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Higher Order Impedance Boundary Conditions for
Sparse Wire Grids

V. V. Yatsenko, S. A. Tretyakq\Senior Member, IEEES. I. Maslovski Student Member, IEEERNnd A. A. Sochava

Abstract—Higher order impedance boundary conditions
designed for modeling wire grids of thin conducting wires are
established. The derivation is based on the exact analytical E¢
summation of the individual wire fields. This allows to write 0 0 ¢
approximate boundary condition on the grid surface, which k
connects the averaged electric field and the averaged current
(or the electric field and the averaged magnetic fields on the two
sides of the grid surface). The condition depends on the tangential y
derivatives of the averaged current (up to the sixth order). p
This approach provides an extension of the averaged boundary
conditions method (well established for dense grids) to sparse "y
grids. Numerical examples demonstrate very good accuracy of the T
solutions for the field reflected from grids with the wire separation *
as large as half of the wavelength.

Fig. 1. The geometry of the problem.
Index Terms—mpedance boundary conditions, wire grids.
until there are no grating lobes. However, to model sparse grids
higher order impedance boundary conditions are needed.
Electromagnetic properties of wire grids have been studied
T is well known thatapproximate boundary conditionsa for many decades because of their many important technical
very useful tool that can greatly facilitate solutions of varapplications. For grids of parallel thin wires excited by plane
ious electromagnetic problems. Of course, certain simplifyingaves the exact solution for the wire currents can be easily
assumptions about the system are made. This can be, forviitten in terms of a series of the Hankel functions. This series
stance, the assumption of a high contrast of the electromagnet@verges rather slowly, but the convergence can be improved
properties of two media with a common interface. Under thigsing the Poisson summation rule and some other means, as
assumption, the Leontovich boundary conditions for a smooghown in [13]-[15]. However, the result is still expressed in form
interface between two media can be established [1]. Similarbf, series of nonrational functions of the wave vector and other
electrically thin slabs of various media or layers of high-contraghrameters and can be directly applied only to infinite grids ex-
materials can be modeled by various sheet or impedance conglied by plane waves. For more practical problems, effective
tions [2]-[5]. The other common assumption is that the structusundary conditions are needed which would model the grid
is periodical with the period much smaller than the wavelengtproperties in the physical domain, not only for Fourier-trans-
In this case, variousomogenizatiorapproaches are possibleformed fields and currents.
leading to the concept of the surface impedance which connectSuch boundary conditions, so callederagedoundary con-
the averaged fields [6]-[12]. Such models are known for gri@ftions, are known for dense grids [8], [9] (separation between
of wires [6]-[9] or strips [10]-{12]. In many cases the solutiogyires is much smaller than the wavelength). These conditions
(approximate or even exact) can be easily found for plane wayie: second-order impedance boundary conditions which can be
excitation; that is, in the Fourier domain, e.g., [12]. The maifised under two assumptions: 1) the grid period is much smaller
problem is to find the boundary conditions in the physical spagigan the wavelength and 2) the wire radius is much smaller
so that more complicated excitation or nonplanar structures aan the grid period. In the theory of the averaged boundary
be modeled. In this paper, we consider the classical problg@nditions the local field exciting a reference wire is approxi-
of the array of parallel conducting wires. We establish appromately calculated using the Euler-MacLaurin summation for-
imate impedance boundary conditions for sparse grids in thfila. In order to improve the accuracy of this summation for
physical domain and show that the homogenization is possilgjeds with somewhat larger distances between wires, an im-
proved Euler—-MacLaurin formula was suggested in [16] (but
no improved boundary condition was given). In the present ap-
. . _ proach our goal is to find effective boundary conditions that can
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Fig. 2. Absolute value of the copolarized reflection coefficient for TE-polarized incident wave.

appropriate Taylor expansion of the exact result before traffi@e amplitude of the incident electric fieKlcan be represented
forming the fields to the physical space. This way we establisly its component®, and E., connected with the Cartesian
a method that allows to derive higher order boundary conditionemponents as following (see Fig. 1):

of any order. We have explicitly found such conditions with the ) )

second-, fourth-, and sixth-order tangential derivatives of the Ee = £ cost cos pxo + L, cos fsin pyo + E. sin 0z,
fields. In the second order, our method gives, naturally, the samell, = — E, sin pxq + E, cos ¢yo. 4)

result as the known approach by Kontorovich [8], [9]. _ _ :
The suppressed time dependence is of the fairh.

