2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

The Insulated Linear Antenna-Revisited

Thorsten W. Hertel, Student Member, IEEE and Glenn S. Smith Fellow, IEEE

Page 914.

Abstract:

In the past, the insulated linear antenna has been analyzed with an approximate transmission-line theory. The range of validity for this theory has not been established. In this paper, the finite-difference time-domain (FDTD) method is used to analyze the insulated monopole antenna. The validity of the FDTD analysis is established by comparison of results with accurate measurements for a variety of antennas. The FDTD analysis is then used to determine the accuracy of the approximate transmission-line theory. Graphs are provided to quantify the errors in the approximate theory as functions of the geometry and the electrical properties of the monopole antenna.

References

  1. J. A. Willoughby and P. D. Lowell, "Development of loop aerial for submarine radio communications", Phys. Rev., vol. 14, pp.  193-194, 1919.
  2. R. R. Batcher, "Loop antennas for submarines", The Wireless Age, vol. 7, pp.  28-31, 1920.
  3. L. Bouthillon, "Contributions à l'étude des radiocommunications sous-marines", Rev. Gen. Elect., vol. 7, pp.  696-700,  1920.
  4. R. K. Moore, "Theory of radio communication between submerged submarines", Ph.D. dissertation, Cornell Univ., 1951.
  5. R. K. Moore, "Radio communication in the sea", IEEE Spectrum, vol. 4, pp.  42-51, 1967.
  6. R. W. P. King and C. W. Harrison Jr., Antennas and Waves, Cambridge, MA: MIT Press, 1969, ch. 6.
  7. R. W. P. King and G. S. Smith, Antennas in Matter: Fundamentals, Theory, and Applications, Cambridge, MA: MIT Press, 1981.
  8. J. W. Strohbehn, E. D. Bowers, J. E. Walsh and E. B. Douple, "An invasive microwave antenna for locally-induced hyperthermia for cancer therapy", J. Microwave Power , vol. 14, pp.  339-350, 1979.
  9. D. C. de Sieyes, E. B. Douple, J. W. Strohbehn and B. S. Trembly, "Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer", Am. Assoc. Phys. Med., vol. 8, pp.  174-183, 1981.
  10. R. W. P. King, B. S. Trembly and J. W. Strohbehn, "The electromagnetic field of an insulated antenna in a conducting or dielectric medium", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  574-583, July  1983.
  11. J. G. Maloney, "Analysis and synthesis of transient antennas using the finite-difference time-domain (FDTD) method", Ph.D. dissertation, Georgia Inst. Technol., 1992.
  12. J. G. Maloney and G. S. Smith, "Modeling of antennas,"in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, Ed. Norwood, MA: Artech House, 1998, ch. 7.
  13. J. G. Maloney, M. P. Kesler and G. S. Smith, "Generalization of PML to cylindrical geometries", in Proc. 13th Annu. Rev. Progress Appl. Computat. Electromagn., 1997, pp.  900-908. 
  14. T. W. Hertel, "Pulse radiation from an insulated antenna: An analogue of Cherenkov radiation from a moving charge", M.S. thesis, Georgia Inst. Technol., Atlanta, GA, 1998.
  15. G. S. Smith and W. R. Scott Jr., "The use of emulsion to represent dielectric materials in electromagnetic scale models", IEEE Trans. Antennas Propagat., vol. 38, pp.  323-334, Mar.  1990.
  16. W. R. Scott Jr., "Dielectric spectroscopy using shielded open-circuited coaxial lines and monopole antennas of general length", Ph.D. dissertation, Georgia Inst. Technol., Atlanta, GA, 1985.
  17. W. R. Humbert and W. R. Scott Jr., "Open-structure resonant technique for measuring the dielectric properties of materials", IEEE Trans. Instrument. Meas., vol. 47, pp.  666-673, June  1998.