2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Time-Domain Green's Function foran Infinite Sequentially ExcitedPeriodic Line Array of Dipoles

Leopold B. Felsen, Life Fellow, IEEE and Filippo Capolino Member, IEEE

Page 921.

Abstract:

Green's functions based on truncated periodicity play an important role in the efficient analysis of radiation from, or scattering by, phased-array antennas, frequency selective surfaces and related applications. Such Green's functions exploit the equivalence between summation over the contributions from individual elements in an array and their collective treatment via Poisson summation in terms of an infinite series of Floquet waves (FW). While numerous explorations have been carried out in the frequency domain (FD), much less has been done for transient excitation. In order to gain understanding of the FW critical parameters and phenomenologies governing time-domain (TD) periodicity, we consider the simple canonical problem of radiation from an infinite periodic line array of sequentially pulsed axial dipoles. This problem can be solved in closed form and also by a variety of alternative representations,which include inversion from the FD, spectral decomposition into TD plane waves, the complex space-time analytic signal formulation, and the Cagniard-de Hoop method. These alternatives, some of which apply traditionally only for nondispersive TD events, are shown to still work here because of the special character of the FW dispersion. Particular attention is given to evanescent TD-FW's and their transition through cutoff. Asymptotic techniques grant insight into the TD-FW behavior by identifying their instantaneous frequencies, wavenumbers,and other physics-based parameterizations. A basic question concerns the definition of what constitutes a physically"observable"(causal, etc.) TD-FW. The proposed answer is based on consistency among models arrived at by alternative routes.

References

  1. L. Carin and L. B. Felsen, "Time harmonic and transient scattering by finite periodic flat strip arrays: Hybrid (ray)-(Floquet mode)-(MoM) algorithm", IEEE Trans. Antennas Propagat., vol. 41, pp.  412-421, Apr.  1993.
  2. L. B. Felsen and L. Carin, "Frequency and time domain Bragg-modulated acoustics for truncated periodic arrays", J. Acoust. Soc. Amer., vol. 95, no. 2, pp.  638-649, Feb.  1994.
  3. L. B. Felsen and L. Carin, "Diffraction theory of frequency-and time-domain scattering by weakly aperiodic truncated thin-wire gratings", J. Opt. Soc. Amer. A, vol. 11, no. 4, pp.  1291-1306, Apr.  1994.
  4. F. Capolino, M. Albani, S. Maci and L. B. Felsen, "Frequency domain Green's function for a planar periodic semi-infinite dipole array.-Part I: Truncated Floquet wave formulation", IEEE Trans. Antennas Propagat., vol. 48, pp.  67-74, Jan.  2000.
  5. F. Capolino, M. Albani, S. Maci and L. B. Felsen, "Frequency domain Green's function for a planar periodic semi-infinite dipole array.-Part II: Phenomenology of diffracted waves", IEEE Trans. Antennas Propagat., vol. 48, pp.  75-85,  Jan.  2000.
  6. F. Capolino, M. Albani, A. Neto, S. Maci and L. B. Felsen, "Vertex-diffracted Floquet-waves at a corner array of dipoles", in Int. Conf. Electromagn. Adv. Applicat. (ICEAA), Torino, Italy,Sept. 1997.
  7. F. Capolino, S. Maci and L. B. Felsen, "Asymptotic high-frequency Green's function for a planar phased sectoral array of dipoles", in Ser. Spec. Issue 1998 URSI Int. Symp. Electromagn. Theory, Thessaloniki, Greece,Mar,/Apr. 2000.
  8. A. Neto, S. Maci, G. Vecchi and M. Sabbadini, "Truncated Floquet wave diffraction method for the full wave analysis of large phased arrays.-Part I: Basic principles and 2-D cases", IEEE Trans. Antennas Propagat., vol. 48, pp.  594-600,  Apr.  2000.
  9. A. Neto, S. Maci, G. Vecchi and M. Sabbadini, "Truncated Floquet wave diffraction method for the full wave analysis of large phased arrays.-Part II: Generalization to the 3-D cases", IEEE Trans. Antennas Propagat., vol. 48, pp.  601-611,  Apr.  2000.
  10. E. Heyman and L. B. Felsen, "Weakly dispersive spectral theory of transients, -Part I: Formulation and interpretation", IEEE Trans. Antennas Propagat., vol.  AP-35, pp.  80-86, Jan.  1987.
  11. E. Heyman and L. B. Felsen, "Weakly dispersive spectral theory of transients, -Part II: Evaluation of the spectral integral", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  574-580, May  1987 .
  12. E. Heyman, "Weakly dispersive spectral theory of transients-Part III: Applications", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1258-1266, Nov.  1987.
  13. L. Cagniard, translated from 1939 French monography by Flinn and Dix Reflection and Refraction of Progressive Seismic Waves, New York: McGraw-Hill, 1962.
  14. A. T. de Hoop, "A modification of Cagniard's method for solving seismic pulse problems", Appl. Sci. Res., vol. B8, pp.  349-356, 1960.
  15. A. Papoulis, Systems and Transforms with Application in Optics, Malabar, FL: Krieger, 1981.
  16. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Englewood Cliffs/Piscataway, NJ: Prentice-Hall/IEEE Press, 1973/1994.
  17. S. R. Deans, The Radon Transform and Some of its Applications, Malabar, FL: Krieger, 1993.
  18. D. Kralj, M. McClure, L. Carin and L. B. Felsen, "Time-domain wave-oriented data processing of scattering by nonuniform truncated gratings", J. Opt. Soc. Amer. A, vol. 11, no. 10, pp.  2685-2694, Oct.  1994.
  19. L. B. Felsen and F. Capolino, "Time-domain Green's function for an infinite sequentially excited periodic line array of dipoles", Dept. Aerosp. Mech. Eng., Boston Univ., Boston, MA, Tech. Rep. AM-98-044, 1998.
  20. E. Heyman and L. B. Felsen, "Nondispersive closed form approximations for transient propagation and scattering of ray fields", Wave Motion, vol. 7, no. 1, pp.  335-358, 1985.
  21. E. Heyman and L. B. Felsen, "Propagating pulsed beam solutions by complex source parameter substitution", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  1062-1065, Aug.  1986.
  22. L. Carin, L. B. Felsen and T. T. Hsu, "High-frequency field excited by truncated arrays of nonuniform distributed filamentary scatterers on an infinite dielectric grounded slab: Parametrizing (leaky mode)-(floquet mode) interaction", IEEE Trans. Antennas Propagat., vol. 44, pp.  1-11, Jan.  1996.
  23. F. Capolino, M. Albani, S. Maci and R. Tiberio, "High-frequency analysis of an array of line sources on a truncated ground plane", IEEE Trans. Antennas Propagat., vol. 46, pp.  570-578, Apr.  1998.