Il. THEORY A. Summation of the Wire Fields

Consider a periodic grid of parallel conducting wires (Fig. Each wire (numben) creates electric field whose component
1). The wires can be ideally conducting or lossy wires whoé@the direction along the wires:{direction) is (see, e.g., [17, p.
impedance per unit length 1. Wire radius is-, the separation 492])

between the wires is. The grid is excited by a plane wave
J yap EY, ==k (B = B) LAP (VI =Rr) . ()
E™ = Ee /0T () Herer, = V32 +22, k = wy/eomo is the wave number,

V/ 110/ €0 1S the wave impedance, adﬂo(Q) is the Hankel

ion. As is usually done, we have replaced the wire field by
the field of an infinitely thin current line along the wire axis. In

I, = I 9ke® e dkyun (2) this theory, we assume that the wire radius is small compared

to the wavelengttitry < 1) and it is much smaller than the

wherey,, = bn is they coordinate of thenth wire. The inci- distance between the wir¢s, < b). To solve for the current

dence and reflection angles are equd {the normal incidence in wires we need to know the local field, which acts on a wire

corresponds t@ = 0), the azimuthal angle ig. The compo- surface. This field can be expressed as

nents of the wave vectdr of the incident field can be written as

so that the currents, in the wires depend on the coordinates a%;:t

Y = By — 2 (K = 12) Te ™"

k. =ksinfcosy, k, =ksinfsing > @)
X cos(kybn)Hy™ (k% — kE2bn ) . 6
k. = —kcosé. ©) nz::l (kybn)Hg ( ) (6)
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Fig. 3. Absolute value of the copolarized reflection coefficient for TM-polarized incident wave.

The sum of the Hankel functions can be calculated using ([18, 2 VE2 =Ko
8.521.1, 8.522.3]): ml—j—(log——F——+C (10)

> cos(k,bn) Hy (\/kQ — kglm) which leads to

n=1

1 RV 1 X, Bo_ a2yl 2 j IR Y
Szt | & Tty 2 o g Bt [, T 2
o 27 1 ) 2
V@ + k)2 = (B2 =k In| )| V(2rn + kyb)2 — (k% — k2)b? |n|

(11)
HereC =~ 0.5772 is the Euler constant ([18, 9.73]). The prime

in the sum denotes that the summation is made overettept From the last relation, we determine the wire current (it is con-
n = 0. This is the known result that leads to the exact (valid fqjepjent to introduce surface current densitgonnected to the
thin wires) solution of the plane wave diffraction problem (se@yrrents as.J = 1/b)

e.g., [13]-[15]).

Now we can write the boundary condition on the surface of 2 cosOE,
one of the wires (wire: = 0) B 5(1 — sin? @ cos? p)(1 + jacos §) + (2/n) Zb COS(9 )
: 1
loc wo —jk.x
B+ Ego = Z1e ™. (®) whereq is calledgrid parameter
Here EY, is the field created by the reference wire current at -
that wire surface o b log } Z
’ n . ) s 27r70 2 =
By = - (k= k2) e B (VR = R2ro) . (9)
3 27 1
Under the assumption thaty < 1, we replace the Hankel x <\/(27m T kyb)? — (2 — k2)12 - m)] -(13)

function by its asymptotic expression for small arguments

@ Note that the sum in (13) converges very quickly. For dense
Hg (\/ k? — k2 7‘0) grids such thak,b < 27 and /A% — k2b < 2r it gives a very
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Fig. 4. Absolute value of the cross-polarized reflection coefficient.

small correction and can be neglected. In that case, the averageeret = (1 — (k2/k?))(b/A)? ands = (k, /k)(b/)). Making
current density is given by (12) with replaced byvssc the Taylor expansion of the sum in (13) we obtain

1 Z 2 _ 1
kb b i 27m + kyb)2 — (k2 — k2)i? |n|
XABC = — 10g - . (14) [e9)
7r 271 _1 Z, 1 1
(

. . . 2 n+8)2—t_|ﬂ|
This is a well-known result found by Kontorovich [8], [9] with n=Tee
a different approach (Kontorovich averaged boundary condition = l[f(&t) + f(—s )]
approach). As we see, the result of the exact summation differs 2
frorr_]_the approxima_lte Kontorovic_h boundary (_:ondition by an = ft’(() 0)t+ = f” (0, 0)3 + = ft’;(O,O)tQ
additional member in the expression for the grid parameter.

