2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

A Broad-Band U-Slot Rectangular Patch Antenna on a Microwave Substrate

Kin-Fai Tong, Kwai-Man Luk, Senior Member, IEEE Kai-Fong Lee, Fellow, IEEE and Richard Q. Lee

Page 954.

Abstract:

A broad-band U-slot rectangular patch antenna printed on a microwave substrate is investigated. The dielectric constant of the substrate is 2.33. The antenna is fed by a coaxial probe. The characteristics of the U-slot patch antenna are analyzed by the finite-difference time-domain (FDTD) method. Experimental results for the input impedance and radiation patterns are obtained and compared with numerical results. The maximum impedance bandwidth achieved is 27%, centered around 3.1 GHz, with good pattern characteristics.

References

  1. T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna", Electron. Lett., vol. 31, no. 16, pp.  1310-1312, 1995 .
  2. K. F. Lee, K. M. Luk, K. F. Tong, Y. L. Yung and T. Huynh, "Experimental study of a two-element array of U -slot patches", Electron. Lett., vol. 32, no.  5, pp.  418-420, 1996.
  3. K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh and R. Q. Lee, "Experimental and simulation studies of coaxially fed U -slot rectangular patch antenna", Inst. Elect. Eng. Proc. Microwave Antennas Propagat., vol.  144, no. 5, Oct.  1997.
  4. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, Mar.  1966.
  5. B. Engquist and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves", Math. Computat., vol. 31, pp.  629-651, 1977.
  6. R. J. Luebbers, L. Chen, T. Uno and S. Adachi, "FDTD calculation of radiation patterns, impedance and gain for a monopole antenna on a conducting box", IEEE Trans. Antennas Propagat., vol. 40, pp.  1577-1583, Dec.  1992.
  7. P. A. Tirkas and C. A. Balanis, "Finite difference time domain method for antenna radiation", IEEE Trans. Antennas Propagat., vol. 40, pp.  334-340,  Mar.  1992.
  8. S. Maci, G. Biffi Gentili, P. Piazzesi and C. Salvador, "Dual-band slot-loaded patch antenna", Inst. Elect. Eng. Proc. Microwaves Antennas Propagat., vol. 142, no. 3, 1995.
  9. K. S. Yee, D. Ingham and K. Shlager, "Time-domain extrapolation to the far field based on FDTD calculations", IEEE Trans. Antennas Propagat., vol. 39, pp.  410-413,  Mar.  1991.
  10. R. J. Luebbers, K. Kunz, M. Schneider and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation", IEEE Trans. Antennas Propagat., vol. 39, pp.  429-433,  Apr.  1991.
  11. M. A. Jensen and Y. Rahmat-Samii, "Performance analysis of antenna for hand transceiver using FDTD", IEEE Trans. Antenna Propagat., vol. 42, pp.  1106-1113, Aug.  1994.
  12. "IEEE standard definitions of terms for antennas", IEEE Trans. Antennas Propagat., vol. AP-31, p.  15, Nov.  1983.
  13. R. J. Luebbers, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations", IEEE Trans. Antennas Propagat., vol. 44, pp.  1000-1005, July  1996.
  14. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, Oct.  1994.