expected.
In that theory the grid parameter is assumed to be a small
quantity, but for our examples when and

near the first resonance.

V. CONCLUDING REMARKS

In this paper, the averaged boundary conditions for grids of
parallel wires have been extended to sparse grids. The main orig-
inal idea behind the averaged conditions is that the fields gen-
erated by a dense grid at a certain distance (large compared to
the wire separation) from its plane become smooth functions of
coordinates (for plane wave excitation, just a plane wave is gen-
erated). The smooth far field defines the reflection and transmis-
sion coefficients for the grid. This observation suggests that the
smooth field at a distance from the grid can be connected with
the averaged current on the grid plane by effective boundary
conditions [8], [9]. The original result by Kontorovich is lim-
ited to dense grids, such that the distance between wires is much
smaller compared to the wavelength. Here, using the exact so-
lution for the corresponding plane wave diffraction problem we
have found that the averaged boundary conditions can be ex-
tended to rather sparse grids, such that the wire separation can
be as large as half of the wavelength. The extended conditions
naturally contain higher order tangential derivatives of the aver-
aged current.

Our method is based on the Taylor expansion of the appro-
priate coefficient in the exact solution and still higher order
conditions can be easily generated. However, we note that the
method fails when the first resonance of the grid is reached. For
the normal incidence that happens when the distance between
wires equals the wavelength. Near that point, the grid be-
comes transparent. The Taylor expansion of the grid parameter

(13) fails when we reach this point (there is a branch point
here). The physical reason for this limitation is the fact that at
frequencies higher than the first resonance frequency, several
plane waves are generated by the grid currents (in the antenna
language, there exist grating lobes). Thus, the main idea of con-
necting the smooth field taken at a distance from the grid with
the smoothed grid current cannot be directly applied anymore,
and other models are needed for this regime.
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