+ o fz';,<o 0)s’t + o fw<0,o>s4 +o0 (16)

B. Boundary Condition

Relation (12) connects the averaged induced current with f:(0,0) = %C(ZS), 7(0,0) = 2¢(3)
the incident plane wave field. To establish a relation between 3
the induced current and the incident field for arbitrary incident 1,(0,0) = — C(S) 127.(0,0) = 6¢(5),
fields we should transform (12) to the physical space. For
arbitrary fields in the physical domaik? — —9%/9x? and 05(0,0) = 24 <) (17)

k2 — —8%/dy?. Obviously, to arrive to effective boundaryWhere((z) is the Riemann zeta function ([18, 9.522]). With the
conditions we should find a rational approximation for the gri@ccuracy to terms of the ordg/\)> we have fore

parameter (13). This can be done using the Taylor expansion o b ¢(3) k2 B\ 2
of the series in (13). To make the expansion, let us introduc& = - 108‘m + 5 <1 - p) <X>
function f (s, ¢) as the following:

+ <(3):—§ <§)2 + 3%5) <1 - Z—j) <;)4

=3 <ﬁ - %) s o xe (1- %) (%) o) (%)] - )

n=1
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Fig. 5. Absolute value of the copolarized reflection coefficient as a function of the normalized distance between wires for TM-polarized in@dent wa

1027
k2 922

To find the boundary condition which connects the averaged b
fields, there is no need to perform averaging. It is enough to RS 103
note that the averaged field equals to the field created by the 52
averaged current. Thus, the: component of the total (Fourier- — (21,(2) + 161/(4)) i_‘; + (11(2) + 91,(4))
domain) averaged electric fielg'c* in the grid plane is the sum . k? 8y

of the incident fieldE5* = Eyc /**¢ 9% and the plane L Lo LawL otJ (21/@ +32V<4>)
wave field (itsz-component) created by the current shéet k* Qx4 k* Oyt

1

—I— 2@ 4 91/(4)>

—jho® ,—jk, 4 =
JeTIFeT eI MY X_8J 31(4)18‘] 161(4)1 asJ
. 4 k* Ox20y? k6 Oz kS Ox4oy?
Etot — pext _ QMJ (19) 1 85T b\ 6
- x 2 9 G0 Bl Z 21
o8 8 kS Hx20y* +0 <)\> (1)
The line over a symbol denotes the averaged over a grid period
quantities. Substitution of the current density from (12) giveghere
for the averaged total field
i =49 (1) om (L)
ot [Zb+ jZa(1 —sin® f cos? )] %COS T 2 \A . A .
T (1—sin?fcos? o)(1+ jacosh) + (2/n)Zbcos b 4 = % <§) ~ 0.1296 <§) ) (22)

- [Zb 4571 - sin? B cos? @} 7. (20)
2 The boundary condition can be also written in terms of the
From (3), we recognize that— sin® f cos? ¢ = 1 — K2/k2, averaged m(ignetlc field on the two sides of the grid because
Finally, we can make the Fourier transform to the physmgl 2o x (H H™), where the superscripts mark the av-
space replacing? — —a2 /92 and ki — —52/9y?. The eraged fields on the sides> 0 andz < 0, respectively.
result is the boundary condition which connects at the grid plane
the z-component of the total field°* with the surface current
densityJ. It reads The effective higher order boundary conditions are primarily
needed to solve diffraction problems for nonplane wave exci-
e (4)” - tation or for limited in size grids. However, to check the accu-
v 4+ 3v J

Ill. REFLECTION AND TRANSMISSION COEFFICIENTS

EFt = Zb—i—an log b ) .
A 2y racy of the solution, we will next calculate exact and approx-
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Fig. 6. Same as in Fig. 5 for the transmission coefficient.

imate reflection coefficients for infinite grids excited by plandor TM-polarized incident wave and
waves. For this goal, we find the reflection and transmission co-

efficients in terms of the grid parameter o — Ex!
In the far zone, the grid field is a plane wave field with the  TF — E,
components sin?
B = oy BT = —chos 0. B ;Ejf_ sin? § cos? ¢)(1 + jacosb) + (2/n) Zbcos b
‘ Ry = =2
B —e, Bl = 1207 (23) E,
# “ 2 cosf :
_ cosfsin pcos @
whereey ande, are the unit vectors connected with the unit (1 —sin? 0 cos? p)(1 + jacos ) + (2/n)Zbcos 6
vectors of the Cartesian coordinate system as following (see Fig. (26)
1):
for TE-polarized incident wave.
eg = cos 0 cos pXg + cos 6 sin gyg — sin 0z, The transmission coefficients are determined as
e, = —sinyxg 4 cos Pyo. (24)
Tt =1+ Ry, 1M = Rem (27)
After substitution of the current (12), the copolarized and
cross-polarized reflection coefficients are found as
Bt Ttg =1+ Err, Twur = Bur. (28)
Rpv = z
(4
2 2
- _ 5 cos” fcos” ¢ IV. NUMERICAL EXAMPLES
1 —sin” 6 cos?2 )1+ jacosb) + (2/n)Zbcos b . . I
EEef sin” 6 cos? p)(L + jercos§) 4 (2/m)Zbcos In the following numerical examples shown in Figs. 2—4, we
Riy = —2 compare the exact results for the reflection coefficient with that
Eq found with the use of the sixth-order impedance boundary con-

_ cos fsin g cos ¢ ditions and the second-order averaged boundary conditions by
(1 —sin® 6 cos? ©)(1 + jarcos @) + (2/1)Zbcos § Kontorovich. The grid in these examples has the wire spacing
(25) b = A/2, the wire radius is’o = b/50. One of the incidence




726 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 5, MAY 2000

angles is fixed ¢ = n/4), the other angle varies. The grid is [2] T.B. A. Senior and J. L. VolakisApproximate Boundary Conditions in
ideally conducting (the surface impedange= 0). On Figs. 5 Electromagnetics: IEE Electromagnetic Waves Serigoondon, U.K.:

. L - . Institute of Electrical Engineers, 1995, vol. 41.
and 6 the reflection and transmission coefficients as functionsz) p_ 3 Hoppe and Y. Rahmat-Samiinpedance Boundary Conditions in

of the parameteb/\ are depicted. Values of the incidence an- Electromagnetics Washington, DC: Taylor Francis, 1995.

gles are the followingd = 0, ¢ = 7r/4. We observe that the [4] S. A. Tretyakov, A. S. Cherepanov, and M. I. Oksanen, “Averaging
sixth-order conditions provide a verv aood model for the arid method for analysing waveguides with anisotropic fillingadio Sci.
p yg g vol. 26, no. 2, pp. 523-528, 1991.

properties. The calculated curves go between that for the exadb] S. A. Tretyakov, “Thin pseudochiral layers: Approximate boundary con-
solution and that glven by the second-order apprOleatlon, but ditions and potential applicationdylicrowave Opt. Technol. Leftvol.

| h Iuti | he fi 6, no. 2, pp. 112-115, 1993.
very close to the exact solution nearly up to the first resonanceg) . Lamb, “On the reflection and transmission of electric waves by a

of the grid when\ = b. metallic grating,”Proc. London Math. Sogser. 1, vol. 29, pp. 523-544,
For such sparse grids the second-order Kontorovich boundar){ﬂ 1898.

diti . id bl hich should b t G. G. MacFarlane, “Surface impedance of an infinite parallel-wire grid
condiuons give considerable error, which shou € expected. * 4 oblique angles of incidence]! Inst. Elect. Eng.vol. 93 (Il A), no.

In that theory the grid parametern g is assumed to be a small 10, pp. 1523-1527, 1946.

quantity but for our example@ABc ~ 2 when\ =~ 2b and [8] M. I. Kontorovich, M. I. Astrakhan, V. P. Akimov, and G. A. Fersmant,
o N’ 4 near the first resonance “” in Electrodynamics of Grid Structures Moscow, Russia: Radio i
ABC ~ .

Svyaz, 1987. in Russian.

[9] M.I. Kontorovich, V.Y. Petrunkin, N. A. Esepkina, and M. I. Astrakhan,
“Reflection factor of a plane electromagnetic wave reflecting from a
plane wire grid,"Radio Eng. Electron Physno. 2, pp. 222-231, 1962.

V. CONCLUDING REMARKS [10] R.R. Delyser and E. F. Kuester, “Homogenization analysis of electro-
magnetic strip gratings,J. Electromagn. Waves Applicatol. 5, no. 11,
In this paper, the averaged boundary conditions for grids of  pp. 1217-1236, 1991.

parallel wires have been extended to sparse grids. The main orig] R- R- Delyser, “Use of the boundary conditions for the solution of a
. . . .. . . class of strip grating structuredEEE Trans. Antennas Propagatol.
inal idea behind the averaged conditions is that the fields gen- 41 pp. 103-105, Jan. 1993.

erated by a dense grid at a certain distance (large compared[i@] K.W. Whites and R. Mittra, “An equivalent boundary-condition model

; ; ; ; for lossy planar periodic structures at low frequenci¢BEE Trans.
the wire separation) from its plane become smooth functions of Antennas Propagatvol. 44, pp. 1617-1629, Dec. 1996.

coordinates (for plane wave eXC_itatiOm justa p!ane wave is 9€N13] J. R. Wait, “Reflection at arbitrary incidence from a parallel wire grid,”

erated). The smooth far field defines the reflection and transmis-  Appl. Sci. Resvol. B IV, pp. 393-400, Mar. 1954.

sion coefficients for the grid. This observation suggests that thé! ] Pﬁy?%‘:')‘fcé'gnggorgﬁ!”éfggrédezf‘riges'f’ a conducting plan@n.

smooth field at a distance from the grid can be connected withis] G. 7. Aisenberg, V. G. Yampolskii, and O. N. TereshldHF An-

the averaged current on the grid plane by effective boundary tennas Moscow, Russia: Svyaz, 1977, pt. 2, pp. 158-168. in Russian.
it i ; ic lim. [16] M. I. Kontorovich and V. P. AkimovProblems of the Mathematical

.Condltlons [8], [9] The original re.SUIt by Kontorowch IS _“m Physics Moscow, Russia: Nauka, 1976, pp. 79-93. in Russian.

ited to dense grids, such that the distance betwe_zen Wires is mugfy] L. 'B. Felsen and N. Marcuvitz,Radiation and Scattering of

smaller compared to the wavelength. Here, using the exact so- Waves Englewood Cliffs, NJ: Prentice-Hall, 1973.

lution for the corresponding plane wave diffraction problem wel18] ! S- G'adsmey’k‘ and 'a M. .Ryzg's‘roab'e of Integrals, Series, and Prod-

" ucts New York: Academic, 1 .

have found that the averaged boundary conditions can be ex-

tended to rather sparse grids, such that the wire separation can

be as large as half of the wavelength. The extended conditions

naturally contain higher order tangential derivatives of the aver-

aged current.

Our method is based on the Taylor expansion of the app!
priate coefficient in the exact solution and still higher orde
conditions can be easily generated. However, we note that
method fails when the first resonance of the grid is reached. f He is a Researcher in the Complex Media Elec-
the normal incidence that happens when the distance betw — tromagnetics Laboratory, Radiophysics Department,
wiresb equals the wavelength. Near that point, the grid be- ‘v. gg:;frrs?rﬂgessttzte;:cgFelg{arlo#g;ﬁft:tcy' e man
comes transparent. The Taylor expansion of the grid paramet and scattering theory, averaged boundary conditions,
« (13) fails when we reach this point (there is a branch pointagnetoelectric interactions.
here). The physical reason for this limitation is the fact that at
frequencies higher than the first resonance frequency, several
plane waves are generated by the grid currents (in the antenna
language, there exist grating lobes). Thus, the main idea of c@argei A. Tretyakov (M'92-SM'98) was born in Leningrad, U.S.S.R. (now
necting the smooth field taken at a distance from the grid with- Zeéersbllfrgs. Russia),( inh1§?6~ Hg rﬁceti)ved thefDSip_l- Enginser-PhyS(iCIiIS_t, the

: H : ndidate of Sciences .D.), and the Doctor of Sciences degrees (all in ra-
the smoothed grid current cannot be directly applied anymoﬁ%

) : physics) from the St. Petersburg State Technical University, St. Petersburg,
and other models are needed for this regime. Russia, in 1980, 1987, and 1995, respectively.
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